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Josephson Current through Charge Density Waves
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The effect of the collective charge density wave (CDW) motion on the Josephson current
superconductorycharge density waveysuperconductor junction is studied theoretically. By deriving th
kinetic equations for the coupled superconductor-CDW system, it is shown that below the critical cu
the CDW does not move. Biased above this value, the Josephson current oscillates as a function
velocity of the sliding CDW and the collective mode acts as a nonlinear shunting resistor parallel to
Josephson channel. Internal mode locking of the Josephson and CDW frequencies causes osci
in the current-voltage characteristics and plateaus in the CDW conductance. [S0031-9007(97)046
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The Josephson effect [1] is known to exist in superco
ductor hybrid structures, where two superconductors a
separated by insulating barriers or normal metals [2]. R
cently, the theory of the Josephson effect through syste
which support a non-Fermi (Tomonaga-Luttinger) liqui
ground state has received much attention due to rapid
velopments in fabrication technology [3]. In this Lette
we investigate the Josephson current through a differ
yet related system, namely, a strongly anisotropic me
with a charge density wave (CDW) instability.

The ground state of CDW’s consist of a lattice disto
tion coupled to an electron density modulationnCDW ~

jDcsx, tdj cosf2kFx 2 xsx, tdg. The amplitude of the
complex CDW order parameterDc is half the Peierls
energy gap at the Fermi wave vectors6kF, and its phase
x denotes the position of the density wave relative
the crystal lattice. Despite the insulating quasipartic
spectrum, incommensurate CDW’s allow for a unique co
lective mode of transport, which distinguishes them fro
ordinary insulators. The collective current, which resul
from the sliding motion of the CDW, is proportional to
Ùx ; ≠tx , and leads to remarkable electric behavior, su
as non-Ohmic conductivity and narrow-band noise [4].

It is interesting to investigate whether the Josephs
effect in a superconductorycharge density waveysuper-
conductor sSyCySd junction will be affected by the
sliding CDW motion. Therefore, we consider a curren
biased SyCyS junction, which consists of parallel
one-dimensional CDW chains of lengthL, sandwiched
between two large superconductors characterized by
paring potentialjDsj and phaseswR and wL. Recent
progress in controlled deposition of thin films of CDW’s
may lead to the fabrication of such mesoscopic-sca
heterostructures in the near future [5].

Using the Keldysh formalism for superconductor
[6] and CDW’s [7] we have formulated a consisten
framework for the quasiclassical dynamics of the coupl
superconductor-CDW system. It is shown that the CD
is immobile under a certain critical current. Biased abo
this value, the CDW starts to slide and the Josephson c
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rent has an oscillatory behavior as a function of the phas
u ­ wR 2 wL 1 ÙxLyyF , whereyF is the Fermi velocity.
Apparently CDW motion induces a dynamical phase which
is added to the conventional superconductor phase diffe
ence. Finally, we show that in the presence of pinning
the collective mode causes a nonlinear shunting resistan
parallel to the Josephson channel. Typical current
voltage characteristics show sharp oscillations cause
by internal mode locking of the CDW and Josephson
frequencies.

The dynamics of superconductor and CDW systems ca
be described simultaneously by the semiclassical Gree
functions gi

absx; t, t0d where i ­ hR, A, Kj and a, b ­
h1, 2, 3, 4j. The retardedgR and advanced functions
gA determine the excitation spectrum, and the Keldysh
function gK describes the kinetics of the system. The
subscripts 1, 3 refer to right and left moving electrons
with spin up and 2, 4 to left and right moving holes
with spin down. Throughout the paper “caret” denotes
s2 3 2d matrices and boldfaces4 3 4d matrices. The
Green functions satisfy the equation of motion

ih̄yF≠xgi 1 H ± gi 2 gi ± H ­ 0 (1)

where

H ­ ih̄≠ts3S3 2 FS3 1 D ,

sk ­

µ
sk 0
0 sk

∂
, D ­

µ
D̂s 2D̂c

D̂y
c 2D̂s

∂
,

S1 ­

µ
0 1̂
1̂ 0

∂
, S2 ­ i

µ
0 21̂
1̂ 0

∂
,

S3 ­

µ
1̂ 0
0 21̂

∂
.

(2)

Here F is the quasiparticle potential, andsk with
k ­ h1, 2, 3j are the three Pauli matrices. The dot opera
tion ± denotes internal time integrations as well as
matrix multiplications. The self-energy term for impu-
rity scattering is neglected throughout this paper. The
© 1997 The American Physical Society 4461
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matrix D̂s is given by D̂s,11 ­ D̂s,22 ­ 0, D̂s,12 ­
2D̂

p
s,21 ­ jDsj expsiwd, andD̂c ­ 1̂jDcj expsixd.

It is convenient to gauge away both phasesw andx by
applying the unitary transformation

g̃i ­ Uysx, td ± gi ± Usx, t0 d , (3)
where U ­ exps i

2 S3x 1
i
2 s3wd. Disregarding local

variations of Ùx, we look for a stationary state solution o
the formgsx; t 2 t0d, which can be treated by the Fourie
transformation

g̃isx; t 2 t0 d ­
Z de

2p
g̃isx, ede2iest2t0dy h̄ . (4)

The stationary-state equation of motion for the Fouri
transformed function is
iyF≠xg̃i 1 fes3S3 2 F̃S3 2 eyFÃs3 1 ijDj, g̃ig2 ­ 0 ,

(5)
with F̃ ­ F 1

1
2 h̄yF≠xx 1

1
2 h̄ Ùw, Ã ­ h̄ Ùxy2eyF 1

h̄≠xwy2e, andjDj ­ jDsjs2S3 2 jDcjS2, and the brack-
ets f g2 denote commutation. From the structure of th
equation the well-known duality between the superco
ductor and CDW phasesy≠xx , Ùw and Ùx , yF≠xw

is observed. The gradient of the superconductor pha
and the time derivative of the CDW phase correspond
an electrical current, whereas the gradient of the CD
phase and the time derivative of the superconductor ph
correspond to an electronic potential.

The retarded and advanced Green functions in the
perconductors are determined from the stationary-st
equation of motion Eq. (5) withF̃ ­ jDcj ­ 0. As-
suming Ds to be constant in the superconductors, it
convenient to apply the Bogoliubov transformation t
diagonalizeH

G ­ q21g̃q ,

q ­

µ
q̂1 0
0 q̂2

∂
, q̂6 ­

µ
u6 2y6

y6 2u6

∂
,

(6)
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where u6 and y6 are the gauge transformed BCS
coherence factors given by

u6 ­

s
1
2

µ
1 1

l6

´6

∂
, y6 ­ 2

s
1
2

µ
1 2

l6

´6

∂
,

l6 ­ sgns´6d
p

´2
6 2 jDsj

2 Qsj´6j 2 jDsjd
1 i

p
jDsj

2 2 ´2
6 QsjDsj 2 j´6jd .

(7)

Here ´6 ­ e 7 h̄ Ùxy2, and Q is the Heaviside step
function.

For the inhomogeneousSyCyS system Eq. (5) has to be
supplemented by boundary conditions, which adequat
describe the two superconductor interfaces. Here
restrict ourselves to the ideal case where no defects
potential barriers are present at the interfaces. In ord
to derive the boundary conditions it will be convenient t
decompose thes4 3 4d Green functions into fours2 3 2d
blocks as follows:

G ­

√
Ĝ F̂

2 ˆ̄F 2 ˆ̄G

!
. (8)

Following Zaitsev [8], we require that the diagonal block
are normalized as usual, and the nondiagonal blocks m
satisfy the following relations on the leftsx ­ 0d and right
sx ­ Ld interfaces:

Ĝ 2 ­ ˆ̄G
2

­ 1̂ , (9a)

ĜF̂ ­ 2F̂ , ˆ̄G ˆ̄F ­ ˆ̄F sx ­ 0d , (9b)

ĜF̂ ­ F̂ , ˆ̄G ˆ̄G ­ 2 ˆ̄F sx ­ Ld . (9c)

Together with Eq. (5), it follows that the components o
the retarded Green function at the interfaces are
Ĝ11 ­ ˆ̄G 11 ­ 2Ĝ22 ­ 2 ˆ̄G22 ­ 1 sx ­ 0, Ld ,

Ĝ12 ­ ˆ̄G 21 ­ F̂11 ­ F̂12 ­ ˆ̄F 21 ­ ˆ̄F 22 ­ 0 sx ­ 0d ,

Ĝ21 ­ ˆ̄G 12 ­ F̂21 ­ F̂22 ­ ˆ̄F 11 ­ ˆ̄F 12 ­ 0 sx ­ Ld .

(10)
.
.
t

The boundary conditions (10) state that both quasiele
trons and quasiholes which move away from the CDW
region into the ideal superconducting leads will never b
reflected into quasiparticles moving in the opposite d
rection [9]. The off-diagonal components of the diago
nal blocks express Andreev scattering, and the diago
components of the nondiagonal blocks contain the no
mal backscattering. The boundary conditions for the a
vanced Green functions are obtained by the relationgA ­
2s3sgRdys3.

In principle Eqs. (5) and (10) are sufficient to calculat
the total currentI through the system

I ­
eyFNs0d

8

Z
de Tr s3g̃K 1 eyFNs0dh̄ Ùx , (11)
c-

e
i-
-

nal
r-
d-

e

with e the electron charge andNs0d ­ sp h̄yFd21 the
density of states at the Fermi level for one spin direction
Details of the calculation will be given elsewhere [10]
Here we present only the final result for the curren
through theSyCyS junction,

I ­
e
p

Ùx 1
e
h

Im
Z

de
sinh

cosh 2 cosz
h1

0 ,

h1
0 ­ tanh

µ
e 2 h̄ Ùxy2

2kBT

∂
1 tanh

µ
e 1 h̄ Ùxy2

2kBT

∂
.

(12)

In this expression we have defined
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h ­ u 1 j1 2 j2, j6 ­
i
2

ln
´6 2 l6

´6 1 l6

,

cosz ­ 1 2 2

µ
cos

lcL
h̄yF

sin
j1 1 j2

2

2
e

lc
sin

lcL
h̄yF

cos
j1 1 j2

2

∂2

,

lc ­
p

e2 2 jDcj2 Qsjej 2 jDcjd
1 i

p
jDcj2 2 e2 QsjDcj 2 jejd .

(13)

The angleu ­ wR 2 wL 1 ÙxLyyF governs the oscil-
lating behavior of the Josephson current. Evidently, th
extra phase factor arises from the line integral of th
vector potential Ã along the junction 2e

h̄

RL
0 dx Ã ­

ÙxLyyF . Because the CDW velocity is restricted toh̄ Ùx ,

jDsj , jDcj and the maximum supercurrent decreas
exponentially~ exps2Lyjcd, oscillations are expected in
the range whereL is of the order of the CDW coherence
lengthjc ­ h̄yFyjDcj. In the static limit whereÙx ­ 0,
Eq. (12) corresponds to the Josephson current throu
a band insulator with an energy gap2jDcj. Taking the
limit jDcj ! 0 reproduces the well-known expression
for an idealSyNyS junction [11,12].

Equation (12) expresses the total current through t
SyCyS junction as a function of the superconducto
phaseswR,L and the sliding velocity Ùx. In order to
obtain a closed set of equations, however, it is necess
to derive an additional relationship betweenÙx and the
superconductor phase difference. The additional closi
relation can be derived microscopically from the sel
consistency relation for the phase of the CDW orde
parameter Z

de Tr S1g̃K ­ 0 , (14)

and the Keldysh functions in the reservoirs. The se
consistent solution for the clean junction requires an ele
trochemical potential differencedm ­ mR 2 mL in the
sliding statedm ­ h̄ Ùx, as in Ref. [9]. This implies that
below the critical Josephson current the CDW will no
move. Biased above the critical current the CDW slide
but since the collective CDW motion is dissipative du
to the contact reservoirs, a small potential difference
induced on the superconducting leads and the superc
ductor phase difference will evolve slowly in time. As a
consequence we obtain the relation

dm ­ h̄ Ùwy2 ­ h̄ Ùx . (15)

The sliding CDW mode thus acts as a shunting res
tor parallel to the Joshephson channel. The above q
sistationary approximation, where the dynamics of th
superconductor phase is neglected on the Josephson te
is therefore justifieda posteriori[13].

The assumption of an ideal junction is rather restrictiv
in realistic systems where interface effects and impuriti
tend to pin the CDW. Although a fully microscopic treat
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ment is beyond the present work, we will treat pinning
effects at a phenomenological level. In the short junctio
limit L ø h̄yFyjDsj, the dynamical phaseÙxLyyF can be
neglected and if additionallyjDcj ¿ jDsj the Josephson
current can be written asIc sinw, whereIc is the criti-
cal current. We now can model theSyCyS junction as
an electronic circuit shown in the inset of Fig. 1. We
have added a normal shunting resistanceRN , which may
include the additional conductance due to uncondens
quasiparticles in the system. This circuit is equivalent to
conventional overdamped Josephson junction shunted
a normal resistor and a CDW conductor. The dynamic
of the superconductor and CDW phases is governed
two coupled nonlinear differential equations

I ­ Ic sinw 1
eN
p

Ùx 1
h̄

2eRN
Ùw , (16a)

h̄ Ùw
2e

­ VT sinx 1
e
p

NRc Ùx , (16b)

where the second term in Eq. (16a) is the sliding curre
through a CDW material consisting ofN chains. The
second equation describes the dynamics of the CD
with a voltage sourcēh Ùwy2e in the single particle model
[14], where VT represents the threshold value require
to overcome the pinning potential andRc denotes the
dissipation.

In the limit RN ø Rc, RT ­ VT yIc the solution is the
standard expression of a normal shunted Josephson ju
tion V ­ RN

p
I2 2 I2

c [13]. In the rangeRN ø Rc ø
RT the dynamics of the CDW becomes important, how
ever. We have solved Eqs. (16) numerically. Figure
shows a typicalI-V curve of the circuit. We can dis-
tinguish three regions. In the region just aboveIc the

FIG. 1. Typical I-V characteristic of the circuit forRN ,
Rc, RT ­ RQ. At the onset of depinning sharp oscillations
appear, caused by mode locking of the CDW and Josephs
frequencies.
4463
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FIG. 2. Plateaus in the CDW conductance at different fra
tions of the CDW and Josephson frequenciesmyn.

Josephson junction is shunted by the normal resistor u
til the onset of CDW motion. In the large bias regim
the CDW slides uniformly and the Josephson junctio
is shunted by two parallel resistorsRN RcysRN 1 Rcd.
In the intermediate region a sharply peaked oscilla
ing structure is seen. This behavior is caused by
ternal “mode locking” of both the Josephson and CDW
frequency. Figure 2 shows the ratio of the CDW an
Josephson frequencyk Ùxlyk Ùwl or, equivalently, the CDW
conductanceGCDW in units of the N-mode quantum
conductance4e2Nyh ­ 2GQ versus bias current. Har-
monic and subharmonic plateaus are observed at differ
ratios myn, with m, n integers. In these mode-locked
regions the CDW resistance is constant. The volta
across the junction increases with increasing bias curr
as if effectively shunted by two parallel resistors. Be
tween the plateaus, as the CDW adjusts its resistance
the next (smaller) fraction, the total effective resistan
drops, resulting in a decreasing voltage over the jun
tion. Far above the critical currentI ¿ Ic the Josephson
frequency becomes 2 times the fundamental frequency
the narrow-band noisemyn ­ 1y2. This effect is differ-
ent from conventional mode locking in Josephson jun
tions and CDW’s, where an external oscillating driv
causes voltage, respectively, current plateaus in theI-V
itself [4,13]. When the resistancesRN , Rc, RT are of
the same order, the oscillations in theI-V should be
experimentally observable. Using typical values of
commercial Josephson junctionIc ­ 10 100 mA, RN ­
10 100 V [15], this condition may be satisfied for
several micrometers long CDW samples with thres
4464
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old fields ET ­ 1 10 Vycm and damping resistances
Rc ­ 10 100 V.

We conclude by summarizing our results. We
have formulated the kinetic equations for a couple
superconductor-CDW system and calculated the cu
rent through an ideal superconductorycharge density
waveysuperconductor junction. In the dc limit the CDW
does not move. Biased above the critical current th
CDW slides, and the Josephson current oscillates as
function of the CDW velocity. The collective mode
acts as a nonlinear shunting resistance parallel to t
Josephson channel. Internal mode locking of the Josep
son and CDW frequencies causes sharp oscillations in
I-V and plateaus in the CDW conductance.

This work is part of the research program of the “Stich
ing voor Fundamenteel Onderzoek der Materie (FOM)
which is financially supported by the “Nederlandse Or
ganisatie voor Wetenschappelijk Onderzoek (NWO)
We are indebted to Yuli Nazarov and Gerrit Bauer fo
their valuable advise and insights.

[1] B. D. Josephson, Phys. Lett.1, 251 (1962).
[2] I. O. Kulik, Zh. Eksp. Teor. Fiz.57, 1745 (1969) [Sov.

Phys. JETP30, 944 (1970)].
[3] R. Fazio, F. W. J. Hekking, and A. A. Odintsov, Phys. Rev

Lett. 74, 1843 (1995).
[4] For a review seeCharge Density Waves in Solids,

edited by L. P. Gor’kov and G. Grüner (North-Holland,
Amsterdam, 1989).

[5] H. S. J. van der Zant, O. C. Mantel, C. Dekker, J. E. Mooi
and C. Traeholt, Appl. Phys. Lett.68, 3823 (1996).

[6] A. I. Larkin and O. V. Ovchinikov, Sov. Phys. JETP41,
960 (1975) [Zh. Eksp. Teor. Fiz.68, 1915 (1975)].

[7] S. A. Artemenko and V. Volkov, Sov. Phys. JETP53,
1050 (1980) [Zh. Eksp. Teor. Fiz.80, 2018 (1981)].

[8] A. V. Zaitsev, Sov. Phys. JETP59, 1015 (1984) [Zh. Eksp.
Teor. Fiz.86, 1742 (1984)].

[9] B. Rejaei and G. E. W. Bauer, Phys. Rev. B54, 8487
(1996).

[10] M. I. Visscher and B. Rejaei (unpublished).
[11] A. V. Zaitsev, inNonequilibrium Superconductivity,edited

by V. L. Ginzburg (Nova Science Publishers, New York
1988).

[12] C. W. J. Beenakker, inTransport Phenomena in Meso-
scopic Systems,edited by H. Fukuyama and T. Ando
(Springer-Verlag, Berlin, 1992).

[13] K. K. Likharev, in Dynamics of Josephson Junctions and
Circuits (Gordon and Breach Science Publishers, Ne
York, 1986).

[14] G. Grüner, A. Zawadowski, and P. M. Chaikin, Phys. Rev
Lett. 46, 511 (1981).

[15] HYPRES Inc., Elmsford, NY 10523.


