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The spin magnetization of a system of fermions confined to two dimensions, and subject to a strong
magnetic field, has been predicted to exhibit a first-order phase transition as a function of its Zeeman
energy. We present strong experimental evidence that such a paramagnetic to ferromagnetic phase tran-
sition occurs at Landau level fillingn  4 in the two-dimensional hole gas. We demonstrate that our
data are not explained by perturbative effects such as Landau level anticrossing, and show that exchange
coefficients measured at odd filling factors are consistent with the predicted size of the gap atn  4.
[S0031-9007(97)04681-4]
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The ground state of a two-dimensional system (2D
of fermions exhibiting the integral quantum Hall effect i
determined by the interplay between the contributions
the total energy from the strong magnetic field and th
interparticle interactions. As the single-particle energi
are varied, the system can undergo a phase transition
a spin-polarized state driven by the Coulomb exchan
interaction.

In the quantum Hall effect, the single-particle energ
spectrum of an ideal, zero-thickness, 2DS is quantiz
into highly degenerate Landau levels by the compone
of magnetic field B', perpendicular to the plane of
confinement. The energy gaps at odd filling factorsn,
wheren is the ratio of the density to the degeneracy of
spin-split Landau level, have been shown to be increas
above the Zeeman energyEZ by the exchange interaction
[1,2] which arises from the Pauli exclusion principle. Thi
prevents parallel-spin fermions from approaching on
another, thus reducing their Coulomb interaction ener
compared with that of opposite-spin fermions.

Figures 1(a) and 1(b) show the dependence of the n
interacting Landau levels on the total magnetic fieldB for
a system at constant even and odd filling factors, resp
tively. At n  odd the two Landau levels that approac
each other are empty, whereas at even filling factors o
is unoccupied but the other is full. This difference is cru
cial, because in the latter case, the system has the oppo
nity to lower its energy of interaction by promoting all o
the particles in the highest occupied Landau level into t
nearest unoccupied Landau level of opposite spin. T
process dramatically lowers the Coulomb interaction e
ergy of the system, by the exchange mechanism, beca
it increases the total number of particles of the same sp
The noninteracting energy cost of this transfer may
tuned using the Zeeman energy until it is outweighed
the reduction in the total interaction energy. The syste
then undergoes a first-order paramagnetic-ferromagne
phase transition (in which the magnetization increas
discontinuously)before the energy gap to single-particle
excitations reaches zero [3,4]. This effect preempts
0031-9007y97y79(22)y4449(4)$10.00
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spin-density wave instability which might be expecte
from consideration of the magnetoexciton [3,5].

The variation of the Zeeman energy at fixedn may
be realized experimentally by tilting the sample wit
respect to the magnetic field, because the cyclotr
energy h̄vC depends onB', while the spin splitting
depends on all components ofB. Despite clear theoretical
predictions, an unambiguous experimental observation
the phase transition has not been reported. One rea
is that disorder, which has been shown to inhibit th
transition [4], confines the search to small even fillin
factors. The lowg factor and effective mass of electron
in GaAsyAlGaAs heterostructures, which represent th
cleanest experimental system currently available, requ
very large tilt angles (from perpendicular) and therefo
prohibitively high magnetic fields. The high effective

FIG. 1. (a) Plot of the Landau levels againstB for fixed B'

at n  even, in the absence of interactions. The chemic
potential m is represented by the dashed line. The arrow
represent the spins of the levels. Inset: the variation of g
D with B, for the noninteracting (solid line) and interacting
(dashed line) cases. (b) Same as (a) but for odd filling facto
© 1997 The American Physical Society 4449
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mass andg factor of holes in GaAs eliminate this problem
while retaining a low level of disorder.

In the quantum Hall regime, the energy gaps whic
occur at integral filling factors lead to zeros in th
diagonal resistivityrxx . Experimental evidence that the
minimum inrxx at n  2 failed to vanish as a function of
EZ , indicating that the energy gap did not fall to zero, ha
been presented for electrons in the InGaAsyInP system
[6]. Although the authors were unable to measure t
magnitude of the gap, it was shown that the higher ev
filling factor energy gaps did vanish and that samples
low mobility did not show the effect.

Although such evidence is a necessary consequence
the phase transition, it does not demonstrate its occurren
In particular, the failure of two opposite-spin Landau lev
els to cross can arise because of mixing between them,
example, by the spin-orbit interaction [7]. This explana
tion is also consistent with the disappearance of the ene
gap in low quality samples and at higher filling factors.

In this Letter, we report on the energy gaps, determin
from transport measurements, at fixed even and o
filling factors in a very high mobility two-dimensional
hole gas (2DHG) as the total magnetic field is varie
At n  4, we shall argue that the dependence of th
gap on B is entirely inconsistent with an anticrossing
explanation and that the evidence strongly favors the fir
order phase transition described above. The depende
of the odd gaps, which are not predicted to exhibit
phase transition, can, however, be explained by a pict
in which the Landau levels do, in fact, anticross. W
extract coefficients from these data which characterize
exchange interactions and show that they are consist
with the size of the energy gap at which the pha
transition occurs forn  4.

The two-dimensional hole gas used in this study w
grown by molecular beam epitaxy on the (311)A surfac
of a semi-insulating GaAs substrate. The hole gas
confined to a 200 Å quantum well that is symmetricall
modulation doped using Si acceptors. The confineme
potential is thought to be close to symmetric, becau
the low-field Shubnikov–de Haas (S-dH) oscillation
exhibit no beating [8]. Devices were fabricated int
Hall bars using standard lithographic techniques, a
were contacted using annealed AuBe Ohmic contac
Hall bars of this wafer have a carrier concentration
1.8 3 1015 m22 and a very high mobility in excess of
120 m2 V21 s21 at temperatures below 1.5 K.

Measurements were performed in a3He cryostat (with
a base temperature of 280 mK) designed for thein situ
rotation of the sample with respect to the magnet
field. The angle of tilt was determined from the pe
riodicity of the Shubnikov–de Haas oscillations, whic
in an ideal 2DS depends onB' only. Real samples
have a thickness characterized byt, which is half the
width of the component of the wave function perpendic
lar to the plane. The system remains essentially 2
for

p
h̄yeB $ t. This condition holds for most of the
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data presented here, although at 12 T, the two terms b
come comparable. The temperature of the sample w
measured using a calibrated Ge thermometer at ze
magnetic field and a carbon resistor, of known magnet
resistance, at nonzeroB. Standard four-terminal ac mea-
surements were performed using a current of 35 nA
maximize the measured signal, without causing heatin
effects.

At integral filling factors, the chemical potentialm lies
midway between the peaks in the density of states, whic
are separated by an energyDn [see Figs. 1(a) and 1(b)].
The energy gap fromm to the upper peak in the density of
states may be measured using an activation energy meth
in which it is assumed thatrxx ~ exps2Dny2kBT d. This
relationship strictly holds only whenkBT ø Dn , disorder
is small, andrxx ø rxy.

Figure 2 is a plot of lnrxx versus 1yT , for filling
factors 3, 4, and 5 at a particular angle of tilt. The
data presented in Fig. 2 were obtained by sweeping t
magnetic field back and forth over a particular integra
filling factor, while the sample temperature was reduce
slowly. Data were also taken by sweeping the magnet
field at stable temperatures; no systematic difference w
detected between the two sets of data. The measurem
of resistance below1 V is hampered by noise and voltage
offsets which can distort the data. The solid lines in Fig.
represent linear least-squares fits to the portions of t
curves between26 , lnsrxxykVd , 23. The data show
that the S-dH minima exhibit clear activated behavior, an
allow us to deduceDny2 from the gradients of the graphs.

The dependence onB expected for the energy gaps a
even and odd filling factors, in a system lacking bot

FIG. 2. lnrxx versus 1yT measured at filling factorsn 
3, 4, 5 and at an angle ofu  51±. The low temperature
portions of the curves have been least squares fitted to strai
lines, which are plotted. Inset is a diagram indicating th
sample’s orientation to the magnetic field.
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interactions and Landau level mixing, is represented
the solid lines in the insets to Figs. 1(a) and 1(b). Th
measured energy gapsDn for even and odd filling factors
are plotted againsttotal magnetic fieldB in Figs. 3(a)
and 3(b), respectively. The dependence ofD4 on total
B exhibits a clear turning point at a critical fieldBc 
9.13 T and a critical gapDC  3.5 6 0.1 K. The curve
is close to linear on either side of the transition, althoug
the gradients are different. Limited data are available f
n  6; these are plotted using open symbols in Fig. 3(
but are less reliable because their gaps are small compa
to the cryostat base temperature. In contrast, the o
energy gaps exhibit highly nonlinear characteristics.D5

increases at lowB, and exhibits a smooth turning poin
at 5.7 T. D3 shows qualitatively similar behavior toD5,
although the data are truncated by the limited magne
field available, and the initial gradient is much greater.

It will be argued that the distinct differences betwee
the odd and even filling factor data may be explaine
by the occurrence of a paramagnetic-ferromagnetic ph
transition at the sharp turning point in then  4 plot.
Before this, the peculiarities of the band structure of th
2DHG are addressed. In general, theg factor of a 2DHG
is anisotropic, because the holes are subject to a w
defined axis of symmetry perpendicular to their plan
of confinement. At theG point of the Brillouin zone,
there exists very little mixing of the light and heavy
holes and the parallelg factor gjj is zero [9]. However,

FIG. 3. (a) Filled symbols show the energy gaps measured
n  4 as a function of the total magnetic field applied to th
sample. D4 drops linearly to a gap of3.5 6 0.1 K at its turning
point at 9.13 T. The solid line is a fit to theD4 data below
7.2 T with the slope corresponding to ag factor of 1.1. Open
symbols show similar data forn  6. (b) The energy gapsD3
and D5 at odd filling factors. D5 exhibits distinct curvature
near to its turning point at 5.7 T. The solid lines have the sam
gradients as the line in (a), and demonstrate that away from 6
the data are consistent with theg factor measured atn  4.
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the nonzero Fermi wave vector of the hole gas and th
application of the magnetic field mix the light and heavy
hole states. The Zeeman energy then takes the for

EZ 
q

sg2
jjB

2
jj 1 g2

'B2
'd, which is only linear in totalB

in the isotropic case,gjj  g'.
The lack of curvature at lowB in the n  4 data

indicates that theg factor is isotropic and therefore that
EZ depends on the total magnetic field. The solid line
superimposed upon then  4 data in Fig. 3(a) is a
linear best fit line forB , 7 T. Its gradient suggests
that theg factor of the system is1.1 6 0.05. The solid
straight lines which are superimposed upon theD5 data in
Fig. 3(b), at high and lowB, have the same gradient and
demonstrate that theg factors atn  4 and 5 are similar.
However, theD3 dependence cannot be described usin
this g factor. The possibility that the large slope is a
consequence of strong anisotropy is rejected because
n  4 data are linear.

A pair of Landau levels that are mixed by some
interaction do not cross. In simple perturbation theory, th
levels anticross according to an equation of the formd q

l2sB 2 B0d2 1 d
2
0 , whered represents the energy gap

between the interacting levels. The essential properties
this equation are that, forlsB 2 B0d ¿ d0, the variation
is linear and its extrapolation passes throughd  0 at
B  B0. In the vicinity of this anticrossing, however, the
dependence is expected to be curved.

The D4 dependence presented in Fig. 3(a) is not ac
counted for by the anticrossing picture. The extrapola
tion of the low-field data reaches theD4  0 axis at a
much higher field than the turning point. Furthermore
the dependence is close to linear for allB. Thus we argue
that at the sharp turning point ofn  4, a paramagnetic-
ferromagnetic phase transition occurs in which charg
transfers between approaching Landau levels.

Figure 1(b) shows that atn  5, the approaching
levels are either both full (for energies less thanm) or both
empty (energy more thanm). Thus, a phase transition is
not possible and the levels will anticross through mixing
The curvature evident for then  5 data in Fig. 3(b)
confirms this anticrossing interpretation. The maximum
value of D is close toh̄vC  eB'ymp wheremp is the
hole effective mass which takes values between0.2m0 and
0.3m0 in this system. The energy difference between th
point of intersection of the two solid lines in Fig. 3(b)
and the actual data at that field demonstrates that t
anticrossing gapd0 is approximately1.6 6 0.1 K, and is
more than a factor of 2 smaller thanDC. The source
of this Landau level mixing is likely to be the spin-
orbit interaction, which is of particular importance in the
valence band.

In the limit of strong magnetic field (̄hvC ¿ EX ),
the characteristic energyEX of the exchange interaction
at integer filling factors ise2y4pee0lB, where e is the
dielectric constant andlB 

p
sh̄yeB'd is the magnetic

length. In this regime there is no mixing of the Landau
levels by the Coulomb interaction, which is therefore
4451
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unscreened. However, forn . 1, the 2DHG enters a
different regime because of the large effective mas
which is not well defined but takes values between0.2m0

and0.3m0. Using these values, we findEX exceeds̄hvC

by a factor of 5 to 8. Consequently, strong Landau lev
mixing by the Coulomb interaction is expected, whic
should screen the interparticle Coulomb potential [10].

The size of the screened exchange interaction, and
consistency with the value ofDC measured atn  4, may
be extracted from the data at odd filling factors. In th
strong magnetic field limit, the Hartree-Fock energye

s
N of

a particle may be written as

es
N  h̄vcsN 1 1y2d 1 sgmBB 2 SMANMns

M , (1)

whereN is the Landau level index ands is the spin [1].
In the third term,ns

M represents the occupancy of Lan
dau levelsM, sd. The coefficientsANM represent the ex-
change corrections due to interactions between particles
the same spin in Landau levelsN and M. In the strong
field limit, they take values calculated elsewhere [1], th
most familiar of which isA00 

p
py2 EX . To account

for the strong Landau level mixing in the 2DHG, we gen
eralize Eq. (1) by treating theANM as phenomenological
parameters to be deduced from the data.

The magnetic field at which the phase transition occu
may be determined by equating the total energy of t
system in the paramagnetic and ferromagnetic phas
The ferromagnetic phase is obtained by transferring
the particles with spin down from Landau levelN  1
to the spin-up Landau levelN  2. The energy gap at
n  4 at this field can be shown to besA11 1 A22dy2.

The predicted dependence of the energy gap on m
netic field is included in the inset to Fig. 1(a) using
dashed line. The effect of disorder is to increase t
downward curvature in the vicinity of the transition. Lit
tle evidence of this is observed near toD4  DC in
Fig. 3(a), probably becauseDC is much larger than the
expected disorder width of the Landau levels which is e
timated to be less than 1 K [11].

Manipulation of Eq. (1) demonstrates that the ener
gap between a pair of Landau levels at odd filling factor
in the limit of zero disorder and neglecting anticrossin
with other higher energy levels, is given byD2M11 
gmBB 1 AMM . AMM may be estimated experimentally
by extrapolatingD vs B to B  0. From then  5 data,
A22  4.0 6 0.2 K. Unfortunately the same extrapolation
to A11 is impossible for then  3 curve, because of the
particularly steep gradient at low fields.

By scaling the measured value ofA22 with lB to
account for the dependence ofEX on B', and using the
theoretical result thatA22 andA11 are close in magnitude
[12], the energy gap at the transition point atn  4 is
predicted to be4.5 6 0.3 K. Given the approximations
made at all stages of the theory, the agreement with
4452
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directly measured valueDC  3.5 6 0.1 K is good. An
indication that the magnitude of the exchange energ
is reasonable may be found by including screenin
in the Thomas-Fermi approximation. In this simple
approximation, the coefficientsANM are reduced from
their unscreened values by an order of magnitude, so th
they are comparable with, but larger than, the measur
gap. The inclusion of the effect of the finite width of
the system, which softens the Coulomb interaction, shou
lower the calculated energy gap further.

The difference in gradients measured before and aft
the transition atn  4 and the observation that the initial
slope atn  3 is much larger than theg factor consistent
with the data atn  4 and 5 are not explained by this
mean-field picture. A more complicated theory, possibl
incorporating spin textures, may be required.

In conclusion, we have measured energy gaps at ev
and odd filling factors in a very strongly interacting
fermion liquid. We observe evidence of a first-orde
phase transition from a paramagnetic to a ferromagne
state. We can explain most features of the transition usi
a phenomenological model, the parameters of which a
estimated from the odd energy gaps. These observatio
highlight the utility of low-dimensional hole systems for
the study of interactions and should stimulate further wor
to quantify the predictions in the limit of large interaction
energies.
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