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We present a Chern-Simons theory of the fractional quantum Hall effect in which flux attachme
is followed by a transformation that effectively attaches the correlation holes. We extract t
correlated wave functions, compute the drift and cyclotron currents (due to inhomogeneous dens
exhibit the Read operator and operators that create quasiparticles and quasiholes. We show how
bare kinetic energy can get quenched and replaced by one due to interactions. We find that
n ­ 1y2 the low energy theory has neutral quasiparticles and give the effective Hamiltonian a
constraints. [S0031-9007(97)04676-0]
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The experimental discovery of the fractional quantum
Hall effect [1,2] led to theoretical response on two fronts
trial wave functions that captured the essential physics a
approximate computational schemes starting with the m
croscopic Hamiltonian. The most successful among th
latter has been the Chern-Simons (CS) field theory [3
16]. Here we present a formulation of the CS theor
which resolves several nagging questions and exposes
physics in a particularly transparent way. We illustrat
our method through the casesn ­ 1y3 and n ­ 1y2,
where the filling fractionn ­ 2pnyeB, n being the par-
ticle density,2e the electron charge, andB the magnetic
field down thez axis. Our results forn ­ pys2np 1 1d
will be reported later. We set̄h ­ c ­ volume­ 1, z ­
x 1 iy, andl0 ­ seBd21y2 the cyclotron length.

In the CS approach one introduces a wave function fo
the CS particles in terms of the electronic one as follows

Ce ­
Y
i,j

szi 2 zjdl

jzi 2 zj jl
CCS . (1)

wherel is the number of flux quanta to be attached. Th
prefactor introduces a gauge fielda obeying

= 3 asrd
2pl

­
X

i

dsr 2 rid . (2)

In second quantized form, the CS action density is

S ­ ci≠oc 1 a0

µ
= 3 a

2pl
2 cc

∂
2

js2i= 1 eA 1 adcj2

2m
, (3)

where A is the external vector potential andm is the
bare mass. The Coulomb interaction will be added late
By shifting a we can canceleA upon choosingl ­
3 for n ­ 1y3 and l ­ 2 for n ­ 1y2. Hereafter a
and cyc ­ r (the density) will denote normal-ordered
quantities. Whereas in the quest for wave functions, w
can build in not just the phase, but all of

Q
szi 2 zjdl ,

or even the ubiquitous Gaussian factors into the proce
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of flux attachment, doing so here would lead to a compl
vector potential [17]. The correlation zeros must therefo
be extracted out of the fluctuations [13].

We now introduce our scheme (inspired by the wo
of Bohm-Pines [18]) and define a composite particle (C
field, whereP may stand for fermionF or bosonB:

cCSsx, y, td ­ exp

"
2i

Z t

2`
a0sx, y, t0d dt0

#
cCP sx, y, td .

(4)

The transformation kills thea0cc term and introduces a
longitudinal vector potential2plP defined by

qa0sq, vd ­ 2v2plPsq, vd (5)

in the kinetic energy term, whilea0s =3a
2pl d becomesX

q

Z
dvPs2v, 2qd f2ivgasq, vd , (6)

whereP ­ 2iq̂ ? P anda ­ iq̂ 3 a, so that the longitu-
dinal and transverse vector potential are now canonical
conjugate and the constraint field has become dynamic
The Hamiltonian density is

H ­
1

2m
js2i= 1 a 1 2plPdc j2 (7)

­
1

2m
j=cj2 1

n
2m

sa2 1 4p2l2P2d

1 sa 1 2plPd ?
1

2m
cys2i

$
= dc

1
1

2m
: cyc : sa 1 2plPd2

; H0 1 HI 1 HII , (8)

whereHI andHII refer to the last two terms. Note tha
c is to be quantized as a boson (fermion) forn ­ 1y3
(1y2). ThoughHI and HII denote interactions between
the particles and the gauge bosons, we are still discuss
© 1997 The American Physical Society 4437
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free electrons. We are, however, paving the way for th
Coulomb interaction.

The constraint now defines physical states:µ
= 3 a

2pl
2 : cyc :

∂
jphysicall ­ 0 , (9)

ensuring they are singlets under the local gauge symme
possessed byH and generated by the operator whic
annihilates physical states above. This constraint is
be expected since we cannot simply add extra degrees
freedom. FromH0 we see that the pairsa, Pd describe
oscillators at v0 ­ eBym. Since we started withn
electrons in a planen0, the number of independen
oscillators obeysn0 # 2n. We find that the valuen0 ­ n,
i.e., for 0 , q # Q ­ kF recommends itself for many
reasons and choose it.To pay for these degrees o
freedom, the particles will be deprived ofn coordinates,
which will be seen to put them in the lowest Landau lev
(LLL). Thus in Eq. (7) only the vector potentialasqd
with 0 , q , Q will have a conjugate momentumPsqd.
For q . Q, the short range partdasqd will be a function
of rsqd as in Eq. (3). The contribution ofdasqd, Hda,
suppressed in Eq. (7), will be discussed later.

We now analyzeH first ignoring all butH0, starting
with the casen ­ 1y3. In the ground state, the boson
condense into a constant wave function while the oscil
tors with Hamiltonian

Hosc ­
QX
q

fAysqdAsqdgv0 , (10)

where Asqd ­ fasqd 1 6piPsqdgy
p

12p, yield the
ground state wave function:

C ­ exp

"
2

X
q

1
12p

a2sqd

#
(11)

­ exp

"
2

X
q

3p : rsqd :
1
q2

: rs2qd :

#
(12)

­
Y
i,j

jzi 2 zj j
3 exp

"
2

X
j

jzj j
2y4l2

0

#
(13)

upon using the constraint to get the wave function
terms of particle coordinates. The steps leading to t
last line are explained in Kaneet al. [19] and Zhang’s
review [13]. Putting back the phase factors from Eq. (
gives us Laughlin’sc1y3 with the proviso that since
q , Q in Eq. (12), our answer is to be trusted only fo
jzi 2 zj j . l0: aszi °! zj, we know that there are three
zeros in a circle of sizel0, but not that they coincide.

Let us understand how not just the phase, but the cu
correlation zeros ofc1y3, got built in. Writing Eq. (4) in
operator form (at the origin) [20] as

c
y
CB ­ exp

"X
q

6pi
q

Psqd

#
c

y
CS (14)

we see that when we create a composite boson, we
only create a CS boson but also displaceasqd by 26pyq,
which, upon projection to the physical statesleads to a
4438
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hole of charge21 (in electronic units). This agrees with
Read’s picture [21] of how to add an extra electron
the n ­ 1y3 state: we add three units of flux, create
correlation hole of charge21, and drop in the newcomer.
Evidently c

y
CB is the Read operator that will have a

nonzero expectation value in the ground state. Final
consider

cqh ­ exp

"X
q

2pi
q

Psqd

#
, (15)

which clearly creates a Laughlin quasihole of charg
21y3. (It produces the extra factor

Q
i jzij, while the

phase comes from the vortex in the boson wave functio
The adjoint operator creates a quasielectron. Our pro
dure, which gives a concrete realization of many ide
pertaining to composite fermions and bosons was possi
only upon going to a larger space, where collective char
motion is represented bya, with a conjugate momentum
P that can be used to shift it.

We now turn exclusively ton ­ 1y2, which was
studied exhaustively by Halperin, Lee, and Read (HLR
[15]. First, a similar analysis to the one above yields th
Rezayi-Read [22] or Jain wave function (quadratic zer
times the Gaussian, times a Fermi sea) but without a
projection to the LLL. The projection will be achieved
shortly.

Let us first perform two simple calculations. Imagin
adding a smooth weak scalar potentialV sx, yd. This
couples via a term (upon using the constraint)

HV ­
Z

d2xV= 3
a

4p

­ 2
Z

d2x
a

4p
? ẑ 3 =V . (16)

This linear coupling ina shifts a to a new minimum
and leads to a ground state current

k jl ­ 2
e

4p
ẑ 3 =V , (17)

which implies a Hall conductance (recallhy2p ­ 1)

sxy ­
e2

4p
­

e2

2h
. (18)

Although the shifted oscillators are in their ground state
the original ones are in an admixture with excited state
as is essential to get the right response [17].

Next we confirm that any inhomogeneous densi
nsx, yd leads to an uncanceled cyclotron current [23]

k jcyclol ­
e

2m
ẑ 3 =n . (19)

To this end imagine that there is a spatially varying fie
Bsx, yd and that a suitable scalar potential has been add
on top of it to ensure that we are locally atn ­ 1y2. We
are thus not calculating any standard response functio
our limited goal is to show that this varying densit
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nsx, yd leads to the expected cyclotron current.Consider
the last termHII in Eq. (8)

HII ­
1

2m

Z
d2x : cyc : sa 1 4pPd2

­
1

2m

Z
d2x : cyc : ksa 1 4pPd2l 1 fluctuations

­
1

2m

Z
d2x

∑
1

4p
= 3 a

∏
4pnsx, yd 1 . . . (20)

where we have used the fact that the zero-point ene
density of then0 ­ n oscillators implies

ksa 1 4pPd2l ­ 4pnsx, yd . (21)

If we shift the oscillators to the new minimum mandate
by this linear term ina, we find an average current given
by Eq. (19).

Although answers that only depended on the oscillato
were correctly given above in what we call the middl
representation, the large kinetic energy of the particle
of order 1ym, needs to be quenched. This will now b
done by eliminating the coupling between the fermion
and oscillators by a canonical transformation that tak
us to the final representation. We do this approximate
by organizing the calculation in powers ofq and keeping
just the leading terms at each stage; as well as by settP

i eisk2qdri ­ ndsk 2 qd and dropping the fluctuating
part when the density appears in a product with oth
operators. The full nature of this approximation is uncle
to us, especially whenQ ­ kF and not particularly small.
In any event, the results, which have many nice featur
are good only for long distances. We dropHII right away
since: cyc : is explicitly of orderq due to the constraint
and eliminateHI. The operators (in first quantization
transform as follows (upon dropping vector signs whe
obvious and definingV6 ­ Vx 6 iVy):

Vold ­ e2iSVeiS , (22)

iS ­

p
2p

mv0

"X
q

X
i

q̂1pi2eiqri Asqd 2 H.c.

#
, (23)

Aoldsqd ­ Asqd 2

p
2p

mv0

X
i

q̂2pi1e2iqri , (24)

roldsqd ­
q

p
8p

fAsqd 1 Ays2qdg

2 il2
0

X
i

sq 3 pide2iqri , (25)

0 ­
X

i

e2iqri 1
il2

0

2

X
i

sq 3 pide2iqri sconstd , (26)

H ­
X

i

p2
i

2m
1

QX
q­0

v0AysqdAsqd

2
1

2mn

QX
q­0

X
i

X
j

pi ? pje2iqsri2rjd 1 Hda . (27)

(i) The constraint Eq. (26) does not involve the oscilla
tors. As a result, the fermions and oscillators are truly d
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coupled in this leading approximation and the former fac
n constraints. These and the Hamiltonian will commut
among themselves in an exact canonical transformati
since they did before and will commute to leading orde
in our approximation. The transformations generated b
the constraints represent the gauge transformation of t
middle representation, except now the particle Hamilton
ian must itself be invariant under it. In particular, if we
look at the first operator in the constraint (the new den
sity) we see that it generates a shift in all the momen
in the limit q °! 0. We seeH in Eq. (27), is invariant
if we once again invoke

P
i eisk2qdri ­ ndsk 2 qd. This

“drifting Fermi” sea (seen by Haldane in his numerica
work) is part of the larger gauge symmetry of the particl
Hamiltonian. (ii) If we restrict ourselves to the ground
state of the oscillators in Eq. (25) we findrold ­ r (the
second term) which obeys the commutators of magne
translations in the limit of smallq:

frsqd, rsq0dg ­ il2
0 sq 3 q0drsq 1 q0d , (28)

an algebra that was studied in detail by Girvinet al [24].
Thus we are able to put the electrons in the LLL within
a standard field theory by putting our oscillators in thei
ground states.Notice that the fermions are now dipolar
with respect to electronic charge, a feature that has bee
anticipated by many authors[4]. (iii) The third term in
Eq. (27) comes from transforming the oscillator part o
H0. The last,Hda, stands for theda and sdad2 terms of
the short-range gauge field. (iv) Thei ­ j terms in the
third sum renormalize1ym downwards, as we decouple
the oscillators. We get1ymp ­ 0 upon using

P
q ­ n. If

we use a smallerQ, there will be a reduction of1ymp to
a fraction of1ym (a step in the right direction), but not a
full elimination of m dependence in the low energy sector
The choicesQ . kF lead to a negative effective mass and
are not viable. (v) Thei fi j terms summed from0 to
Q can be traded for minus the sum fromQ to ` since
they differ by a delta functiondsri 2 rjd that vanishes on
fermion (and also hard-core boson) wave functions. Le
us combine this term withHda. These largeq variables
couple to the fermion whose1ymp °! 0 for the choice
n0 ­ n. Integrating out the fermions in RPA, we find
that this sector gives the magnetoplasmon with the rig
position and residue. There is no other structure sinc
x ­ vyqyp °! ` sinceyp °! 0. (vi) While 1ym ­ 0
and the correct cyclotron pole and residue depend o
Q ­ kF or n0 ­ n, the dipolar nature of charge, the
constraints and the form of the Hamiltonian in Eq. (27
will be valid even ifQ is given a smaller value.

Having made the field theory correctly reproduce th
quenched fermions and dispersionless magnetoplasm
of the noninteracting problem, we are ready to turn o
interactions. We illustrate the procedure with a Coulom
interaction that is cut off atq ­ Q so that we can
treat it entirely in terms of our oscillators. In the final
4439
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representation ofH this adds a term [recall Eq. (25)]

HCoul ­
l4
0

2

X
ij

QX
q­0

2pe2

q
sq 3 pid sq 3 pjde2iqsxi2xjd

(29)

in addition to a term that renormalizes the oscillator fre
quency tov0 1 e2qy4 and a feeble derivative coupling
between the fermions and the oscillator which makes
difference to this order ine2 or q. The i ­ j term in
HCoul (which describes the interaction between the ele
tron and the correlation hole when they separate) no
leads to

1
mp

­
e2l0

6
; Ce2l0 . (30)

Note that1ymp is not a smallq quantity. Our result is
just an estimate; loop diagrams will surely give it finite
momentum dependent corrections. It is encouraging t
numerical work [25] (using the full Coulomb interaction
gives a not too different value ofC . 0.2.

The Hamiltonian and constraint are (droppingHdad:

H ­
X

i

p2
i

2mp
1

l4
0

2

X
i,jfii

QX
q

2pe2

q

3 sq 3 pid sq 3 pjde2iqsri2rjd, (31)

0 ­
X

i

e2iqri 1
il2

0

2

X
i

sq 3 pide2iqri. (32)

The constraint states to this order inq that the density
formed out of a putative cyclotron coordinate vanishe
having been spoken for by the oscillators.

One must solve the above theory in a way that respe
the constraints, i.e., in a conserving approximation. Th
has not been done yet to our satisfaction. Given t
dipolar nature of charge (the explicit factor ofq in rold),
one may expect that therold 2 rold structure factor (and
its moments) will have two extra powers ofq relative
to a Fermi liquid. However, the “drifting sea” might
lead to soft modes and compensating inverse powers
q in the low-frequency response function, so that th
static compressiblity remain finite in the limitq °! 0
for short range interactions or vanishes asq for Coulomb
interactions.

Forn ­ 1y3 a similar analysis of the mass renormaliza
tion will hold, but the RPA will proceed very differently
because the constraint boson mixes with the condens
even at tree level and suppresses low energy excitation

We have presented a CS theory in which the compo
ite particles carry flux and the correlation holes thanks
the additional transformation that made the CS field in
dynamical oscillators, which were then frozen. Depriv
ing the particles ofn degrees of freedom led to LLL be-
havior. We derived the correlated wave functions, dr
and cyclotron currents, explicit operators for creating th
quasihole and quasiparticle, Read’s operator, and prope
traded the bare mass for an effective mass based on in
4440
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actions. Forn ­ 1y2 we exhibited the dipolar couplings
between the final quasiparticles, and derived an effecti
Hamiltonian and constraints.
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