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Geometry of Dynamics, Lyapunov Exponents, and Phase Transitions

Lando Caiani,;* Lapo Casett’:™ Cecilia Clementf;* and Marco Pettiri®
'International School for Advanced Studies (SIASAS), via Beirut 2-4, 34014 Trieste, Italy
2Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

30Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy
(Received 6 February 1997

The Hamiltonian dynamics of the classical planar Heisenberg model is numerically investigated
in two and three dimensions. In three dimensions peculiar behaviors are found in the temperature
dependence of the largest Lyapunov exponent and of other observables related to the geometrization of
the dynamics. On the basis of a heuristic argument it is conjectured that the phase transition might
correspond to a change in the topology of the manifolds whose geodesics are the motions of the system.
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On the basis of the ergodic hypothesis, statistical mewhose arclength is
chanics describes the physics of many-degrees-of-freedom o
systems by replacingime averages of the relevant ob-  ds*> = —2V(q) (dq°)* + a;dq'dg’ + 2dq°dg" ™.
servables wittensembleaverages. In the present Letter, @
instead of using statistical ensembles, we investigate the
Hamiltonian (microscopic) dynamics of a system undergoThe manifold has a Lorentzian structure and the dynamical
ing a phase transition. The reason for tackling dynamic#ajectories are those geodesics satisfying the condition
is twofold. First, there are observables, like Lyapunovds® = Cdt?, where C is a positive constant. In the
exponents, that are intrinsically dynamical. Second, th@eometrical framework, the (in)stability of the trajectories
geometrization of Hamiltonian dynamics in terms ofis the (in)stability of the geodesics, and it is completely
Riemannian geometry provides new observables and, idletermined by the curvature properties of the underlying
general, a new interesting framework to investigate thénanifold according to the Jacobi equation [8]
phenomenon of phase transitions. D2Ji . dg’ , dg"
The geometrical formulation of the dynamics of conser- 52 + Rjim s J s
vative systems [1] was first used by Krylov in his studies s s s
on the dynamical foundations of statistical mechanics [2Jvhose solutiory, usually called Jacobi or geodesic varia-
and subsequently became a standard tool to study abstrdiin field, locally measures the distance between nearby
systems in ergodic theory. Several new contributions t@eodesicsp/ds stands for the covariant derivative along
this subject appeared in the last few years [3—6]. a geodesic an®};,, are the components of the Riemann
Let us briefly recall that the geometrization of the dy-curvature tensor. Using the Eisenhart metric (1) the
namics ofN-degrees-of-freedom systems defined by a Larelevant part of the Jacobi equation (2) is [4,6]
grangian L = T — V, in which the kinetic energy is B2Ji ‘
quadratic in the velocitieg = %a,-j('fc']f, stems from the 7y + RiwJ* =0, i=1,...,N, (3)
fact that the natural motions are the extrema of the Hamil-
tonian action functionaby = [ £ dt, or of the Mauper- where the only nonvanishing components of the curva-
tuis’ actionSy, = 2 [ T dt. In fact also the geodesics of ture tensor arRy;o; = 9>V /dq;dq;. Equation (3) is the
Riemannian and pseudo-Riemannian manifolds are the exangent dynamics equation which is commonly used to
trema of a functional: the arclength= [ ds, with ds> =  measure Lyapunov exponents in standard Hamiltonian sys-
g:jdq'dg’; hence a suitable choice of the metric tensor altems. Having recognized its geometric origin, in Ref. [6]
lows for the identification of the arclength with eith8;  we have devised a geometric reasoning to derive from
or Sy, and of the geodesics with the natural motions ofEq. (3) aneffectivescalar stability equation thandepen-
the dynamical system. Starting frof,; the “mechanical dentlyof the knowledge of dynamical trajectories provides
manifold” is the accessible configuration space endowedn average measure of their degree of instability. This is
with the Jacobi metridg,);; = [E — V({g})]ai;, where based on two main assumptions: (i) the ambient manifold
V(q) is the potential energy andl is the total energy. is almost isotropic,i.e., the components of the curva-
A description of the extrema of Hamilton’s actidf); as  ture tensor—that for an isotropic manifold (i.e., of con-
geodesics of a mechanical manifold can be obtained usingtant curvature) ar®;jx, = ko(gik&jm — &im&jk)s Ko =
Eisenhart’s metric [7] on an enlarged configuration spaceeonst—can be approximated ®jx, =~ (1) (gikgjm —
time (¢° = t,4',...,¢"} plus one real coordinatg" *'),  gi.gjx) along a generic geodesidt) and (i) in the large

0, (2)
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N limit the “effective curvature’x(t) can be modeled by which is the HeisenbergY potential. We consided =

a Gaussian and-correlated stochastic process. The mear2,3. The potential (7) is invariant under the action of the
ko and variancer, of «(¢) are given by the average and the continuous grou (2); hence—in the limitv — o—we
rms fluctuation of the Ricci curvature; = Kz/N along  expect a second-order phase transition only i 3 and

a geodesicky = (Kg)/N, ando? = ((Kzx — (Kz))?)/N, a Kosterlitz-Thouless transition i = 2. The equations
respectively. The Ricci curvature along a geodesic is deef motion derived from the Hamiltonian (6) have been
fined askp = Rii% %/(dd_q: %), whereR;; = RS, is  numerically integrated using a symplectic algorithm [10],
the Ricci tensor; in the case of the Eisenhart metric it igvith random initial conditions at equipartition (energy
Kr = AV = Z§V=1 92V /aq?. The final result is the re- equally shared among the degrees of freedom) and at sev-
placement of Eq. (3) with the aforementioned effective sta€ral values of the energy density= E/N. At each
bility equation which is independent of the dynamics ande We measured the corresponding temperafliras the

is in the form of a stochastic oscillator equation [5,6] ~ time average of the kinetic energy per degree of freedom.
42y The temperature behavior of internal energy, specific heat,

e + k() =0, (4) and vorticity, computed as time averages instead of en-
! semble averages, led us to estimate a critical temperature
wherey? o« |J|*>. The exponential growth rate of the 7, ~ 0.95in d = 2, in agreement with the already exist-
solutions of Eq. (4), which is therefore an estimate of theng estimates [11], and, = 2.15 in thed = 3 case. In

largest Lyapunov exponent, can be computed exactly: Figs. 1 and 2 the values of the largest Lyapunov expo-

A 2ko nent, numerically computed using the standard algorithm
A= S T30 [12], are plotted vs the temperatufeand are compared to
| (5) their corresponding analytic estimates obtained by means
_ 2 64k] o\ of Eq. (5), wherex, and o, are computed as time aver-
A =207 + 7 7 4, | ages. The agreement between theoretical predictions and

numerical data is very good; in an intermediate tempera-

wherer = W\/K_o/[Z\/KO(KO + ox) + mo,];inthelimit  ture range a “renormalization” of, is necessary, as al-
o«/ko < 1 one findsA « o2. Details can be found in ready discussed in Ref. [6] for the one-dimensional case.
Refs. [5,6]. In thed = 2 caseA(T) displays a rather smooth pat-

In our geometric picture chaos is mainly originated bytern in the transition region (see the inset in Fig. 1),
the parametric instability [9] activated by the fluctuatingwhereas in thel = 3 case, atl’ = 2.15 = T., the be-
curvature “felt” by the geodesics. On the other hand, thénavior of A,(T) clearly shows a neat departure from its
average curvature properties are statistical quantities likentermediate regime of linear growth, as can be seen in
thermodynamic observables. This means that there existglae inset in Fig. 2 where the transition region is magnified
nontrivial relationship betweedynamicalproperties (Lya- and linear scales are used. No evidence of a possible di-
punov exponents) and suitalstaticobservables. Generic vergence ofA(T) is found asT — T,, at variance with
thermodynamic observables have a nonanalytic behaviahe results reported in Ref. [13], though a very different
as the system undergoes a phase transition. Hence the fohodel is considered therein. In this respect our results
lowing questions arise naturally: “Is there any peculiarity

in the geometric properties associated with the dynamics, IR B I A R ]
and thus in the chaotic dynamics itself, of systems which 1e "oy, 3
exhibit an equilibrium phase transition?” And in particu- i ' TR e ]
lar, do the curvature fluctuations and/or the Lyapunov ex- 101 | 4
ponent show any remarkable behavior in correspondence d 0.8 pITTTTITTTTTIIT ] 3
with the phase transition itself? We address these ques- 1oL Y 44
tions considering a system of planar classical “spins” (ro- g oab ° E
tators) S; = (cose;,sing;) defined on ad-dimensional 108 L . i g 1]
latticeZ¢. The Hamiltonian is E 02E ¢ E
F [ T T T FUETE PN NUNTE
Hilg.7h) = 5 St + VoD, @) N A
i 10 10 1 101 10 10° 10¢
wherep; and; are the canonically conjugated angle and T

angular momentum of the spin on tfé lattice site. The FIG. 1. Lyapunov exponem; vs temperaturd for the d =
interaction is given by ({;) stands for nearest-neighbor 2 case. Numerical results correspond to lattice sie= 10°
sites) (starred open squaresN = 20°> (open triangles),N = 40?
(open stars)N = 50> (open squares), and/ = 100> (open
circles). Full squares are analytic results according to Eq. (4);
V=- Z [code; — @) — 1], (7) dots are analytic results without correction (see text). In the
(ijyez! inset symbols have the same meaning.
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I B L B B IR tinuously. Let us consider, for instance, the families of
100 = gr,c@ ,,,,,,,,,, ¢o E surfaces of revolution immersed R® defined as follows:
E o LI S S Fe = (fe(u) cosv, f.(u) sinv, u), where u,v are local
o L o° . ] coordinates on the surface € [0,2#] andu belongs to
2 o oo o 173 the domain of definition ofg),fls(u) = *+vJe + u? — u?,
- I o 08 b ER & € [emin, +%), andemn, = —7. There is a critical value
102 & o 0.6 EE of the parameters = ¢. = 0, corresponding to a change
F 0.4 F 47 in thetopologyof the surfaces. In particular the manifolds
oo L ? 02 F = F. are diffeomorphic to a toru$? whene < 0 and to a
,’” obore® 10 3 sphereS? when e > 0. Computing the Euler-Poincaré
C 0 2 4 6] characteristicy by means of the Gauss-Bonnet theo-
10 181 1‘00 1'01 ' 11)2 153 e rem [1(_5], one findsy(F,) = 0if e <0, andy(F.) =2
T otherwise.

Let M be a generic member of the famil§,, and

FIG. 2. Lyapunov exponen, vs T for the d =3 case. ot s define the fluctuations of the Gaussian curvature

Numerical results with lattice size¥ = 10° (open squares); o >
N = 15° (open star). Analytic results are represented byK (see, e.g., Ref. [16] for the definition &f) as o™ =

full circles; dots are analytic results without the correction(K?) — (K)* = A~" [}, K*dS — A™*([,, K dS)*, where
mentioned in the text. InseN = 10° (open squaresly = 15° A is the area oM andds is the invariant surface element.

(open circles). This family of surfaces exhibits a singular behavior in the
curvature fluctuatiorr as € — ¢., as shown in Fig. 5.

for A,(T) are closer to those found for a liquid-solid first- This is remarkably similar to the cusplike behavior of the
order transition [14] and for other models [15]. Ricci curvature fluctuations . (T') of theXIf model ind =

Let us now turn to théiddengeometry of the dynamics 3 that are peaked &t [17]. At the heuristic level, these
and in particular to the complex landscape of the ambiresults suggest that a phase transition might correspond
ent manifold whose deviation from isotropy—quantified 0 @ major topology changén the manifolds underlying
by o —is directly responsible for dynamical chaos. Thethe motion. We conjecture that the family of mechanical
comparison of Figs. 3 and 4, whekg(T) and o (T) are manifolds (each one being in one-to-one correspondence
reported ford = 2 andd = 3, respectively, evidences a with a value ofT) splits,' atT,, into'two gubfamilies of
remarkable feature of the curvature fluctuations: a singumanifolds that are not diffeomorphic (being perhaps of a
lar (cusplike) behavior ot (T) shows up in correspon- different cohomology type)._
dence with the second-order phase transition ap€r) The relevance of topological concepts for the theory of
is sharply peaked af., whereas in absence of symmetry phase transitions has been already rigorously demonstrated
breaking ¢ = 2) no singular behavior of (T) is present. N a rather abstract context (seg Ref. [18]);.the present LeF-
This behavior of the curvature fluctuations is very intrigu-ter suggests that also topological properties of the mani-
ing. In fact a singular behavior of the curvature fluc-folds underlying the microscopic (Hamiltonian) dynamics
tuations can be reproduced in abstract geometric modefPuld be relevant to second-order phase transitions.
which undergo a transition between different topologies
at a critical value of a parameter that can be varied con-
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FIG. 4. d =3 case. Time averages, at = 10°, of Ricci
curvature (open triangles) and its fluctuations (full triangles).
FIG. 3. d =2 case. Time averages, af = 402, of Ricci Open circles and full rhombs refer to a lattice sizeNof= 15°.
curvature (open circles) and its fluctuations (full circles). SolidSolid lines are microcanonical analytic estimates obtained from
lines are analytic estimates obtained from a high temperatura high temperature expansion. The appearence of a cusplike
expansion. behavior of curvature fluctuations is well evidentTat

T
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FIG. 5. Fluctuations amplitudey, of Gauss curvature of a
family of surfaces parametrized &y For graphical reasons
is shifted by its minimum valude,;,| = 0.25; thus the cusp
corresponds te = 0, the critical value separating two families
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