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The Hamiltonian dynamics of the classical planar Heisenberg model is numerically investigat
in two and three dimensions. In three dimensions peculiar behaviors are found in the tempera
dependence of the largest Lyapunov exponent and of other observables related to the geometrizati
the dynamics. On the basis of a heuristic argument it is conjectured that the phase transition m
correspond to a change in the topology of the manifolds whose geodesics are the motions of the sys
[S0031-9007(97)04596-1]

PACS numbers: 05.45.+b, 02.40.Ky, 05.20.–y, 05.70.Fh
l
n

g

y

-

o
s-

s
d

On the basis of the ergodic hypothesis, statistical m
chanics describes the physics of many-degrees-of-freed
systems by replacingtime averages of the relevant ob
servables withensembleaverages. In the present Letter
instead of using statistical ensembles, we investigate
Hamiltonian (microscopic) dynamics of a system underg
ing a phase transition. The reason for tackling dynam
is twofold. First, there are observables, like Lyapuno
exponents, that are intrinsically dynamical. Second, t
geometrization of Hamiltonian dynamics in terms o
Riemannian geometry provides new observables and,
general, a new interesting framework to investigate t
phenomenon of phase transitions.

The geometrical formulation of the dynamics of conse
vative systems [1] was first used by Krylov in his studie
on the dynamical foundations of statistical mechanics [
and subsequently became a standard tool to study abst
systems in ergodic theory. Several new contributions
this subject appeared in the last few years [3–6].

Let us briefly recall that the geometrization of the dy
namics ofN-degrees-of-freedom systems defined by a L
grangianL ­ T 2 V , in which the kinetic energy is
quadratic in the velocitiesT ­

1
2 aij Ùqi Ùqj , stems from the

fact that the natural motions are the extrema of the Ham
tonian action functionalSH ­

R
L dt, or of the Mauper-

tuis’ actionSM ­ 2
R

T dt. In fact also the geodesics o
Riemannian and pseudo-Riemannian manifolds are the
trema of a functional: the arclength, ­

R
ds, with ds2 ­

gijdqidqj; hence a suitable choice of the metric tensor a
lows for the identification of the arclength with eitherSH

or SM , and of the geodesics with the natural motions
the dynamical system. Starting fromSM the “mechanical
manifold” is the accessible configuration space endow
with the Jacobi metricsgJ dij ­ fE 2 V shqjdg aij , where
V sqd is the potential energy andE is the total energy.
A description of the extrema of Hamilton’s actionSH as
geodesics of a mechanical manifold can be obtained us
Eisenhart’s metric [7] on an enlarged configuration spac
time (hq0 ; t, q1, . . . , qN j plus one real coordinateqN11),
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whose arclength is

ds2 ­ 22V sqd sdq0d2 1 aijdqidqj 1 2dq0dqN11.
(1)

The manifold has a Lorentzian structure and the dynamica
trajectories are those geodesics satisfying the conditio
ds2 ­ Cdt2, where C is a positive constant. In the
geometrical framework, the (in)stability of the trajectories
is the (in)stability of the geodesics, and it is completely
determined by the curvature properties of the underlyin
manifold according to the Jacobi equation [8]

D2Ji

ds2
1 Ri

jkm
dqj

ds
Jk dqm

ds
­ 0 , (2)

whose solutionJ, usually called Jacobi or geodesic varia-
tion field, locally measures the distance between nearb
geodesics;Dyds stands for the covariant derivative along
a geodesic andRi

jkm are the components of the Riemann
curvature tensor. Using the Eisenhart metric (1) the
relevant part of the Jacobi equation (2) is [4,6]

d2Ji

dt2 1 Ri
0k0Jk ­ 0, i ­ 1, . . . , N , (3)

where the only nonvanishing components of the curva
ture tensor areR0i0j ­ ≠2Vy≠qi≠qj. Equation (3) is the
tangent dynamics equation which is commonly used t
measure Lyapunov exponents in standard Hamiltonian sy
tems. Having recognized its geometric origin, in Ref. [6]
we have devised a geometric reasoning to derive from
Eq. (3) aneffectivescalar stability equation thatindepen-
dentlyof the knowledge of dynamical trajectories provides
an average measure of their degree of instability. This i
based on two main assumptions: (i) the ambient manifol
is almost isotropic,i.e., the components of the curva-
ture tensor—that for an isotropic manifold (i.e., of con-
stant curvature) areRijkm ­ k0sgikgjm 2 gimgjkd, k0 ­
const—can be approximated byRijkm ø kstd sgikgjm 2

gimgjkd along a generic geodesicgstd and (ii) in the large
© 1997 The American Physical Society 4361
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N limit the “effective curvature”kstd can be modeled by
a Gaussian andd-correlated stochastic process. The mea
k0 and variancesk of kstd are given by the average and the
rms fluctuation of the Ricci curvaturekR ­ KRyN along
a geodesic:k0 ­ kKRlyN, ands2

k ­ ksKR 2 kKRld2lyN ,
respectively. The Ricci curvature along a geodesic is d
fined asKR ­ Rij

dqi

dt
dqj

dt ys dqk

dt
dqk

dt d, whereRij ­ Rk
ikj is

the Ricci tensor; in the case of the Eisenhart metric it
KR ; DV ­

PN
i­1 ≠2Vy≠q2

i . The final result is the re-
placement of Eq. (3) with the aforementioned effective st
bility equation which is independent of the dynamics an
is in the form of a stochastic oscillator equation [5,6]

d2c

dt2 1 kstd c ­ 0 , (4)

wherec2 ~ jJj2. The exponential growth ratel of the
solutions of Eq. (4), which is therefore an estimate of th
largest Lyapunov exponent, can be computed exactly:

l ­
L

2
2

2k0

3L
,

L ­

√
2s2

kt 1

s
64k

3
0

27
1 4s4

kt2

! 1

3

,

(5)

wheret ­ p
p

k0yf2
p

k0sk0 1 skd 1 pskg; in the limit
skyk0 ø 1 one findsl ~ s2

k . Details can be found in
Refs. [5,6].

In our geometric picture chaos is mainly originated b
the parametric instability [9] activated by the fluctuatin
curvature “felt” by the geodesics. On the other hand, th
average curvature properties are statistical quantities l
thermodynamic observables. This means that there exis
nontrivial relationship betweendynamicalproperties (Lya-
punov exponents) and suitablestaticobservables. Generic
thermodynamic observables have a nonanalytic behav
as the system undergoes a phase transition. Hence the
lowing questions arise naturally: “Is there any peculiarit
in the geometric properties associated with the dynami
and thus in the chaotic dynamics itself, of systems whic
exhibit an equilibrium phase transition?” And in particu
lar, do the curvature fluctuations and/or the Lyapunov e
ponent show any remarkable behavior in corresponden
with the phase transition itself? We address these qu
tions considering a system of planar classical “spins” (r
tators) Si ­ scoswi , sinwid defined on ad-dimensional
latticeZd . The Hamiltonian is

H shw, pjd ­
1
2

X
i

p2
i 1 V shwijd , (6)

wherewi andpi are the canonically conjugated angle an
angular momentum of the spin on theith lattice site. The
interaction is given by (kijl stands for nearest-neighbor
sites)

V ­ 2
X

kijl[Zd

fcosswi 2 wjd 2 1g , (7)
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which is the HeisenbergXY potential. We considerd ­
2, 3. The potential (7) is invariant under the action of th
continuous groupOs2d; hence—in the limitN ! `—we
expect a second-order phase transition only ind ­ 3 and
a Kosterlitz-Thouless transition ind ­ 2. The equations
of motion derived from the Hamiltonian (6) have bee
numerically integrated using a symplectic algorithm [10
with random initial conditions at equipartition (energy
equally shared among the degrees of freedom) and at s
eral values of the energy densitý­ EyN . At each
´ we measured the corresponding temperatureT as the
time average of the kinetic energy per degree of freedo
The temperature behavior of internal energy, specific he
and vorticity, computed as time averages instead of e
semble averages, led us to estimate a critical temperat
Tc . 0.95 in d ­ 2, in agreement with the already exist-
ing estimates [11], andTc . 2.15 in the d ­ 3 case. In
Figs. 1 and 2 the values of the largest Lyapunov exp
nent, numerically computed using the standard algorith
[12], are plotted vs the temperatureT and are compared to
their corresponding analytic estimates obtained by mea
of Eq. (5), wherek0 and sk are computed as time aver-
ages. The agreement between theoretical predictions a
numerical data is very good; in an intermediate temper
ture range a “renormalization” ofk0 is necessary, as al-
ready discussed in Ref. [6] for the one-dimensional case

In the d ­ 2 casel1sT d displays a rather smooth pat-
tern in the transition region (see the inset in Fig. 1
whereas in thed ­ 3 case, atT . 2.15 ; Tc, the be-
havior of l1sT d clearly shows a neat departure from its
intermediate regime of linear growth, as can be seen
the inset in Fig. 2 where the transition region is magnifie
and linear scales are used. No evidence of a possible
vergence ofl1sTd is found asT ! Tc, at variance with
the results reported in Ref. [13], though a very differen
model is considered therein. In this respect our resu

FIG. 1. Lyapunov exponentl1 vs temperatureT for the d ­
2 case. Numerical results correspond to lattice size:N ­ 102

(starred open squares),N ­ 202 (open triangles),N ­ 402

(open stars),N ­ 502 (open squares), andN ­ 1002 (open
circles). Full squares are analytic results according to Eq. (4
dots are analytic results without correction (see text). In th
inset symbols have the same meaning.
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FIG. 2. Lyapunov exponentl1 vs T for the d ­ 3 case.
Numerical results with lattice size:N ­ 103 (open squares);
N ­ 153 (open star). Analytic results are represented b
full circles; dots are analytic results without the correctio
mentioned in the text. Inset:N ­ 103 (open squares);N ­ 153

(open circles).

for l1sT d are closer to those found for a liquid-solid first
order transition [14] and for other models [15].

Let us now turn to thehiddengeometry of the dynamics
and in particular to the complex landscape of the amb
ent manifold whose deviation from isotropy—quantifie
by sk —is directly responsible for dynamical chaos. Th
comparison of Figs. 3 and 4, wherek0sT d andsksTd are
reported ford ­ 2 and d ­ 3, respectively, evidences a
remarkable feature of the curvature fluctuations: a sing
lar (cusplike) behavior ofsksTd shows up in correspon-
dence with the second-order phase transition andsksT d
is sharply peaked atTc, whereas in absence of symmetr
breaking (d ­ 2) no singular behavior ofsksTd is present.
This behavior of the curvature fluctuations is very intrigu
ing. In fact a singular behavior of the curvature fluc
tuations can be reproduced in abstract geometric mod
which undergo a transition between different topologie
at a critical value of a parameter that can be varied co

FIG. 3. d ­ 2 case. Time averages, atN ­ 402, of Ricci
curvature (open circles) and its fluctuations (full circles). Sol
lines are analytic estimates obtained from a high temperat
expansion.
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tinuously. Let us consider, for instance, the families o
surfaces of revolution immersed inR3 defined as follows:
F´ ­ sss f´sud cosy, f´sud siny, uddd, where u, y are local
coordinates on the surface (y [ f0, 2pg andu belongs to
the domain of definition off´), f´sud ­ 6

p
´ 1 u2 2 u4,

´ [ f´min, 1`d, and´min ­ 2
1
4 . There is a critical value

of the parameter,́ ­ ´c ­ 0, corresponding to a change
in thetopologyof the surfaces. In particular the manifolds
F´ are diffeomorphic to a torusT2 when´ , 0 and to a
sphereS2 when ´ . 0. Computing the Euler-Poincaré
characteristicx by means of the Gauss-Bonnet theo
rem [16], one findsxsF´d ­ 0 if ´ , 0, andxsF´d ­ 2
otherwise.

Let M be a generic member of the familyF´, and
let us define the fluctuations of the Gaussian curvatu
K (see, e.g., Ref. [16] for the definition ofK) as s2 ­
kK2l 2 kKl2 ­ A21

R
M K2 dS 2 A22s

R
M K dSd2, where

A is the area ofM anddS is the invariant surface element.
This family of surfaces exhibits a singular behavior in the
curvature fluctuations as ´ ! ´c, as shown in Fig. 5.
This is remarkably similar to the cusplike behavior of the
Ricci curvature fluctuationssksT d of theXY model ind ­
3 that are peaked atTc [17]. At the heuristic level, these
results suggest that a phase transition might correspo
to a major topology changein the manifolds underlying
the motion. We conjecture that the family of mechanica
manifolds (each one being in one-to-one corresponden
with a value ofT ) splits, atTc, into two subfamilies of
manifolds that are not diffeomorphic (being perhaps of
different cohomology type).

The relevance of topological concepts for the theory o
phase transitions has been already rigorously demonstra
in a rather abstract context (see Ref. [18]); the present Le
ter suggests that also topological properties of the man
folds underlying the microscopic (Hamiltonian) dynamics
could be relevant to second-order phase transitions.

FIG. 4. d ­ 3 case. Time averages, atN ­ 103, of Ricci
curvature (open triangles) and its fluctuations (full triangles)
Open circles and full rhombs refer to a lattice size ofN ­ 153.
Solid lines are microcanonical analytic estimates obtained fro
a high temperature expansion. The appearence of a cuspl
behavior of curvature fluctuations is well evident atTc.
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FIG. 5. Fluctuations amplitude,s, of Gauss curvature of a
family of surfaces parametrized bye. For graphical reasonse
is shifted by its minimum valuejeminj ­ 0.25; thus the cusp
corresponds toe ­ 0, the critical value separating two families
of different Euler characteristicx, i.e., of different topology.
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