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It is shown that the non-Abelian black hole solutions have stationary generalizations which
parametrized by their angular momentum and electric Yang-Mills charge. In particular, there ex
a nonstatic class of stationary black holes with vanishing angular momentum. It is also argued
the particlelike Bartnik-McKinnon solutions admit slowly rotating, globally regular excitations. I
agreement with the non-Abelian version of the staticity theorem, these nonstatic soliton excitat
carry electric charge, although their nonrotating limit is neutral. [S0031-9007(97)04637-1]
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In recent years it has become obvious that a variety
well-known, and rather intuitive features of self-gravitatin
Maxwell fields are not shared bynon-Abelian gauge fields.
In particular, and in contrast to the Abelian situation
self-gravitating Yang-Mills (YM) fields can form particle-
like configurations [1]. Moreover, the Einstein-Yang
Mills (EYM) equations also admit black hole solutions
which are not uniquely characterized by their mass, a
gular momentum, and YM charges [2]. Hence, the cel
brated uniqueness theorem for electrovacuum black h
spacetimes [3] ceases to exist for EYM systems. In fa
not even partial results of the no-hair theorem can be r
stored in the non-Abelian case [4]: In addition to the ci
cumstance that spherically symmetric black holes are,
general, no longer characterized by their mass and charg
static black holes need not even be spherically symmet
[5,6]. Moreover, we shall show that there exist black ho
spacetimes with vanishing angular momentum which a
however,not static.

The new results presented in this Letter are based
our previous investigations [7,8]. In [7] we have show
that non-Abelian black holes always have rotating cou
terparts. It was also conjectured that solitons generica
do not admit rotating excitations. A systematic analys
of stationary perturbations revealed that this is indeed t
case, provided that the EYM system is coupled to boson
matter fields [8]. However, as thepureEYM system com-
prises exclusively massless fields, the polynomial fallo
of the background configurations allows for a more ge
eral asymptotic behavior than the one considered in [7
Hence, in theabsenceof bosonic fields, one gains an ad
ditional degree of freedom, which gives rise to the ne
features described in this Letter.

More precisely, we prove the existence of slowly ro
tating Bartnik-McKinnon (BK) solitons [1], and establish
a two-parameter family of stationary excitations of th
SU(2) black hole solutions. In addition to the charged, ro
tating solutions found in [7], there also exists a branch
uncharged, rotating black holes, and a branch of charg
black holes withvanishingangular momentum. As these
configurations arenot static, they illustrate that the as-
sumptions entering the non-Abelian staticity theorem [9
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are optimal: According to this theorem, stationary EYM
black hole solutions must be static only if they have zer
angular momentumand vanishing electric YM charge.
The new solutions demonstrate that the vanishing of th
electric charge is, in fact, anecessaryrequirement for
the configuration to be static. Moreover, the inversion o
the non-Abelian staticity theorem also predicts that rota
ing excitations of the BK solitons must be charged.

Although it is, by now, mathematically clarified why
slow rotations of EYM solitons are only possible in the
absenceof bosonic fields, we still lack a deeper physica
understanding of this surprising fact. The authors of thi
Letter could not agree on any of the heuristic proposa
which came up in the discussions.

Stationary perturbations.—We start by briefly recalling
that the stationary perturbations of static EYM configura
tions are governed by a self-adjoint system of equations f
a set of gauge invariant scalar amplitudes (see [8] for d
tails). A stationary EYM configuration (with Killing field
≠t , say) is described in terms of a stationary metric,g, and
a stationary non-Abelian gauge potential,A,

g ­ 2ssdt 1 ad2 1 s21g , (1)

A ­ fsdt 1 ad 1 A . (2)

Here,s anda ­ aidxi are a scalar field and a one-form
on the three-dimensional (Riemannian) orbit space wit
metric g, respectively, and so are the Lie algebra value
quantitiesf andA, describing the electric and the magnetic
part of the YM field. As we are interested inperturbations
of static, purely magneticconfigurations, both the electric
potential and the off-diagonal part of the metric vanish fo
the unperturbed solutions, that is,f ; df anda ; da.

Using the Kaluza-Klein reduction of the EYM action,
we have shown in [8] that the nonstatic perturbations,da
and df, decouple from the remaining metric and matte
perturbations. Moreover, in first order perturbation theory
the latter do not contribute to the angular momentum. Th
rotational excitations of a static, purely magnetic EYM
spacetime are, therefore, governed by the linearized fie
equations for the metric perturbationda and the electric
YM perturbationdf [7].
© 1997 The American Physical Society
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In order to obtain a self-adjoint form of the perturbatio
equations, it is necessary to pass fromda to the linearized
twist potential,dx, defined by

dx,k ­ ´kij

p
g

µ
s2

2
dda 1 4sTrhFdfj

∂ij

. (3)

Here, F is the field strength with respect to the mag
netic potentialA, and the spatial indices are raised wit
the three-dimensional metricg. By virtue of this defi-
nition, the equations governing the nonstatic, stationa
perturbations of the EYM system can, eventually, be ca
into a formally self-adjointsystem for thegauge invari-
ant scalarquantitiesdx and df [8]. (The existence of
a generalized twist potential for the stationary EYM sys
tem follows from the fact thata enters the effective action
only via the “field-strength”da; see [4,8] for details.)

Since the static background solutions under conside
tion are spherically symmetric, one can perform a mult
pole expansion of the perturbation amplitudesdx and
df. Before doing so, we recall that the background me
ric, gBG ­ 2sdt2 1 s21g is parametrized in standard
Schwarzschild coordinates byssrd and Nsrd, and the
purely magnetic background gauge potential,ABG ­ A,
is given in terms of a radial functionwsrd:

s21g ­ N21dr2 1 r2dV2, (4)

A ­ s1 2 wd stq sinqdw 2 twdq d , (5)

where tq , tw , and tr are the spherical generators o
SU(2), normalized such thatftq , twg ­ tr .

The stationary perturbationsdx and df can now be
expanded in terms of spherical “isospin” harmonics.
turns out that all axisymmetric perturbations which giv
rise to rotational excitations belong to the sector wit
total angular momentumj ­ 1 [7]. The perturbationsdx

anddf are determined by three scalar amplitudes,j1srd,
j2srd, andj3srd (see [8] for details),

dx ­ 2j1 cosq , df ­ j2tr cosq 2
j3p

2
tq sinq .

(6)

Using these expansions, the perturbation equations fina
assume the form of a standard Sturm-Liouville equ
tion for the three component real vectorj ­ sj1, j2, j3d.
One findsµ

2
d
dr

r2A
d
dr

1 B
d
dr

2
d
dr

BT 1 L 1 P
∂

j ­ 0 ,

(7)

where the3 3 3 matricesA, B, L, and P are given in
terms of the background fieldswsrd, ssrd, andNsrd. The
nonvanishing matrix elements ofA andB are

A ­ S21diags2s21, 1, 1d, B21 ­ 22s21sw2 2 1d ,
(8)

where we have introduced the metric functionS, defined
by S2 ­ syN. For the “angular momentum” matrixL
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and the effective potentialP one finds

L ­
1

NS

0B@ 22s21 0 0
0 2sw2 1 1d 22

p
2 w

0 22
p

2 w sw2 1 1d

1CA , (9)

P ­ 2
2
s

0B@ 0 0
p

2 w0

0 2Sr22sw2 2 1d2 0p
2 w0 0 2NSw02

1CA ,

(10)
where a prime denotes differentiation with respect tor.

Soliton excitations.—The existence of rotational ex-
citations of the BK soliton solutions is established a
follows: First, one observes that the Sturm-Liouville
equation (7) hasregular singular points at r ­ 0 and
r ­ `. This is seen by writing the perturbation equation
as a six-dimensional system of first order equations, an
by using the behavior of the background configurations
the vicinities of the origin and infinity. For instance, one
uses

w ­ 1 2 g
2M
r

1 O

µ
1
r2

∂
,

N ­ 1 2
2M
r

1 O

µ
1
r2

∂
,

(11)

andS ­ 1 1 O sr24d, to conclude thatr ­ ` is a regu-
lar singular point. This is, in fact, a peculiarity of the
pureEYM system, for which thepolynomialdecay of the
background fields implies that all perturbations aremass-
less. (Here,M denotes the total mass andg is a parame-
ter characterizing the background configuration.) Takin
advantage of the expansions (11) shows that the perturb
tion equations decouple in leadingand in next-to-leading
order. In leading order one finds a four-dimensional fam
ily of asymptotically acceptable solutions, behaving like
r2l, with l ­ 0, 1, 2, 3. Following the standard theory,
it remains to verify that the fundamental solution belong
ing to l ­ 0 does not exhibit logarithmic terms in next-
to-leading order. In fact, it turns out that this is the cas
for all non-negative eigenvalues. Hence, one ends up w
a four-dimensional system of asymptotically well-behave
local solutions:

j ­

µ
c0 1

c1

r

∂ ∑
e1 1 O

µ
lnsrd

r2

∂∏
1

c2

r2

∑
e2 1 O

µ
1
r2

∂∏
1

c3

r3

∑µ
1 1 s1 2 gd

2M
r

∂
e3 1 O

µ
1
r2

∂∏
, (12)

where e1 ­ s0, 1,
p

2 d, e2 ­ s1, 0, 0d, and e3 ­
s0,

p
2, 21d. In a similar way one obtains athree-

dimensional system of admissible solutions in the vicinit
of the origin. Since the BK background solutions are
continuous and regular for0 , r , `, and since the
perturbation equations are linear, the local solutions
the vicinity of r ­ 0 and r ­ ` admit extensions to the
semiopen intervalsf0, `d ands0, `g, respectively. As the
total solution space is six dimensional, the intersectio
of the regular solution subspaces is (at least) one dime
sional. Hence, all BK soliton solutions admit stationary
excitations.
4311
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Black hole excitations.—As for the black hole case,
one needs to investigate the behavior of solutions
the vicinity of the horizon, defined byNsrHd ­ 0. In
leading order the six fundamental solutions behave lik
sr 2 rHdl, with l ­ 0, 1, 2. However, a next-to-leading
order expansion shows that two (out of three) solution
belonging tol ­ 0 must be rejected. Since the remainin
solutions are well behaved, the subspace of acceptable
lutions in the vicinity of the horizon isfour dimensional.
Again using the regularity of the background configura
tion for rH , r , ` shows that stationary excitations o
static EYM black holes always exist. However, in con
trast to the soliton case, the rotating black hole configur
tions are characterized bytwo parameters, rather than only
one. Hence, the additional degree of freedom at the ho
zon implies that the intersection of the solution subspac
is now (at least)two dimensional.

In order to offer an interpretation of the parameter
characterizing the soliton and black hole excitations, w
consider the local electric YM charge and the local Kom
angular momentum, defined by flux integrals over a tw
sphere with radiusr:

tzQsrd ­
1

4p

Z
p F ­

tz

3S
fr2sj2 1

p
2 j3d0 1 2w0bg ,

Jsrd ­
1

16p

Z
p sdgwm ^ dxmd ­ 2

r4

6S

µ
b

r2

∂0

,

where b parametrizes the metric perturbation,sda ;
bsrd sin2 qdw [see Eq. (1)]. By virtue of the harmonic
expansions (6) and the definition (3) of the twist potenti
dx, one obtains an expression forb in terms of the
perturbation amplitudesji,

b ­ 2sw2 2 1dj2 1 S21r2j0
1 . (13)

The electric YM charge,Q, and the Komar angular mo-
mentum,J, are obtained from the above local expression
in the limit r ! `, where the asymptotic expansion (12
yields c1 ­ 2Q andc2 ­ 2sJ 1 4gMc0d. The leading
two terms in the asymptotic expansion of the electric p
tentialdf and the metric one-formda are, therefore (with
q ­ Q 1 Mc0s5g 2 3dy2),

df ­

µ
c0 2

Q
r

∂
tz ,

sda ­ 2

µ
J
r

1 g
4Mq

r2

∂
sin2 qdw .

(14)

For perturbations of aSchwarzschildbackground, the
above expressions are, in fact, the exact solutions
the perturbation equations, where the second term
da is absent, sinceg ­ 0 in this case. (Note that the
Schwarzschild background solution is given byw ­ 1,
S ­ 1, s ­ N ­ 1 2 2Myr .) As c0 does not enter
the Abelian field strength,F ­ ddf ^ dt, it has no
physical significance and may, as usual, be set equal
zero. Hence, as expected, the stationary excitations
the Schwarzschild solution are linearized Kerr-Newma
solutions, parametrized by their chargeQ and their
4312
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angular momentumJ [7]. In particular, it is consistent to
consider perturbations with eitherQ ­ 0 (Kerr) or J ­ 0
(Reissner-Nordström).

Returning to the stationary excitations of the no
Abelian black holes, we first emphasize that the const
c0 now has decisive physical consequences. In fact,
virtue of the covariant derivative,c0 enters the asymptotic
expression for the field strength. (It does, however,
show up in the expression forQ, since the corresponding
two-form in the formula for pF is not proportional
to the volume-form of the two-sphere.) As we ha
argued above, one obtains a two-dimensional family
excitations in the black hole case, provided that t
nontrivial asymptotic degree of freedom,c0, is taken into
account. Hence one can, in particular, consider soluti
with eitherQ ­ 0, J ­ 0, or, as in [7],c0 ­ 0.

We start with the uncharged excitations of EYM blac
holes, Q ­ 0. As in the Abelian case, these have
nonstatic metric,da fi 0, and are rotating,J fi 0. How-
ever, despite the fact that the electric YM charge va
ishes, there now arises a nonvanishing electric YM fie
E ­ ddf 1 fA, dfg. Asymptotically, this becomes

E ­ tz
Q
r2 dr 1 2gM

c0

r
strd cosq 2 cosqdtr d ,

(15)

which vanishes forQ ­ 0 only in the Abelian case (since
thenw ­ 1, i.e., g ­ 0). (As already mentioned, thec0

term is tangential to the two-sphere and does, therefore
contribute to the electric YM charge. It is also not hard
verify that the contributions of this term to the total ener
and to the action are finite.)

Even more interesting is the class of stationary ex
tations withJ ­ 0. Whereas in the Abelian caseJ ­ 0
implies da ­ 0, this is no more true for perturbations o
static EYM black holes: Despite the fact that the angu
momentum vanishes, the perturbed metric is not sta
as is already seen from the asymptotic behavior (1
(Again, this effect is proportional tog, which vanishes for
a Schwarzschild background.) This shows that there
exist EYM black hole solutions with a nonstatic doma
of outer communications and vanishing angular mom
tum. It is worthwhile noticing that the local angular mo
mentum,Jsrd, does not vanish when evaluated forfinite
values ofr, in particular, forr ­ rH ; see Fig. 1. Hence
these black holes have a rotating horizon,JsrHd fi 0, al-
though they are nonrotating in the sense thatJ ­ 0. (In
contrast to this, a Kerr-Newman black hole withJ ­ 0
also hasJsrH d ­ 0, since both quantities are proportion
to the Kerr rotation parameter.) Numerical results forJsrd
andQsrd are shown in Fig. 1. We also expect that the
black holes have an ergosphere (that is, a region in the
main of outer communications where the Killing field≠t

becomes spacelike). This does, however, not show u
the lowest order perturbation theory, since the metric fi
s is a background quantity within this approximation.
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FIG. 1. The local chargeQsrd and the local Komar angular
momentumJsrd for the nonrotating, nonstatic excitation of the
non-Abelian background black hole withn ­ 1, rH ­ 1.

The rotatingsolitons are characterized by one, rathe
than two parameters. This is due to the fact that the s
lution space at the origin has one dimension less than
solution space at the horizon. Hence, the chargeQ and
the angular momentumJ are not independent infinitesimal
hair any longer. Rotating stationary excitations of the B
solution are, therefore, electrically charged.

The Abelian staticity conjecture [10] asserts that st
tionary, nonrotating black hole solutions to the Einstein
Maxwell equations are static. In 1992, Sudarsky an
Wald were able to prove this long-standing conjectu
and, in addition, also established a non-Abelian versio
of the theorem [9]. Their result shows that

VHJ 2 Trhf`Qj ­ 0 ) a ; 0, andE ; 0 , (16)

whereVH is the angular velocity of the horizon,E is the
electric YM field, anda is the nonstatic part of the metric,
defined in Eq. (1). While this proves that nonrotating
unchargedEYM black holes are indeed static, it doe
not allow the same conclusion in the presence of elect
YM charges. The class of stationary, nonstatic blac
holes discussed above illustrates thatQ ­ 0 is not only
a sufficient, but indeed a necessary condition for metr
staticity, a ­ 0. Moreover, theorem (16) provides an
explanation for the charge-up of rotatingsolitons: Since
the first term is not present for soliton configurations
one concludes that nonstatic excitationssa fi 0d must
have nonvanishing electric YM charge. In addition, th
theorem also implies that these solutions can exist only
f` does not vanish, which reflects the crucial importanc
of the constant term,c0, in the asymptotic expansion (12).

In conclusion, we have investigated stationary pertu
bations of static soliton and black hole solutions to th
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pure EYM equations. In contrast to boson stars [11] o
soliton configurations with Higgs fields [8], the BK soli-
tons do admit rotating excitations with continuous angula
momentum. We have argued that this particular featu
of the pure EYM system is due to the slow (polynomial
decay of the static background configurations. The statio
ary excitations of EYM black hole solutions form a two-
parameter family. In particular, we have presented a cla
of nonstatic black hole spacetimes with vanishing tot
angular momentum. Both the existence of a second bran
of black holes and the charge-up of solitons due to r
tation are typical non-Abelian features of the pure EYM
system. While we have shown earlier [4] that the Abelia
circularity theorem does not generalize to EYM system
in a straightforward manner, the solutions presented in th
Letter show that the same is true for the Abelian statici
theorem: In the non-Abelian case, stationary black ho
spacetimes with vanishing angular momentum need not
static, unless they have vanishing electric YM charges.

We have not studied the stability of the new solutions
but there is no reason to expect that the unstable mod
of the BK solitons and their black hole counterparts [12
will disappear if the angular momentum and/or the YM
charges are varied. The work of Ridgway and Weinbe
[5], establishing the existence ofstablesolutions without
spherical symmetry near the Reissner-Nordström metric
therefore, still exceptional.
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