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Rotating Solitons and Nonrotating, Nonstatic Black Holes
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It is shown that the non-Abelian black hole solutions have stationary generalizations which are
parametrized by their angular momentum and electric Yang-Mills charge. In particular, there exists
a nonstatic class of stationary black holes with vanishing angular momentum. It is also argued that
the particlelike Bartnik-McKinnon solutions admit slowly rotating, globally regular excitations. In
agreement with the non-Abelian version of the staticity theorem, these nonstatic soliton excitations
carry electric charge, although their nonrotating limit is neutral. [S0031-9007(97)04637-1]

PACS numbers: 04.70.Bw

In recent years it has become obvious that a variety ofire optimal: According to this theorem, stationary EYM
well-known, and rather intuitive features of self-gravitatingblack hole solutions must be static only if they have zero
Maxwell fields are not shared monAbelian gauge fields. angular momenturrand vanishing electric YM charge.

In particular, and in contrast to the Abelian situation, The new solutions demonstrate that the vanishing of the
self-gravitating Yang-Mills (YM) fields can form particle- electric charge is, in fact, aecessaryrequirement for
like configurations [1]. Moreover, the Einstein-Yang- the configuration to be static. Moreover, the inversion of
Mills (EYM) equations also admit black hole solutions the non-Abelian staticity theorem also predicts that rotat-
which are not uniquely characterized by their mass, aning excitations of the BK solitons must be charged.

gular momentum, and YM charges [2]. Hence, the cele- Although it is, by now, mathematically clarified why
brated uniqueness theorem for electrovacuum black holglow rotations of EYM solitons are only possible in the
spacetimes [3] ceases to exist for EYM systems. In factabsenceof bosonic fields, we still lack a deeper physical
not even partial results of the no-hair theorem can be rednderstanding of this surprising fact. The authors of this
stored in the non-Abelian case [4]: In addition to the cir-Letter could not agree on any of the heuristic proposals
cumstance that spherically symmetric black holes are, ivhich came up in the discussions.

general, no longer characterized by their mass and charges,Stationary perturbations—We start by briefly recalling
static black holes need not even be spherically symmetrithat the stationary perturbations of static EYM configura-
[5,6]. Moreover, we shall show that there exist black holetions are governed by a self-adjoint system of equations for
spacetimes with vanishing angular momentum which area set of gauge invariant scalar amplitudes (see [8] for de-
however,not static. tails). A stationary EYM configuration (with Killing field

The new results presented in this Letter are based o#;, say) is described in terms of a stationary mefgicand
our previous investigations [7,8]. In [7] we have showna stationary non-Abelian gauge potenti&),
that non-Abelian black holes always have rotating coun- . 2 1=
terparts. It was also conjectured that solitons generically g=—old+a)+og, (1
do not admit rotating excitations. A systematic analysis . -
of stationary perturbations revealed that this is indeed the A=¢ldt+a)+A (2)
case, provided that the EYM system is coupled to bosoniélere,o anda = a,;dx’ are a scalar field and a one-form
matter fields [8]. However, as tlpure EYM system com-  on the three-dimensional (Riemannian) orbit space with
prises exclusively massless fields, the polynomial falloffmetric g, respectively, and so are the Lie algebra valued
of the background configurations allows for a more genquantities andA, describing the electric and the magnetic
eral asymptotic behavior than the one considered in [7]part of the YM field. As we are interestedperturbations
Hence, in theabsenceof bosonic fields, one gains an ad- of static, purely magneticonfigurations, both the electric
ditional degree of freedom, which gives rise to the newpotential and the off-diagonal part of the metric vanish for
features described in this Letter. the unperturbed solutions, that i5,= 6 ¢ anda = da.

More precisely, we prove the existence of slowly ro- Using the Kaluza-Klein reduction of the EYM action,
tating Bartnik-McKinnon (BK) solitons [1], and establish we have shown in [8] that the nonstatic perturbatiots,

a two-parameter family of stationary excitations of theand § ¢, decouple from the remaining metric and matter
SU(2) black hole solutions. In addition to the charged, roperturbations. Moreover, in first order perturbation theory,
tating solutions found in [7], there also exists a branch othe latter do not contribute to the angular momentum. The
uncharged, rotating black holes, and a branch of chargetational excitations of a static, purely magnetic EYM
black holes withvanishingangular momentum. As these spacetime are, therefore, governed by the linearized field
configurations arenot static, they illustrate that the as- equations for the metric perturbatidiu and the electric
sumptions entering the non-Abelian staticity theorem [9]YM perturbationé ¢ [7].
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In order to obtain a self-adjoint form of the perturbation and the effective potentid one finds

equations, it is necessary to pass frémto the linearized | 2071 0 0
twist potential,d y, defined by L=— 0 2w+ 1) —242w |, (9
2 R NS\ o —2v2w w2+ 1)
S Xk skl,\/§< 5 dda 4(rTr{F6¢>}> (3) , 0 0 S
= —— 285r2(w? — 1)? 0 ,

Here, F is the field strength with respect to the mag- P o \/EOW, 0 NS

netic potentiald, and the spatial indices are raised with (10)

the three-dimensional metrig. By virtue of this defi- where a prime denotes differentiation with respect.to
nition, the equations governing the nonstatic, stationary Soliton excitations—The existence of rotational ex-
perturbations of the EYM system can, eventually, be castitations of the BK soliton solutions is established as
into a formally self-adjointsystem for thegauge invari-  follows: First, one observes that the Sturm-Liouville
ant scalarquantitiesé y and 6¢ [8]. (The existence of equation (7) hagegular singular points atr = 0 and

a generalized twist potential for the stationary EYM sys-, = «, This is seen by writing the perturbation equations
tem follows from the fact that enters the effective action 3s a six-dimensional system of first order equations, and
only via the “field-strength'da; see [4,8] for details.) by using the behavior of the background configurations in

Since the static background solutions under considerahe vicinities of the origin and infinity. For instance, one
tion are spherically symmetric, one can perform a multi-yses

pole expansion of the perturbation amplitudég and M 1

6¢. Before doing so, we recall that the background met- w=1-y—+ (9<ﬁ>,

ric, ggc = —odt* + o~ 'g is parametrized in standard (11)

Schwarzschild coordinates by(r) and N(r), and the N=1- M + @(i)

purely magnetic background gauge potentitl; = A, r rz)’

is given in terms of a radial functiom(r): andS =1 + O(r %), to conclude that = « is a regu-

L I . 2702 lar singular point. This is, in fact, a peculiarity of the
o g =N drtdrdQ @ pure EYM system, for which thg@olynomialdecay of the

A=(1—w)(rygsindde — 7,d9), (5) background fields implies that all perturbations arass-

) less. (Here,M denotes the total mass andis a parame-
where 75, 7,, and 7, are the spherical generators of y¢ characterizing the background configuration.) Taking
SU(2), normalized such théty, 7,] = 7,. advantage of the expansions (11) shows that the perturba-

The stationary perturbationsy and 8¢ can now be  {jon equations decouple in leadimgdin next-to-leading
expanded in terms of spherical “isospin” harmonics. ltgger ~|n leading order one finds a four-dimensional fam-
turns out that all axisymmetric perturbations which givej, ot asymptotically acceptable solutions, behaving like
rise to rotational excitations belong to the sector Wlthr—)L’ with A = 0,1,2,3. Following the standard theory,

total angular momentum = 17]. The perturbationdx it remains to verify that the fundamental solution belong-
andé ¢ are determined by three scalar amplitud®sr),  ing to A = 0 does not exhibit logarithmic terms in next-
&>(r), andé3(r) (see [8] for details), to-leading order. In fact, it turns out that this is the case
for all non-negative eigenvalues. Hence, one ends up with
afour-dimensional system of asymptotically well-behaved
(6) local solutions:

. . : . . 1 In(r) ) 1
Using these expansions, the perturbation equations finalfy = { co + ~ e + 0 2 + 2| & + 0 2
assume the form of a standard Sturm-Liouville equa-

tion for the three component real vectdr= (&, &, &3). n 2[(1 41— 7)%> es + @<L>} (12)
One finds r3 r r2 )1’

Sy = 2£, cosd, 6¢p = &7, COST — j—% 79 SINY .

d , . d d d . where e, = (0,1,/2), e, =(1,0,0), and e; =
<—;F A; + B; - ;B + L + P>§ =0, (0,+/2,—1). In a similar way one obtains &hree
7 dimensional system of admissible solutions in the vicinity
of the origin. Since the BK background solutions are
where the3 X 3 matricesA, B, L, and P are given in  continuous and regular fof < r < o, and since the
terms of the background fields(r), o(r), andN(r). The perturbation equations are linear, the local solutions in
nonvanishing matrix elements df and B are the vicinity of »r = 0 and r = o admit extensions to the
A = S 'diag—o' 1, 1), By = —20"'w? — 1), semiopen_intervalﬁ), 0_0) ar_1d(Q, o], r(_espectively_. As the_
(8) total solution space is six dimensional, the intersection
of the regular solution subspaces is (at least) one dimen-
where we have introduced the metric functidndefined sional. Hence, all BK soliton solutions admit stationary
by $2 = ¢/N. For the “angular momentum” matrik  excitations.
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Black hole excitations—As for the black hole case, angular momentund [7]. In particular, it is consistent to
one needs to investigate the behavior of solutions irconsider perturbations with eith¢r = 0 (Kerr) orJ = 0
the vicinity of the horizon, defined by (ry) = 0. In  (Reissner-Nordstrom).
leading order the six fundamental solutions behave like Returning to the stationary excitations of the non-
(r — rg)*, with A = 0,1,2. However, a next-to-leading Abelian black holes, we first emphasize that the constant
order expansion shows that two (out of three) solutiong, now has decisive physical consequences. In fact, by
belonging toA = 0 must be rejected. Since the remainingvirtue of the covariant derivative, enters the asymptotic
solutions are well behaved, the subspace of acceptable sexpression for the field strength. (It does, however, not
lutions in the vicinity of the horizon iour dimensional. show up in the expression f@, since the corresponding
Again using the regularity of the background configura-two-form in the formula for=F is not proportional
tion for ry < r < o shows that stationary excitations of to the volume-form of the two-sphere.) As we have
static EYM black holes always exist. However, in con-argued above, one obtains a two-dimensional family of
trast to the soliton case, the rotating black hole configuraexcitations in the black hole case, provided that the
tions are characterized lwo parameters, rather than only nontrivial asymptotic degree of freedom, is taken into
one. Hence, the additional degree of freedom at the horiaccount. Hence one can, in particular, consider solutions
zon implies that the intersection of the solution subspacewith eitherQ = 0,J = 0, or, asin [7],co = 0.
is now (at leastjwo dimensional. We start with the uncharged excitations of EYM black

In order to offer an interpretation of the parametersholes, 0 = 0. As in the Abelian case, these have a
characterizing the soliton and black hole excitations, wenonstatic metrica # 0, and are rotating]l # 0. How-
consider the local electric YM charge and the local Komarever, despite the fact that the electric YM charge van-
angular momentum, defined by flux integrals over a two4ishes, there now arises a nonvanishing electric YM field,

sphere with radius: E =dé¢ + [A,8¢]. Asymptotically, this becomes
_ 1 _ Tzr.2 / /
:Q(r) = pe [* F= 3S[r (&2 +V2&) +2w'B], E = rz% dr + 2yM <2 (r,d cos® — cosddr,),
r r
Jr) = —— f b (dgoy A dxt) = — r—4<ﬁ>/ (15)
167 e 6S\r2)’
where B parametrizes the metric perturbatiomga =  Which vanishes fop = 0 only in the Abelian case (since

B(r)sir® 9d¢ [see Eq. (1)]. By virtue of the harmonic thenw = 1, i.e.,y = 0). (As already mentioned, the

expansions (6) and the definition (3) of the twist potentialterm is tangential to the two-sphere and does, therefore, not
Sy, one obtains an expression f@ in terms of the contribute to the electric YM charge. Itis also not hard to

perturbation amplitudesg;, verify that the contributions of this term to the total energy
o ) 1. and to the action are finite.)

B =2 = D&+ 5 (13) Even more interesting is the class of stationary exci-
The electric YM chargeQ, and the Komar angular mo- tations with/ = 0. Whereas in the Abelian case= 0
mentum,J/, are obtained from the above local expressionsmplies §a = 0, this is no more true for perturbations of
in the limit » — o, where the asymptotic expansion (12) static EYM black holes: Despite the fact that the angular
yieldsc; = —Q andc; = —(J + 4yMcy). The leading momentum vanishes, the perturbed metric is not static,
two terms in the asymptotic expansion of the electric pogs is already seen from the asymptotic behavior (14).
tential § ¢ and the metric one-forria are, therefore (with  (Again, this effect is proportional tg, which vanishes for

q =0 + Mcy(Sy — 3)/2), a Schwarzschild background.) This shows that there do
exist EYM black hole solutions with a nonstatic domain
8¢ = <C0 - T)Tz’ of outer communications and vanishing angular momen-
7 AM (14) tum. Itis worthwhile noticing that the local angular mo-
oda = 2<_ + 7,_2q>3in2 Sdo . mentum,J(r), does not vanish when evaluated fanite
r r values ofr, in particular, forr = ry; see Fig. 1. Hence,

For perturbations of &chwarzschildoackground, the these black holes have a rotating horizdtyy) # 0, al-
above expressions are, in fact, the exact solutions dhough they are nonrotating in the sense that 0. (In
the perturbation equations, where the second term inontrast to this, a Kerr-Newman black hole with= 0
Sa is absent, sincey = 0 in this case. (Note that the also has/(ry) = 0, since both quantities are proportional
Schwarzschild background solution is given y= 1, to the Kerr rotation parameter.) Numerical results/far)
S=1, c0=N=1-2M/r.) As ¢y does not enter andQ(r) are shown in Fig. 1. We also expect that these
the Abelian field strength,F = d5¢ A dt, it has no black holes have an ergosphere (that is, a region in the do-
physical significance and may, as usual, be set equal tmain of outer communications where the Killing fiedd
zero. Hence, as expected, the stationary excitations dfecomes spacelike). This does, however, not show up in
the Schwarzschild solution are linearized Kerr-Newmarthe lowest order perturbation theory, since the metric field
solutions, parametrized by their charge and their o is a background quantity within this approximation.
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' T ' pure EYM equations. In contrast to boson stars [11] or
. soliton configurations with Higgs fields [8], the BK soli-
_ tons do admit rotating excitations with continuous angular
momentum. We have argued that this particular feature
of the pure EYM system is due to the slow (polynomial)
decay of the static background configurations. The station-
] ary excitations of EYM black hole solutions form a two-
1 parameter family. In particular, we have presented a class
of nonstatic black hole spacetimes with vanishing total
angular momentum. Both the existence of a second branch
of black holes and the charge-up of solitons due to ro-
tation are typical non-Abelian features of the pure EYM
7 system. While we have shown earlier [4] that the Abelian
- circularity theorem does not generalize to EYM systems
_ in a straightforward manner, the solutions presented in this
Letter show that the same is true for the Abelian staticity
theorem: In the non-Abelian case, stationary black hole
spacetimes with vanishing angular momentum need not be
3 3 1 static, unless they have vanishing electric YM charges.
log,(r/ry) We have not studied the stability of the new solutions,
FIG. 1. The local charg®(r) and the local Komar angular but there is no reason to .eXpeCt that the unstable modes
momentumJ(r) for the nonrotating, nonstatic excitation of the Of the BK solitons and their black hole counterparts [12]
non-Abelian background black hole with= 1, ry = 1. will disappear if the angular momentum and/or the YM
charges are varied. The work of Ridgway and Weinberg

The rotatingsolitons are characterized by one, rather [5], establishing the existence sfablesolutions without
than two parameters. This is due to the fact that the sosPherical symmetry near the Reissner-Nordstrom metric is,
lution space at the origin has one dimension less than thi&erefore, still exceptional.
solution space at the horizon. Hence, the chapgand ——
thg angular momentutare no_tindepend_ent_infinitesimal [1] R. Bartnik and J. McKinnon, Phys. Rev. Le6l, 141
hair any longer. Rotating stationary excitations of the BK * * (19gg).
solution are, therefore, electrically charged. [2] M.S. Volkov and D.V. Gal'tsov, JETP Lett50, 345

The Abelian staticity conjecture [10] asserts that sta-  (1989); H.P. Kiinzle and A.K.M. Masood-ul-Alam,
tionary, nonrotating black hole solutions to the Einstein- J. Math. Phys. (N.Y.)31, 928 (1990); P. Bizon, Phys.
Maxwell equations are static. In 1992, Sudarsky and  Rev. Lett.64, 2644 (1990).

Wald were able to prove this long-standing conjecture [3] See, e.g., M. HeusleBlack Hole Uniqueness Theorems

and, in addition, also established a non-Abelian version (Cambridge University Press, Cambridge, England, 1996);
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' matical Physicsedited by J. Beem and K. L. Duggal (Am.

QpJ — Tr{¢.0} =0=a =0, andE =0, (16) Math. Soc., Providence, 1994).

whereQ, is the angular velocity of the horizoi is the ~ [41 M- Heusler, Helv. Phys. Act&9, 501 (1996).

electric YM field, anda is the nonstatic part of the metric, [5] (Sl.gAg.S?ldgway and E. J. Weinberg, Phys. Rev5R} 3440

defined in Eq. (1). While this proves that nonrotating, (¢] B_ Kleihaus and J. Kunz, Phys. Rev. Lél8, 2527 (1997).
unchargedEYM black holes are indeed static, it does [7] m.s. volkov and N. Straumann, Phys. Rev. L&, 1428

not allow the same conclusion in the presence of electric’ ~ (1997).

YM charges. The class of stationary, nonstatic black [8] O. Brodbeck and M. Heusler, gr-qc 9706064.
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