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Unicellular Algal Growth: A Biomechanical Approach to Cell Wall Dynamics
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We model a growing cell in a calcium solution as an elastic shell on short time scales. The turgor
pressure and elastic properties (Young’s modulus, thickness) of the cell wall determine a stressed cell
shape. Enzyme-mediated relaxation of the unstressed toward the stressed configuration results in a slow
(plastic) deformation of the cell. The cell wall thickness is then modulated by calcium-mediated fusion
of material and elongation. We analyze small perturbations to a circular cell and find an instability
related to modulations of the wall thickness, leading to growth rates which peak at a finite wave number.
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PACS numbers: 87.10.+¢, 87.22.—q

In recent years, there has been increasing interest imigh concentrations of the “loosening” factor. These ob-
models of unicellular growth. Specific examples includeservations have led us to a simple model for cell wall
dendritic branching in neuronal growth [1,2] and thedynamics in algae.

broadening and branching of lobes in unicellular algal

Consider a cell growing in a solution of calcium ions.

growth [3-5]. Algal models have ranged from geomet-Treat the cell wall as an elastic shell on short time

rical models (cf. geometric models of dendritic growth in scales, whose slow plastic deformation is then governed
solidification [6]) to those combining the geometric for- by a loosening factor. Further, assume that the fusion of
malism with a diffusive “morphogen” field. At the same vesicles with the cell membrane is also a long time scale
time, a wealth of experimental information regarding uni-process.

cellular morphogenesis has been provided by studies of We begin by discretizing the stressed shape iNto

the larger species of the aldicrasterias. Morphogene-

rods (mathematical objects for summinget particular

sis in Micrasterias proceeds by a very well-ordered se- physical elements such as microfibrils) with lengths
quence of tip splitting and lobe broadening, culminatingand orientation®;. Likewise, the unstressed shape will

in elegant fan shapes (Fig. 1) reminiscent of patterns seesonsist of N rods with lengthd; and orientation®; (and

in unstable diffusion-limited growth [7]. As motivated by our convention hereafter will be to associate all primed
these experiments, we have constructed a generic modgliantities with the unstressed shape). The stressed shape
for cell wall dynamics which we believe will form the ba- minimizes (subject to the constraint of a closed shape) the

sis for realistic models of unicellular morphogenesis.
Although some of the details remain elusive, a general
picture of cell growth in algae has emerged from experi-
ment. In order for the cell to elongate without thinning
indefinitely, vesicles containing cell wall material are
synthesized within the cytoplasm and then travel toward
the cell periphery where they fuse with the cell membrane,
a process mediated by calcium ions [8]. For example,
growing tips ofMicrasteriasexhibit high concentrations
of membrane-associated calcium [8,9], enabling them tc
fuse vesicles in much larger quantities than other area:
of the cell wall [10]. Meanwhile, there is evidence that
calcium concentration does not vary significantly within
the body of the cell itself [11], implying that the relevant
diffusive processes occuwutsidethe cell body even as
they modulate the concentration at the cell wall.
Experiments that halt growth by reducing turgor pres-
sure demonstrate that elongation is (at least in part) a re
sponse to the stresses in the cell wall [10]. In addition,
it is believed that a “loosening factor” must be present to
allow the fibers making up the wall to slip past each other
during elongation (e.g., the protein “expansin” [12]) Since
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most elongation occurs at the cell tips [8,13], we mightr|G. 1. Micrasterias denticulatadiameter ~200 xm. Pic-
surmise that high concentrations of calcium also implyture provided by U. Meindl.
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wherek; is the local curvature. The sums are finite ele-where I'(x) is the characteristic relaxation rate as a
ment representations of, respectively, the energy dutinction of the loosening factor assuming, for simplicity,
to the pressure f §xdy, where p <0 for an out- that it is the equivalent of the calcium concentration.
ward pressure), the usual strain energy arising fronkinally, let y(«) be the rate at which mass (equivalently,
Hooke's law ([ 3Eh¢>ds where o; = Eh;/Il, E is  the areah;l;, if the density is uniform) is added per unit
Young’'s modulus, and¢ is the strain), and the pure length to a given rod through vesicle fusion, then
bending energy of a rod f(%EI(K — k')?>ds where dh: h dl!
B: = EI;I. and the moment/ = [x2dx integrated = xw) — — —, (4)
over the rod’'s width for an isotropic material [14,15]). dt i dt
Note that at this stage we wish to create a tractablgvhich completes the specification of the model.
2D analog of the actual 3D cell (remembering that 2D We now calculate the growth rates of perturbations to
models of snowflake growth were able to capture almosj circular cell. We can always choose to parametrize the
all of the salient features of the growth dynamics [7]).  unstressed membrane by dividing it intbrods of equal
We then quasistatically calculate the calcium concentength I/ = aj. Then 6; = 7/2 + ¢; + bidsinme,;
tration on the stressed cell shape. Assuming that diffuwith ¢; = 277(i — 1)/N, specifies a perturbed circle with
sion occursoutsidethe cell, we solveV?u = 0 in that g curvaturex’ =~ R} ' + mb|R} '6 cosm¢ whereR)) =
region, whereu = (C — C«)/C- is thenormalizedcon-  Ng(/27. We specify the perturbed wall thickness as
centration,C. = C(Rx), andu(R=) = 0 with R a large, s, = hy + h;8 cosme;. The stressed coordinates will
but finite radius. At the cell boundary itself, let the flux then have the formy; = ag + a8 cosm¢,; and 6; =
through the membrane b@&«/on = j(u)/D, wheren is /2 + ¢; + b;8sinme,;. [Note: HereafterF, andF,

the outward normal, j(u) is the inward current, andD  will refer to the orders of a functio expanded ing,
is the diffusion constant. In general, we expective F = F;, + F,8 cosmd.]

pumping mechanisms to dominate the current so that In the continuum limit, expand the total energylas~
is independent of the wall thickness (which is not true fory, + §2U,, noting that the® (8) energy vanishes upon
apassivecurrent through a permeable membrane). integration with respect tep [16]. Minimizing U, with

We allow the unstressed shapes to relax toward thgespect tay yields a quartic equation fary = 27 Ro/N.
stressed configuration via

Ehg
! Ry p + —- | — EhoR} + EIpRy — EILR, = 0. (5
&~ v, - 1. @ 0(” Ré) offo ¥ Elofo = Elofto =0 )
40! The solution, toO@(p), is Ry =~ R) — pRY /(EhoR) +
d_tl =T'(u) (6; — 0)), (3)  EI). We solve for the perturbations by minimizirig,

with respect toa; and b; (a long but straightforward
| calculation), yielding an answer in termsaf [17].

d
pR3hy — (m* — DEIRoR\{mIoRob| + [R) + 7i-(Ry — R}
—phoRS + (m? — 1)EIR[hoRs — Io(Ry — R))?]

a; = (ap — ap)

: (6)

m(m> — 1)EIyRo[hoR) — IoRG(Ry — RO)Ib| + (Ry — RO {pR{ — (m*> — 1)B}h
—mphoR§ + m(m? — 1)EIR{[hoRy — Io(Ry — R))?]

bl = 5 (7)

where B = ERS(IOR(’) — hoj—,foRo) — EIy(Ry — R}) X | Meanwhile, the perturbed solution must have the form

(R} — Rogio), Io = I(ho), and dI/dhy is the derivative u(r,¢) = uo(r) + cr~"cosm¢. Applying the flux

evaluated at = hy. Observe that if the bending energy boundary condition and solving for the concentration at
is made to vanish for a cell with uniform thickness the cell wall,u(R) = uo + u;6 cosmé, yields [20]
(i.e., Iy = dI/dhy = h; = 0) we find that the stressed

shape is a perfect circlea( = b; = 0). This agrees u(R) = uo(Ry) + J(’(mi_lfj)_ngcOSm(ﬁ, (8)

with the well-known “membrane” result that the tension mD + Roj-

T = |pl/k, implying that curvature variations in a

pliable membrane require external support [18]. wheredj/ouy (and like expressions) refers to the deriva-
We must now calculate the concentration on thetive evaluated at = ug(Ry).

stressed shape, which by direct integration &f = The stressed and unstressed shapes, along with the con-

[; cosd; anddy; = I; sin#; is seen to have the radial per- centration just calculated, allow us to calculgte + dr)
turbation Ry = Ro(mb; — aj/ag)/(m*> — 1) for m > 1  and@/(r + dr) through Egs. (2) and (3). Reparametrizing
[19]. The unperturbed solution is easily found tothe solution at + dt so that we again have equal length
be uo(r) = RoD 'joIn(r/R.) where j, = j(up(Rg)).  rods [21] yields
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dby r , Ioa; al' &ouy of wall material when the turgor pressure is reduced
dr olbr = by) = mal) + duy m ) [10]. Settingp = 0 implies that&, = a; = 0, so that
whereT'y = I'(ug(Ry)). The rate of wall thickening can dhi/dt = ulj%o. That is, the thickness variations will
be calculated directly from (4) as simply follow the variations in concentration, allowing
dh large amounts of material to collect at tips.
ar X hoT'o&o By assuming the coefficients in (9) and (10) vary
5 oT slowly and lettingb{, h, ~ exp(Ar), we can obtain an
+ [ul(—/\/ — hy — fo) expression for the spectrum of quasistatic growth rates.
dug dug While it is unprofitable to write the expression here, we

ai nonetheless plot the result for a typical set of parameters
— Lo{ héo + ho a dcosmé, (10) iy Fig. 2. Observe that small-scale disturbances are
damped out, with the growth rate peaking at a finite wave

_ — 1 /

where xo = x(uo(Ro)) and & = (a0 — ao)/ap. We o, (n = 10 for this particular set of parameters).
have tested these analytic results against simulations ® addition. note that then = 1 perturbation is indeed
the instantaneous rates and found them to be in agreg-u .o moéje ”

: : 2
mcle_ntt, with th(lgte{_rorlconvergmgt;ls{]_v .t bilities in (9 d It is interesting to see that this relatively simple
et us qualitatively examine the instabilities in (9) and .\ 4ol can exhibit such rich behavior and reproduce

(1?)' Assume th".’}[thbr?.thhthe relaxattlor][. and V.z;';l: fus'or%everal experimentally observed effects. This model has
rales increase wi igher concentrations (I&./ duo, explicitly assumed that reshaping of the cell wall is

0x/duy > 0). Take the bending momint to biex .hn a relaxational process, wherein turgor pressure deforms
wheren > 1andh < R [15]. We usej = u — c, With 0" ai while enzymes allow the wall elements to
¢, @ constant even though a realistic current is mucr.%lowly assume these stressed forms as their permanent
more ci?mpllcg}ed. Note that the stressed curvature 'Borms. Perturbation analysis reveals two shape-selecting
k =Ry + Ry (mby — ai/ao)d cosme. instabilities (one diffusive and the other elastic), both
F'FS“ cor?S|der' a perfectly circular cell that dgvelopsto be inherited by the three-dimensional generalization
a, slight thickening of the cell wall atp =0 (i.e., required to model a real algal cell. Finally, while our
by =0 and h > 0);1, For small pressures we have model is purely biomechanical, we hope that future
b,l =~ —&oly - I/%Od_ho_)/mlo >0 and.al = __hl(“o ~  work based on this formalism will help disentangle the
ap)/ho < 0. This implies that¢ = 0 is a “tip” (x1 >  pjomechanical effects from the genetic mechanisms which
0), which is also a minimum of straina{ < 0). This  must certainly be present in any biological system.
agrees with experiments showing that wall stresses are This work has been supported in part by NSF Grant

minimized at cell tips [22]. Inspection of Eq. (10) yields No. DMR94-15460 and by the San Diego Chapter of the
two instability mechanisms. The first is diffusive in ARCS Foundation.

that a tip yields a concentration maximum which fuses

vesicles at a higher rate, thus amplifying the initially

slight thickening. The second is purely elastic in that 0.00008 -
a thicker region gives rise to a tip which experiences

less stress (and less elongation), causing that region to

thin more slowly. This second instability is present even 3 0.00006 1
if the relaxation and deposition rates are independent ofg
concentration.

Another interesting case is that of a perturbed cell
shape which has a constant thickness (ik&},> 0
and h; = 0). To lowest order in pressure, we find
that (b1 — b)) ~ pb|Ry JERL "(m* — 1) <0, a; ~
—(ap — ah)mbihi '/R} <0, and k; ~ mb}. Again, 0.00000
we find that the minimum strain occurs at the tip. Looking
at Eq. (9), we see thatT'ya; /maj is destabilizing, while -0.00002 1
To(b; — bY) is stabilizing. But sincér < Ry, we expect ; ; i
the net effect to stabilize|. Apparently, without modula- 0 10 20 30
tions in the cell wall thickness, tips will be smoothed out.

This effect may explain the “lobe broadening” observed Wave Number of Perturbation (m)

in later stages of tip growth, though only full numerical FIG. 2. Spectrum of eigenvalues in the quasistatic approxima-

simulqtipns WO_UId demonstratg thi_s' . tion. Growth rates X) are plotted against wave numbei)(for
A trivial yet interesting implication of Eq. (10) is the , — —0.001, E = 20.0, hy = 0.4, R) = 10.0, R. = 10°, D =

ability to reproduce the observed patterns of deposition, j = u + 0.15, T = u + 0.15, andy = 0.20(z + 0.15).

0.00004 1

0.00002 1

Growth Rat
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