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Unicellular Algal Growth: A Biomechanical Approach to Cell Wall Dynamics
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We model a growing cell in a calcium solution as an elastic shell on short time scales. The tur
pressure and elastic properties (Young’s modulus, thickness) of the cell wall determine a stressed
shape. Enzyme-mediated relaxation of the unstressed toward the stressed configuration results in a
(plastic) deformation of the cell. The cell wall thickness is then modulated by calcium-mediated fus
of material and elongation. We analyze small perturbations to a circular cell and find an instabi
related to modulations of the wall thickness, leading to growth rates which peak at a finite wave num
[S0031-9007(97)04635-8]
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In recent years, there has been increasing interest
models of unicellular growth. Specific examples includ
dendritic branching in neuronal growth [1,2] and th
broadening and branching of lobes in unicellular alg
growth [3–5]. Algal models have ranged from geome
rical models (cf. geometric models of dendritic growth i
solidification [6]) to those combining the geometric for
malism with a diffusive “morphogen” field. At the same
time, a wealth of experimental information regarding un
cellular morphogenesis has been provided by studies
the larger species of the algaMicrasterias. Morphogene-
sis in Micrasterias proceeds by a very well-ordered se
quence of tip splitting and lobe broadening, culminatin
in elegant fan shapes (Fig. 1) reminiscent of patterns se
in unstable diffusion-limited growth [7]. As motivated by
these experiments, we have constructed a generic mo
for cell wall dynamics which we believe will form the ba-
sis for realistic models of unicellular morphogenesis.

Although some of the details remain elusive, a gener
picture of cell growth in algae has emerged from expe
ment. In order for the cell to elongate without thinning
indefinitely, vesicles containing cell wall material are
synthesized within the cytoplasm and then travel towa
the cell periphery where they fuse with the cell membran
a process mediated by calcium ions [8]. For exampl
growing tips ofMicrasteriasexhibit high concentrations
of membrane-associated calcium [8,9], enabling them
fuse vesicles in much larger quantities than other are
of the cell wall [10]. Meanwhile, there is evidence tha
calcium concentration does not vary significantly withi
the body of the cell itself [11], implying that the relevan
diffusive processes occuroutside the cell body even as
they modulate the concentration at the cell wall.

Experiments that halt growth by reducing turgor pres
sure demonstrate that elongation is (at least in part) a
sponse to the stresses in the cell wall [10]. In additio
it is believed that a “loosening factor” must be present
allow the fibers making up the wall to slip past each oth
during elongation (e.g., the protein “expansin” [12]) Sinc
most elongation occurs at the cell tips [8,13], we migh
surmise that high concentrations of calcium also imp
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high concentrations of the “loosening” factor. These o
servations have led us to a simple model for cell wa
dynamics in algae.

Consider a cell growing in a solution of calcium ions
Treat the cell wall as an elastic shell on short tim
scales, whose slow plastic deformation is then govern
by a loosening factor. Further, assume that the fusion
vesicles with the cell membrane is also a long time sc
process.

We begin by discretizing the stressed shape intoN
rods (mathematical objects for summing,not particular
physical elements such as microfibrils) with lengthsli

and orientationsui . Likewise, the unstressed shape wi
consist ofN rods with lengthsl0

i and orientationsu0
i (and

our convention hereafter will be to associate all prime
quantities with the unstressed shape). The stressed sh
minimizes (subject to the constraint of a closed shape)
energy

U ­ p
NX

i­1

li sinui

iX
j­1

lj cosuj 1

NX
i­1

1
2

aisli 2 l0
id

2

1

NX
i­1

1
2

biski 2 k0
id

2, (1)

FIG. 1. Micrasterias denticulata,diameter,200 mm. Pic-
ture provided by U. Meindl.
© 1997 The American Physical Society
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whereki is the local curvature. The sums are finite e
ment representations of, respectively, the energy
to the pressure (p

H
x dy, where p , 0 for an out-

ward pressure), the usual strain energy arising fr
Hooke’s law (

R 1
2 Ehj2 ds where ai ; Ehiyl0

i , E is
Young’s modulus, andj is the strain), and the pur
bending energy of a rod (

R 1
2 EIsk 2 k0d2 ds where

bi ; EIil
0
i and the momentI ;

R
x2 dx integrated

over the rod’s width for an isotropic material [14,15
Note that at this stage we wish to create a tracta
2D analog of the actual 3D cell (remembering that
models of snowflake growth were able to capture alm
all of the salient features of the growth dynamics [7]).

We then quasistatically calculate the calcium conc
tration on the stressed cell shape. Assuming that di
sion occursoutside the cell, we solve=2u ­ 0 in that
region, whereu ; sC 2 C`dyC` is thenormalizedcon-
centration,C` ; CsR`d, andusR`d ­ 0 with R` a large,
but finite radius. At the cell boundary itself, let the flu
through the membrane be≠uy≠n ­ jsudyD, wheren is
the outward normal, jsud is the inward current, andD
is the diffusion constant. In general, we expectactive
pumping mechanisms to dominate the current so thatjsud
is independent of the wall thickness (which is not true
a passivecurrent through a permeable membrane).

We allow the unstressed shapes to relax toward
stressed configuration via

dl0
i

dt
­ Gsud sli 2 l0

id , (2)

du
0
i

dt
­ Gsud sui 2 u0

id , (3)
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where Gsud is the characteristic relaxation rate as
function of the loosening factor assuming, for simplicity
that it is the equivalent of the calcium concentratio
Finally, let xsud be the rate at which mass (equivalently
the areahil

0
i, if the density is uniform) is added per uni

length to a given rod through vesicle fusion, then

dhi

dt
­ xsud 2

hi

l0
i

dl0
i

dt
, (4)

which completes the specification of the model.
We now calculate the growth rates of perturbations

a circular cell. We can always choose to parametrize
unstressed membrane by dividing it intoN rods of equal
length l0

i ­ a0
0. Then u

0
i ­ py2 1 fi 1 b0

1d sinmfi

with fi ; 2psi 2 1dyN , specifies a perturbed circle with
a curvaturek0 ø R021

0 1 mb0
1R021

0 d cosmf whereR0
0 ;

Na0
0y2p. We specify the perturbed wall thickness a

hi ­ h0 1 h1d cosmfi. The stressed coordinates wil
then have the formli ­ a0 1 a1d cosmfi and ui ­
py2 1 fi 1 b1d sinmfi. [Note: Hereafter,F0 andF1
will refer to the orders of a functionF expanded ind,
F ; F0 1 F1d cosmf.]

In the continuum limit, expand the total energy asU ø
U0 1 d2U2, noting that theO sdd energy vanishes upon
integration with respect tof [16]. Minimizing U0 with
respect toa0 yields a quartic equation fora0 ; 2pR0yN.

R4
0

√
p 1

Eh0

R0
0

!
2 Eh0R3

0 1 EI0R0 2 EI0R0
0 ­ 0 . (5)

The solution, toO spd, is R0 ø R0
0 2 pR0 4

0 ysEh0R0 2

0 1

EI0d. We solve for the perturbations by minimizingU2
with respect toa1 and b1 (a long but straightforward
calculation), yielding an answer in terms ofa0 [17].
a1 ­ sa0 2 a0
0d

pR8
0h1 2 sm2 2 1dEI0R0R0

0hmI0R0b0
1 1 fR3

0 1
dI

dh0
sR0 2 R0

0dgh1j

2ph0R8
0 1 sm2 2 1dEI0R0

0fh0R4
0 2 I0sR0 2 R0

0d2g
, (6)

b1 ­
msm2 2 1dEI0R0fh0R4

0 2 I0R0
0sR0 2 R0

0dgb0
1 1 sR0 2 R0

0d hpR7
0 2 sm2 2 1dB jh1

2mph0R8
0 1 msm2 2 1dEI0R0

0fh0R4
0 2 I0sR0 2 R0

0d2g
, (7)
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where B ; ER3
0 sI0R0

0 2 h0
dI
dh0

R0d 2 EI0sR0 2 R0
0d 3

sR3
0 2 R0

0
dI

dh0
d, I0 ; Ish0d, and dIydh0 is the derivative

evaluated ath ­ h0. Observe that if the bending energ
is made to vanish for a cell with uniform thicknes
(i.e., I0 ­ dIydh0 ­ h1 ­ 0) we find that the stresse
shape is a perfect circle (a1 ­ b1 ­ 0). This agrees
with the well-known “membrane” result that the tensio
T ­ jpjyk, implying that curvature variations in
pliable membrane require external support [18].

We must now calculate the concentration on t
stressed shape, which by direct integration ofdxi ­
li cosui anddyi ­ li sinui is seen to have the radial pe
turbation R1 ­ R0smb1 2 a1ya0dysm2 2 1d for m . 1
[19]. The unperturbed solution is easily found
be u0srd ­ R0D21j0 lnsryR`d where j0 ­ jsssu0sR0dddd.
y
s

n

e

-

o

Meanwhile, the perturbed solution must have the fo
usr , fd ø u0srd 1 cr2md cosmf. Applying the flux
boundary condition and solving for the concentration
the cell wall,usRd ; u0 1 u1d cosmf, yields [20]

usRd ø u0sR0d 1
j0sm 2 1d

mD 1 R0
≠j
≠u0

R1d cosmf , (8)

where≠jy≠u0 (and like expressions) refers to the deriv
tive evaluated atu ­ u0sR0d.

The stressed and unstressed shapes, along with the
centration just calculated, allow us to calculatel0

ist 1 dtd
andu

0
ist 1 dtd through Eqs. (2) and (3). Reparametrizin

the solution att 1 dt so that we again have equal leng
rods [21] yields
4291
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a-
db0
1

dt
­ G0sb1 2 b0

1d 2
G0a1

ma0
0

1
≠G

≠u0

j0u1

m
, (9)

whereG0 ; Gsssu0sR0dddd. The rate of wall thickening can
be calculated directly from (4) as

dh
dt

­ x0 2 h0G0j0

1

(
u1

√
≠x

≠u0
2 h0

≠G

≠u0
j0

!
2 G0

√
h1j0 1 h0

a1

a0
0

!)
d cosmf , (10)

where x0 ; xsssu0sR0dddd and j0 ; sa0 2 a0
0dya0

0. We
have tested these analytic results against simulations
the instantaneous rates and found them to be in agr
ment, with the error converging as1yN2.

Let us qualitatively examine the instabilities in (9) an
(10). Assume that both the relaxation and vesicle fusio
rates increase with higher concentrations (i.e.,≠Gy≠u0,
≠xy≠u0 . 0). Take the bending moment to beI ~ hn

wheren . 1 andh ø R [15]. We usej ­ u 2 cu with
cu a constant even though a realistic current is muc
more complicated. Note that the stressed curvature
k ø R21

0 1 R21
0 smb1 2 a1ya0dd cosmf.

First, consider a perfectly circular cell that develop
a slight thickening of the cell wall atf ­ 0 (i.e.,
b0

1 ­ 0 and h1 . 0). For small pressures we have
b1 ø 2j0h1sI0 2 h0

dI
dh0

dymI0 . 0 and a1 ø 2h1sa0 2

a0
0dyh0 , 0. This implies thatf ­ 0 is a “tip” (k1 .

0), which is also a minimum of strain (a1 , 0). This
agrees with experiments showing that wall stresses a
minimized at cell tips [22]. Inspection of Eq. (10) yields
two instability mechanisms. The first is diffusive in
that a tip yields a concentration maximum which fuse
vesicles at a higher rate, thus amplifying the initiall
slight thickening. The second is purely elastic in tha
a thicker region gives rise to a tip which experience
less stress (and less elongation), causing that region
thin more slowly. This second instability is present eve
if the relaxation and deposition rates are independent
concentration.

Another interesting case is that of a perturbed ce
shape which has a constant thickness (i.e.,b0

1 . 0
and h1 ­ 0). To lowest order in pressure, we find
that sb1 2 b0

1d , pb0
1R0 3

0 yEhn21
0 sm2 2 1d , 0, a1 ,

2sa0 2 a0
0dmb0

1hn21
0 yR2

0 , 0, and k1 , mb0
1. Again,

we find that the minimum strain occurs at the tip. Lookin
at Eq. (9), we see that2G0a1yma0

0 is destabilizing, while
G0sb1 2 b0

1d is stabilizing. But sinceh ø R0, we expect
the net effect to stabilizeb0

1. Apparently, without modula-
tions in the cell wall thickness, tips will be smoothed ou
This effect may explain the “lobe broadening” observe
in later stages of tip growth, though only full numerica
simulations would demonstrate this.

A trivial yet interesting implication of Eq. (10) is the
ability to reproduce the observed patterns of depositi
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of wall material when the turgor pressure is reduc
[10]. Setting p ­ 0 implies thatj0 ­ a1 ­ 0, so that
dh1ydt ­ u1

dx

du0
. That is, the thickness variations wil

simply follow the variations in concentration, allowing
large amounts of material to collect at tips.

By assuming the coefficients in (9) and (10) var
slowly and lettingb0

1, h1 , expsltd, we can obtain an
expression for the spectrum of quasistatic growth rat
While it is unprofitable to write the expression here, w
nonetheless plot the result for a typical set of paramet
in Fig. 2. Observe that small-scale disturbances a
damped out, with the growth rate peaking at a finite wa
number (m ­ 10 for this particular set of parameters)
In addition, note that them ­ 1 perturbation is indeed
a “zero mode.”

It is interesting to see that this relatively simpl
model can exhibit such rich behavior and reprodu
several experimentally observed effects. This model h
explicitly assumed that reshaping of the cell wall
a relaxational process, wherein turgor pressure defor
the wall while enzymes allow the wall elements t
slowly assume these stressed forms as their perman
forms. Perturbation analysis reveals two shape-select
instabilities (one diffusive and the other elastic), bo
to be inherited by the three-dimensional generalizati
required to model a real algal cell. Finally, while ou
model is purely biomechanical, we hope that futu
work based on this formalism will help disentangle th
biomechanical effects from the genetic mechanisms wh
must certainly be present in any biological system.

This work has been supported in part by NSF Gra
No. DMR94-15460 and by the San Diego Chapter of t
ARCS Foundation.

FIG. 2. Spectrum of eigenvalues in the quasistatic approxim
tion. Growth rates (l) are plotted against wave number (m) for
p ­ 20.001, E ­ 20.0, h0 ­ 0.4, R0

0 ­ 10.0, R` ­ 106, D ­
1, j ­ u 1 0.15, G ­ u 1 0.15, andx ­ 0.20su 1 0.15d.
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