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Nonlinear Response in Quantum Spin Glasses
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We examine the behavior of the dynamic nonlinear response of a quantum spin glass in an exactly
solvable fully connected quantum spherical model with random Gaussian bond distribution. In the
guantum critical regime where the microscopic energy scale is set entirely by temperature the nonlinear
response was found frequency independent and nonsingular. On the contrary, the genuine static
nonlinear susceptibility diverges everywhere on the critical boundary with unusual violation of the
universal scaling by the double logarithms at the zero-temperature critical point. Implications for
experiments on quantum dipolar spin glasses are also noted. [S0031-9007(97)04608-5]
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The study of quantum phase transitions is the centrdfi.e., for small transverse field) becomes suppressed and
theme of current research in condensed matter and statisffectively disappears & — 0, raising the question of
tical physics (see, e.g., Ref. [1] for an account of recentvhether a well-defined SG transition still occurs.
developments). These transitions, governed by quantum On the theoretical side, there are only a few studies
fluctuations, appear in the vicinity of zero temperatureon the nonlinear response in quantum spin glasses:
when an external parameter is varied. In the presenggerturbation expansions for the SK model in a transverse
of disorder, as in quantum spin glass (SG), one encourfield I" yield near the critical pointl’.(T = 0) the
ters new features that are usually absent in pure systemonlinear susceptibility in the scaling formp,, ~ (I' —
Quantum fluctuations may permit the system to pass fronh’.)~” with an estimate fory between0.29 and 0.75
one local minimum of the free energy to another via tun{11]; Landau-type theory results ;m = 1 [12], whereas a
neling through barrier (as opposed to the conventionaleal-space renormalization-group analysis gives the value
thermally driven activation process) at rates that do noty = 1.16 [13]. Monte Carlo simulations for transverse
vanish as temperatur® approaches zero. The canonical Ising SG models in two [14] and three [15] dimensions
example of a quantum SG is the quantum Sherringtonsignal even stronger divergence gf; at the T =0
Kirkpatrick (SK) model [2] in a transverse field [3]. Here, transition point in clear contradiction with experimental
guantum criticality gives rise to a number of novel physi-findings. Notably, none of these works explored the
cal effects such as introduction of quantum channels fodynamic properties of the nonlinear response close to
relaxation, continuously depressing the phase transitiothe T = 0 critical point. This, however, appears to be
temperature down t& = 0 which recently became acces- of paramount importance while discussing the quantum
sible experimentally. Examples include the dipolar IsingSG transition scenario since in actual experiments the
magnet LiHQY—_,F, in a transverse field [4] and the so- peculiar behavior ofy,; was probed at finite frequency
called proton glasses [5] being the mixtures of ferroelecw [10].
tric and antiferroelectric hydrogen bonded materials such In this Letter we argue that the anomalous behavior of
as Rh_,(NH,),(H,P)4 [6]. the nonlinear susceptibility appears to be a tantamount of

An essential ingredient in understanding quantum disora finite temperature paramagnetic-SG transition near the
dered systems in general (and quantum SG in particulagnset of aT = 0 paramagnetic phase. In this so-called
is the determination of their critical properties especiallyquantum critical (QC) regime [16] where the microscopic
near7 = 0. Typically, the conventional linear response, energy scaleu is set entirely by temperature [and
i.e., ac susceptibilityy does not diverge at the freezing w(7T) — 0 asT — 0] the nonlinear response was found
temperaturel,. but merely exhibits a cusp. Theonlin-  ® independent and nonsingular over the frequency range
ear responsey,;, however, being the higher order cor- u(T) = w = A, where A, ~ I' is the upper energy
relation function should have a critical singularity &t  cutoff. On the contrary, the genuinstatic nonlinear
[7,8] making it an indispensable physical quantity accessusceptibility y,1(w = 0) diverges everywhere on the
sible in experiments which probes the SG phase transitioreritical boundary with unusual violation of the universal
Usually, at the classical SG transition a scaling behavscaling by the double logarithms at tHe= 0 critical
ior ya1 ~ (T — T.)~? was found, withy ranging from point. We present exact calculations of the frequency
0.9 to 3.8 [9]. Strikingly, this behavior is qualitatively dependent nonlinear response; this will be established
different in experimental measurements of the nonlineafor a model system—a solvable quantum spherical SG
susceptibility of the disordered dipolguantumsing mag- model with Gaussian distributed, infinite-ranged two-spin
net LiHo,Y;-.F4 as the critical boundary is approachedinteractions [17]. Our discussion will be in the context of
[10]: the sharp divergence measured in the classical limithe following quantum SG Hamiltonian:
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_ A 2 o A quencieswy = 2m€/B (£ = 0,*1,%2,..), xalwe) =
H 2 ;H" ZJ”U’U’ hzi:U” @) vy — J) + w2/A)7! is the “shattered” dynamic sus-
_ . _ ceptibility, hy = h ) quA, and on the average, using the
where the variables; (i = 1,...,N) are associated with orthonormality of the eigenvectos’, one can replacg;
spin degrees of freedom and canonically conjugated tgy %3 '
the “momentum” operatorHl; such thaf{o;, I1;] = i6;;.
The couplingA regulates the strength of quantum fluc-
tuations A — 0 corresponds to the classical limit), and ) B
h is a longitudinal field used to define various suscep-y(w,h) = _Zf d7 (o, (1) (0))r
tibilities but usually set to zero. Furthermore, tiig, N 5 Jo iw—w+i0*
connecting all sites, are assumed to be statistically inde- (6)
pendent between different links with fir&k;;),, = 0 and  subject to the spherical constraint (5) never becomes
second momer(tl,%-}av = J?/N, where(- - -),, denotes the critical ash — 0. To access the criticality one has to
random average. Finally, Eq. (1) is supplemented by theonsider a quantity which couples to the SG order and

i<j

The lowest order linear response, i.e., the dynamic ac
susceptibility

>

mean spherical constraint plays the role in a SG that the uniform susceptibility
N does in a ferromagnet. It is given by the quantum
1 Z o2 -1 2 mechanicafour-spin correlation function—the spin glass
l ’ I .
N = 7/ av susceptibility (sometimes also called “order parameter” or

with {---)7 being the ensemble average. Note that thd=dwards-Anderson susceptibility),
choice of Eq. (1) is not incidental here—the model it

. .. . . . T1 — T2,T3 — T4) = gi\T1)0O;\T
describes is just a spherical version of the transverse Isi s6(71 > ) lzi« (m)oj(r2)r

AT ]

SG where the stronger conditi¢ar;)” = 1 is replaced by X (i(13)0(T4))7)a

the sum rule (2) and the paramet#rstraightforwardly

translates into the transverse fidld18]. _ 1 Z plodm—m)Fiw|(r =)
The evaluation of the statistical properties is achieved B2N oral!

by expressing the partition functiodd = Tr e #/%7 in o /

terms of the functional integral in the Matsubara “imagi- X Y xa(wxa(w). (7)

nary time” 7 (0 = 7 = 1/kgT = B). We obtainZ = oA _

[DE and(---y = z~! [DE ... where In the thermodynamic limitv — <, the summation over

eigenstates can easily be done by observing

fDE...z [U[Da‘i(T)] %;_._—»fz;dep(e)..., (®)

N
% s ZUZ(T) “Nle ffdrsa(r) 3) where p(€) = limy—x N1 ,(8(e — J)))ay is the av-
= eraged density of states describing the eigenvalue spec-
trum of the random matri¥;;. For Wigner ensemble of

with the Euclidean action of the form Gaussian distributed;; with zero mean the famous semi-

2
1 do; circle law emerges witlp (e) = (27J?)"'v/4J2 — €2 for
Se(1) = 242 ( e ) - szfijffi(”)ffj(T)~ @ |l < 27 leading to
2
To assure the spherical constraint the functional analog 1 w} _ w} o
of the Dirac §-function representatiod (x) = [ = (dv/ x(wo) = 2J2 2vo + A v+ a7
27)e’”* is implemented introducing the Lagrange multi-
plier v(7), thus adding an additional quadratic term ¢n 9)
fields) to the action (4) and allowing one to perfoNmin-  Inferring Eqgs. (7) and (9) we can manipulate the Fourier
dependent traces ovetr,. To accomplish this we take the transformed SG susceptibility into
dfggonal represcle-nt:iltlgn for )’Ehe_ random symmetric matrix (0, wl) = x(@o)x (@) (10)
Jij, namely,>; Jij¢; = Jr¢; with the real orthonormal XSG\W¢, We 1 — P2y(w)x(w)’

eigenvectorsp? (here,A = 1,...,N and J, is the Ath
eigenvalue). In the thermodynamic lim¥ — o« the
saddle pointv(r) = vy becomes exact yielding for
the spherical constraint (2)

showing thatysg(0,0) indeed exhibit singularity where
1 = J x(0) which happens at = 0 on the critical line
T.(A) where the Lagrange multiplietvo(T, A) “sticks”
at the upper limit of the eigenvalue spectrgiff™* = 2J)
1 1 of the random matrix;; [19].
1= B D> xalwo) + v D> X0, (5 Though ysg is not d]irectly measurable in experiments

we A A it becomes accessible via the nonlinear response By

where the sum runs over the (Bose) Matsubara freexpandingy(w,h), Eq. (9) in powers of the field one
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obtains originates from the differentiation of the spherical con-
_ - 1 ok straint (5) with respect to the magnetic field Ex-
x(@.h) = x(@,00 + > — xu+1(@)h®,  (11) plicitly, after performing summation over eigenstates and

2k!
k=1 . .
with y3(w) = yn1(w) being the lowest order frequency Matsubara frequencies one obtains

dependent nonlinear response, o Y
0

1 1
an(w) = )(s(;(w,a))vh ) (12) _ZX/%(O) - — —1 (14)
where . N 3 J w2 —
@ _ d*vo(h) 2 xi(0)
Vp = =B (13)
" dn* |_y T X 2 xi(@o)  and

y ‘ VA tr(BvA(zvo - 6)) B
2

CO
(2110 - 6)3/2

J
de p(e)
2J

R 2 _ 1
wg 2w = ¢ [

1 _BA |:1 — coti?(—ﬁ /AQu — €) ):“
2 2y — € 2
(15)

Consider now aT = 0 phase transition between the Xn1 ~ 1/(w?Inw). With the constraint on the spin

paramagnetic and SG phases, induced by varying thength (5) implying that the gap. vanishes logarithmi-

parameterA. Introducing the energy parameter =  cally faster asA — Ay = A.(T = 0) [20], » ~ [(A —

\2A(vy — J) measuring the distance, in parameter spaceA.o) ' In(A — A.0)]"'/2, we find for the nonlinear

from criticality (u = 0 defines the transition point). We response

obtain xsa(0,0) ~ 1/ close to the critical point. The (A — A) 'In(A — Ay)

singularity of y,;(0) turns out to be stronger, however—  Xai(@ = 0) ~ IN[A — Au) 1IN = Ag)]” (17)

the additional divergency comes from the second deriva- <0 <0

tive v;(,z) of the Lagrange multipliew (k) [cf. Eq. (13)].  with novel and unusual violation of the universal scaling

It is readily seen that the expression (15) is singatar by thedoublelogarithms [21].

T = 0 critical point. Indeed, at the zero temperature However, the experimental results for the nonlinear
1 ZZ 2(o0) wa do In( u ) susceptigi:ity are (:erived frtcj)m a? values of th(; norf1|inear

N2 Xilwe) — —— R susceptibility at afinite probing frequency. Therefore,

NB &3 Ao Je? o 4 to examine this issue we have calculated the dynamic

(16) nonlinear response by analytically continuing(w¢)

where A, denotes the frequency cutoff. (;I)'herefore,to the domain ofreal frequenciesy,i(w) = ya(w) +

[cf. Egs. (13), (14), and (15)] one obtains,” ~ 1/ ix)i(w) with real (imaginary) party, (o) [xm(w)].

(uInu), and consequently we infer from Eq. (12) th?tFrom Egs. (9), (10), and (12) we obtain

.
1 200 — w?/A
( v — 07/ - l)v;(lz) for w?u?,

J2\JQ2vy — w?/A)? — 4J2
Xoi(@) = —11;(12)J2 for u? = w? = u? + 4Avy, (18)
2
L( 2ug — 07/A +1 v;(lz) for > > u? + 4Avg,
L-12 JQuy — w?/A)? — 4J2
and | Consider now the situation in the vicinity of the zero-
. s temperature paramagnetic-SG transition. Raising the tem-
Y (@) = sign(w) ol 1- Vo @~ perature atA = A,y one enters the QC regime in which
ol J? J 2AJ the physics is dominated by th& = 0 quantum critical
. (2) point. Here the temperature is the most significant energy
% (2vo — T)vi scale and the system “feels” ttfimite value of 7 before
\/[Z(J — ) + %2][2(1 + ) — %2 ’ becoming sensitive to the deviation Affrom Ay [12].
(19) In particular, for the energy parametgr which defines
the frequency scale one obtains from the constraint equa-
where® (x) is the unit step function. tion (2) w(T) ~ kgT/In'2(A, /kzT) thus implying that
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