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We examine the behavior of the dynamic nonlinear response of a quantum spin glass in an exactly
solvable fully connected quantum spherical model with random Gaussian bond distribution. In the
quantum critical regime where the microscopic energy scale is set entirely by temperature the nonlinear
response was found frequency independent and nonsingular. On the contrary, the genuine static
nonlinear susceptibility diverges everywhere on the critical boundary with unusual violation of the
universal scaling by the double logarithms at the zero-temperature critical point. Implications for
experiments on quantum dipolar spin glasses are also noted. [S0031-9007(97)04608-5]

PACS numbers: 75.10.Nr, 05.30.Jp, 67.40.Yv
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The study of quantum phase transitions is the cent
theme of current research in condensed matter and sta
tical physics (see, e.g., Ref. [1] for an account of rece
developments). These transitions, governed by quant
fluctuations, appear in the vicinity of zero temperatur
when an external parameter is varied. In the presen
of disorder, as in quantum spin glass (SG), one encou
ters new features that are usually absent in pure syste
Quantum fluctuations may permit the system to pass fro
one local minimum of the free energy to another via tun
neling through barrier (as opposed to the convention
thermally driven activation process) at rates that do n
vanish as temperatureT approaches zero. The canonica
example of a quantum SG is the quantum Sherringto
Kirkpatrick (SK) model [2] in a transverse field [3]. Here
quantum criticality gives rise to a number of novel phys
cal effects such as introduction of quantum channels f
relaxation, continuously depressing the phase transiti
temperature down toT ­ 0 which recently became acces
sible experimentally. Examples include the dipolar Isin
magnet LiHoxY12xF4 in a transverse field [4] and the so-
called proton glasses [5] being the mixtures of ferroele
tric and antiferroelectric hydrogen bonded materials su
as Rb12xsNH4dxsH2Pd4 [6].

An essential ingredient in understanding quantum diso
dered systems in general (and quantum SG in particul
is the determination of their critical properties especial
nearT ­ 0. Typically, the conventional linear response
i.e., ac susceptibilityx does not diverge at the freezing
temperatureTc but merely exhibits a cusp. Thenonlin-
ear responsexnl, however, being the higher order cor
relation function should have a critical singularity atTc

[7,8] making it an indispensable physical quantity acce
sible in experiments which probes the SG phase transitio
Usually, at the classical SG transition a scaling beha
ior xnl , sT 2 Tcd2g was found, withg ranging from
0.9 to 3.8 [9]. Strikingly, this behavior is qualitatively
different in experimental measurements of the nonline
susceptibility of the disordered dipolarquantumIsing mag-
net LiHoxY12xF4 as the critical boundary is approache
[10]: the sharp divergence measured in the classical lim
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(i.e., for small transverse field) becomes suppressed
effectively disappears asT ! 0, raising the question of
whether a well-defined SG transition still occurs.

On the theoretical side, there are only a few studi
on the nonlinear response in quantum spin glass
perturbation expansions for the SK model in a transve
field G yield near the critical pointGcsT ­ 0d the
nonlinear susceptibility in the scaling formxnl , sG 2

Gcd2g with an estimate forg between0.29 and 0.75
[11]; Landau-type theory results ing ­ 1 [12], whereas a
real-space renormalization-group analysis gives the va
g ­ 1.16 [13]. Monte Carlo simulations for transvers
Ising SG models in two [14] and three [15] dimension
signal even stronger divergence ofxnl at the T ­ 0
transition point in clear contradiction with experimenta
findings. Notably, none of these works explored th
dynamic properties of the nonlinear response close
the T ­ 0 critical point. This, however, appears to b
of paramount importance while discussing the quantu
SG transition scenario since in actual experiments
peculiar behavior ofxnl was probed at afinite frequency
v [10].

In this Letter we argue that the anomalous behavior
the nonlinear susceptibility appears to be a tantamoun
a finite temperature paramagnetic-SG transition near
onset of aT ­ 0 paramagnetic phase. In this so-calle
quantum critical (QC) regime [16] where the microscop
energy scalem is set entirely by temperature [and
msT d ! 0 as T ! 0] the nonlinear response was foun
v independent and nonsingular over the frequency ran
msT d # v # Lv where Lv , G is the upper energy
cutoff. On the contrary, the genuinestatic nonlinear
susceptibility xnlsv ­ 0d diverges everywhere on the
critical boundary with unusual violation of the universa
scaling by the double logarithms at theT ­ 0 critical
point. We present exact calculations of the frequen
dependent nonlinear response; this will be establish
for a model system—a solvable quantum spherical S
model with Gaussian distributed, infinite-ranged two-sp
interactions [17]. Our discussion will be in the context o
the following quantum SG Hamiltonian:
© 1997 The American Physical Society
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H ­
D

2

X
i

P2
i 2

X
i,j

Jijsisj 2 h
X

i

si , (1)

where the variablessi si ­ 1, . . . , Nd are associated with
spin degrees of freedom and canonically conjugated
the “momentum” operatorsPi such thatfsi , Pjg ­ idij.
The couplingD regulates the strength of quantum flu
tuations (D ! 0 corresponds to the classical limit), an
h is a longitudinal field used to define various susce
tibilities but usually set to zero. Furthermore, theJij ,
connecting all sites, are assumed to be statistically in
pendent between different links with firstkJijlav ­ 0 and
second momentkJ2

ijlav ­ J2yN, wherek· · ·lav denotes the
random average. Finally, Eq. (1) is supplemented by
mean spherical constraint**

1
N

NX
i­1

s2
i

+
T

+
av

­ 1 , (2)

with k· · ·lT being the ensemble average. Note that
choice of Eq. (1) is not incidental here—the model
describes is just a spherical version of the transverse I
SG where the stronger conditionssz

i d2 ­ 1 is replaced by
the sum rule (2) and the parameterD straightforwardly
translates into the transverse fieldG [18].

The evaluation of the statistical properties is achiev
by expressing the partition functionZ ­ Tr e2HykBT in
terms of the functional integral in the Matsubara “imag
nary time” t s0 # t # 1ykBT ; bd. We obtainZ ­R

DJ andk· · ·l ­ Z21
R

DJ . . . whereZ
DJ . . . ;

Z Y
i

fDsistdg

3 d

√
NX

i­1

s2
i std 2 N

!
e

2
Rb

0
dt Ssstd

. . . (3)

with the Euclidean action of the form

Ssstd ­
1

2D

X
i

√
≠si

≠t

!2

2
X
i,j

Jijsistdsjstd . (4)

To assure the spherical constraint the functional ana
of the Diracd-function representationdsxd ­

R1`
2`sdyy

2pdeiyx is implemented introducing the Lagrange mul
plier ystd, thus adding an additional quadratic term (ins

fields) to the action (4) and allowing one to performN in-
dependent traces oversi. To accomplish this we take th
diagonal representation for the random symmetric ma
Jij , namely,

P
i Jijf

l
j ­ Jlf

l
j with the real orthonorma

eigenvectorsfl
i (here,l ­ 1, . . . , N and Jl is the lth

eigenvalue). In the thermodynamic limitN ! ` the
saddle point ystd ; y0 becomes exact yielding fo
the spherical constraint (2)

1 ­
1
b

X
v,

X
l

xlsv,d 1
1
N

X
l

h2
lx2

ls0d , (5)

where the sum runs over the (Bose) Matsubara
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quenciesv, ­ 2p,yb s, ­ 0, 61, 62, . . .d, xlsv,d ­
s2y0 2 Jl 1 v

2
,yDd21 is the “shattered” dynamic sus

ceptibility, hl ­ h
P

j f
l
j , and on the average, using th

orthonormality of the eigenvectorsfl
j , one can replaceh2

l

by h2.
The lowest order linear response, i.e., the dynamic

susceptibility

xsv, hd ­
1
N

X
l

Z b

0
dt eiv,tkslstdsls0dlT

É
iv,!v1i01

,

(6)
subject to the spherical constraint (5) never becom
critical as h ! 0. To access the criticality one has t
consider a quantity which couples to the SG order a
plays the role in a SG that the uniform susceptibili
does in a ferromagnet. It is given by the quantu
mechanicalfour-spin correlation function—the spin glas
susceptibility (sometimes also called “order parameter”
Edwards-Anderson susceptibility),

xSGst1 2 t2, t3 2 t4d ­
X
ij

kksist1dsjst2dlT

3 ksist3dsjst4dlT lav

­
1

b2N

X
v,,v0

,

eiv,st12t2d1iv
0
,st32t4d

3
X
l

xlsv,dxlsv0
,d . (7)

In the thermodynamic limitN ! `, the summation over
eigenstates can easily be done by observing

1
N

X
l

. . . !
Z 2J

22J
de rsed . . . , (8)

where rsed ­ limN!` N21
P

lkdse 2 Jldlav is the av-
eraged density of states describing the eigenvalue sp
trum of the random matrixJij . For Wigner ensemble of
Gaussian distributedJij with zero mean the famous semi
circle law emerges withrsed ­ s2pJ2d21

p
4J2 2 e2 for

jej , 2J leading to

xsv,d ­
1

2J2

2642y0 1
v

2
,

D
2

vuut√
2y 1

v
2
,

D

!2

2 4J2

375 .

(9)

Inferring Eqs. (7) and (9) we can manipulate the Fouri
transformed SG susceptibility into

xSGsv,, v
0
,d ­

xsv,dxsv0
,d

1 2 J2xsv,dxsv0
,d

, (10)

showing thatxSGs0, 0d indeed exhibit singularity where
1 ­ Jxs0d which happens ath ­ 0 on the critical line
TcsDd where the Lagrange multiplier2y0sT , Dd “sticks”
at the upper limit of the eigenvalue spectrumsJmax

l ­ 2Jd
of the random matrixJij [19].

ThoughxSG is not directly measurable in experiment
it becomes accessible via the nonlinear responsexnl. By
expandingxsv, hd, Eq. (9) in powers of the fieldh one
4267
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-

nd
obtains

xsv, hd ­ xsv, 0d 1
X̀
k­1

1
2k!

x2k11svdh2k , (11)

with x3svd ; xnlsvd being the lowest order frequency
dependent nonlinear response,

xnlsvd ­ xSGsv, vdys2d
h , (12)

where

y
s2d
h ;

d2y0shd
dh2

É
h­0

­ b

P
l x

2
ls0dP

v,

P
l x

2
lsv,d

(13)
4268
originates from the differentiation of the spherical con
straint (5) with respect to the magnetic fieldh. Ex-
plicitly, after performing summation over eigenstates a
Matsubara frequencies one obtains

1
N

X
l

x2
ls0d ­

1
J2

0BB@ y0q
y

2
0 2 J2

2 1

1CCA (14)

and
1
Nb

X
v,

X
l

x2
lsv,d ­

1
4

Z 2J

22J
de rsed

3

( p
D

s2y0 2 ed3y2
coth

√
b

p
Ds2y0 2 ed

2

!
2

1
2

bD

2y0 2 e

"
1 2 coth2

√
b

p
Ds2y0 2 ed

2

!#)
.

(15)
g

ar
ar
,

ic
Consider now aT ­ 0 phase transition between the
paramagnetic and SG phases, induced by varying
parameterD. Introducing the energy parameterm ­p

2Dsy0 2 Jd measuring the distance, in parameter spac
from criticality (m ­ 0 defines the transition point). We
obtain xSGs0, 0d , 1ym close to the critical point. The
singularity ofxnls0d turns out to be stronger, however—
the additional divergency comes from the second deriva
tive y

s2d
h of the Lagrange multipliery0shd [cf. Eq. (13)].

It is readily seen that the expression (15) is singularat
T ­ 0 critical point. Indeed, at the zero temperature

1
Nb

X
v,

X
l

x2
lsv,d !

Z Lv

2Lv

dvp
v2 1 m2

, ln

√
m

L
1y2
v

!
,

(16)
where Lv denotes the frequency cutoff. Therefore
[cf. Eqs. (13), (14), and (15)] one obtainsy

s2d
h , 1y

sm ln md, and consequently we infer from Eq. (12) tha
the

e,

-

,

t

xnl , 1ysm2 ln md. With the constraint on the spin
length (5) implying that the gapm vanishes logarithmi-
cally faster asD ! Dc0 ; DcsT ­ 0d [20], m , fsD 2

Dc0d21 lnsD 2 Dc0dg21y2, we find for the nonlinear
response

xnlsv ­ 0d ,
sD 2 Dc0d21 lnsD 2 Dc0d

lnfsD 2 Dc0d21 lnsD 2 Dc0dg
, (17)

with novel and unusual violation of the universal scalin
by thedoublelogarithms [21].

However, the experimental results for the nonline
susceptibility are derived from ac values of the nonline
susceptibility at afinite probing frequency. Therefore
to examine this issue we have calculated the dynam
nonlinear response by analytically continuingxnlsv,d
to the domain ofreal frequenciesxnlsvd ­ x

0
nlsvd 1

ix 00
nlsvd with real (imaginary) partx 0

nlsvd fx 00
nlsvdg.

From Eqs. (9), (10), and (12) we obtain
x 0
nlsvd ­

8>>>>>>>>><>>>>>>>>>:

1
J2

√
2y0 2 v2yDp

s2y0 2 v2yDd2 2 4J2
2 1

!
y

s2d
h for v2m2,

2y
s2d
h J2 for m2 # v2 # m2 1 4Dy0 ,

1
J2

√
2y0 2 v2yDp

s2y0 2 v2yDd2 2 4J2
1 1

!
y

s2d
h for v2 . m2 1 4Dy0 ,

(18)
-
m-

rgy

ua-
and

x 00
nlsvd ­

signsvd
J2

Q

√
12

É
y0

J
2

v2

2DJ

É!

3
s2y0 2

v2

D dys2d
hq

f2sJ 2 y0d 1
v2

D g f2sJ 1 y0d 2
v2

D g
,

(19)

whereQsxd is the unit step function.
Consider now the situation in the vicinity of the zero
temperature paramagnetic-SG transition. Raising the te
perature atD ­ Dc0 one enters the QC regime in which
the physics is dominated by theT ­ 0 quantum critical
point. Here the temperature is the most significant ene
scale and the system “feels” thefinite value of T before
becoming sensitive to the deviation ofD from Dc0 [12].
In particular, for the energy parameterm which defines
the frequency scale one obtains from the constraint eq
tion (2) msTd , kBTy ln1y2sLvykBTd thus implying that
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FIG. 1. Frequency dependence of the real part of the dyna
nonlinear responsex 0

nlsvd in the quantum critical regime:Ty
Jl

max ­ 0.1 at the critical point D ; DcsT ­ 0d ­ 9p2y16
(which translates into the transverse fieldGyJ ø 1.5; see
Ref. [18]). The inset shows theG-T phase diagram of the
quantum spherical SG model, Eq. (1), forh ­ 0.

msT d ! 0 asT ! 0. The frequency behavior ofx 0
nlsvd

in this region is very remarkable (see Fig. 1). For fr
quenciesmsT d # v # 2

p
DJ [where the imaginary part

x
00
nlsvd, Eq. (19), is nonzero] we infer from Eq. (18) tha

x
0
nlsvd ­ 2y

s2d
h yJ2, i.e., the nonlinear susceptibility is

frequencyindependentand nonsingular. In the opposit
high frequency regionv . 2

p
DJ we find nonlinear re-

sponse vanishing asjx 0
nlsvdj , 1yv4. Interestingly, this

behavior is consistent with available experimental findin
for disordered dipolar magnet LiHoxY12xF4. Measure-
ments of thev dependence ofx 0

nlsvd for transverse field
which is 1% above the critical field strength marking th
transition to the SG phase close toT ­ 0 critical point in-
dicate the frequency-independent nonlinear response [
Experimental data clearly illustrate the crossover betwe
high-v and low-v (frequency-independent) behaviors—
in remarkable agreement with theoretical prediction
x

0
nlsvd made here. Finally, we emphasize that the b

havior near the QC point is quantitatively different fro
the case wherexnlsvd is measured by a finite probing
frequency with response falling out of equilibrium befo
the transition temperature—a situation typically appe
ing at the classical critical point; in this casexnlsvd will
be frequency dependent showing a maximum at the fre
ing transition (see Ref. [23]).

In summary, we explored the dynamic nonlinear r
sponse in a quantum spin glass modeled by the exa
solvable spherical bond-disordered quantum spin sys
with infinite connectivity. We have argued that some pu
zling aspects of the behavior of the nonlinear suscepti
ity appear to receive a natural explanation as the no
T ­ 0 quantum glass regime is approached.

This work was supported by the Polish Science Co
mittee (KBN) under Grant No. 2P03B14612.
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