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Collisional Instabilities in a Dusty Plasma with Recombination and Ion-Drift Effects

Predhiman Kaw and Raghvendra Singh
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(Received 18 March 1997)

Instabilities of dust acoustic waves in a plasma with a significant background pressure of neutrals
have been investigated. A long wavelength mode is found to be unstable due to recombination of
electrons and ions on the surface of dust particles. At short wavelengths, a dissipative instability
driven by relative drift between ions and the dust particles is found to be important. Nonlinearly, the
short wavelength modes lead to the formation ofK 2 dV solitons whereas the long wavelength end is
dominated by modulational instabilities. [S0031-9007(97)03537-0]

PACS numbers: 52.35.Qz, 52.25.Vy, 52.25.Ya, 52.35.Sb
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In recent years, the physics of dusty plasmas (i.e., pl
mas with a significant population of charged dust particle
has attracted a great deal of attention [1] because of
potential application to problems in astrophysics and pla
etary physics [2,3], plasma processing of surfaces and m
terials [4], and its direct relevance to the physics of strong
coupled plasmas [5]. Experimental [6–9] and theoretic
[10–13] work on collective oscillations in such plasma
has revealed the existence of a novel low-frequency mo
the so-called dust acoustic wave which is often driven
large amplitudes by the free-energy sources in the plasm
Most interpretations [11,12] of the observed excitation
dust-acoustic waves in these experiments rely on a co
sionless inverse ion Landau damping mechanism. Ho
ever, a closer examination of the experimental conditio
reveals that the waves are often excited when there i
significant background pressure of neutrals (e.g., the io
neutral collisional mean free path may be comparable to
even shorter than the typical wavelengths). Under the
conditions the ions no longer behave as a Boltzmann flu
and the use of a collisionless theory is unjustified. It
therefore necessary to reexamine the dynamics of du
acoustic instability in a plasma with a background pressu
of neutrals; this is the objective of the present Letter. Su
an investigation is particularly important because many a
trophysical, planetary physics, and plasma processing s
ations do have significant neutral pressure backgroun
In this Letter we demonstrate that the recombination of t
background electrons and ions on the surfaces of dust p
ticles and the momentum loss of ions to neutrals (in t
presence of a relative ion-dust drift) act as new proces
promoting the excitation of dust-acoustic instability in
collisional plasma.

The basic linearized equations for low-frequency dus
acoustic disturbances in an unmagnetized plasma wit
significant pressure of neutrals may be written as

≠

≠t
ñd 1 = ? ỹd ­ 0 , (1)

≠

≠t
ỹd ­ c2

d=w̃ , (2)

ñe ­ w̃ , (3)
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µ
≠

≠t
1 Vo ? =

∂
ñi 1 = ? ỹi ­ 2nRñd , (4)

ỹi ­ 2
c2

i

nin
=stw̃ 1 ñid , (5)

nio

neo
ñi ­ ñe 1 Zd

ndo

neo
ñd , (6)

where we have written the equations in a frame movi
with the equilibrium speed of dust particles,w̃ ­ ef̃yTe,
ñj ­ sñjynjod and ỹj refer to density and/or velocity
perturbations in speciesj (eelectron,i ion, andd dust),njo

is the mean density of speciesj, t ­ TeyTi, Tj is the mean
temperature,Zd is the charge on the dust particle (a
sumed constant; see discussion at the end),c2

i ­ KTiymi ,
c2

d ­ ZdKTeymd, Vo is the relative drift between ions
and dust grains,nin ­ nnsinci is the ion-neutral collision
frequency for momentum loss,nn is the neutral density,
sin is the collision cross section, and̃nR ­ nRñd is the
perturbed recombination frequency of the backgrou
electrons and ions on the dust particle surfaces. Eq
tions (1) and (2) are, respectively, the equations
continuity and motion for the cold charged dust flui
Equation (3) is the Boltzmann electron fluid approxim
tion. This is valid whenk2c2

e

vnen
¿ 1 (wherec2

e ­
kTe

me
, nen

is the electron-neutral collision rate) and̃Te ­ 0.
Equations (4) and (5) describe the ion fluid which is no
Boltzmann because of collisional effects and the me
relative ion-dust drift velocity$Vo . Equation (4) contains
a sink term because of electron-ion recombination on
surface of the dust particles; it is assumed that the equi
rium sink term2nRnio ; 2bndopr2

dcsnio (rd is the dust
radius andb is a numerical factor of order unity taking
account of enhancement of the collision cross section
tween negatively charged dust particles and positive io
due to electrostatic focusing effects [2]) is being balanc
by an appropriate source (so that the equilibrium i
density is time independent) and that only its lineariz
normalized perturbation2ñR ­ 2nRñd survives in
Eq. (4). Furthermore, it is also assumed that the ion te
perature fluctuationT̃i ­ 0, becausev , smiymndnin.
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In deriving Eq. (5), we have assumedkVo , nin. Finally,
Eq. (6) is the quasineutrality condition.

Equations (1)–(6) may now be used to obtain the d
persion relation for dust acoustic waves. Assuming p
turbations of the form exps2ivt 1 ik ? xd and following
standard methods, we get the dispersion relationµ

1 2
k2c2

dp

v2

∂ ∑
1 2 i

ninsv 2 kVod
k2c2

i

∏
1∑

tp 2
ninnR

v2

c2
d

c2
i

nio

neo

∏
­ 0 , (7)

wheretp ­ tnioyneo , c2
dp ­ c2

dZdndoyneo . Writing the
dispersion relation asDsk, vd ­ 0 and assuming tha
ReD ¿ Im D andv ­ vr 1 ig with vr . g, we may
write the solution

v2
r ­ sk2c2

dp 1 aninnRdys1 1 tpd , (8a)

g >
nin

2s1 1 tpd2

µ
aninnR

k2c2
i

2 tp c2
dp

c2
i

∂ µ
1 2

kVo

vr

∂
,

(8b)

wherea ­ sc2
dnioyc2

i neod. It is to be noted that the fre
quency becomes independent of the wave vectork at the
long wavelength end. ForVo ­ 0, instability occurs only

for long wavelengths withanR . tp k2c2
dp

nin
; this is because
424
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the recombination induced growth must overpower the d
fusive damping of the ion-density perturbations by io
neutral collisional effects. For this range of wavelengt
and neutral pressure, the inclusion of ion drift only wea
ens the recombination instability. For shorter waveleng
(with the above inequality reversed) instability occurs if t
ion-dust relative driftVo is finite and exceeds the phas
velocity vryk. This is because the dust acoustic wave
a negative energy wave in the ion frame in this case a
therefore dissipative effects on the ion fluid lead to an
stability of the waves.

We may now present a more complete physical desc
tion of these collisional instabilities. Multiplying Eq. (2
by ỹ

p
d , integrating over all space, adding the complex co

jugate, and doing some partial integrations, we get the
ergy conservation equation

≠

≠t

Z
fjỹdj2 1 c2

dpjñdj2g d3r

­ c2
d

nio

neo

Z
ñis= ? ỹp

dd d3r 1 c.c. (9)

The two terms in the integral on the left side are, resp
tively, the normalized kinetic energy and thermal ener
terms associated with the dust acoustic wave. The r
hand side thus describes the basic source or sink of
wave energy. We may now use the linearized Four
mode description to rewrite the right side as (ifg ø vR)
th
ed to a
Z
d3kjw̃k j2

µ
ninnR 2 v2

r
c2

i

c2
d

t

∂ µ
k2c2

d

v2
r

∂2∑ ninvr svr 2 k ? V od
n

2
insvr 2 k ? Vod2 1 k4c4

i

∏
. (10)

As stated earlier, this expression leads to wave excitation either whenVo ­ 0 andnR terms dominate (i.e., recombination
driven instability at long wavelengths) or whenk ? V o . vr and the conventional wave dissipation terms lead to grow
because the waves have negative energy in the moving ion frame. Fundamentally, both instabilities can be trac
modified phase relationship betweenñi andw̃ in a collisional plasma, viz,

ñi ­ 2w̃

µ
t 2

k2c2
d

v2

ninnR

k2c2
i

∂ ¡ ∑
1 2 i

ninsv 2 k ? V od
k2c2

i

∏
, (11)
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which permits a positive feedback between the dust aco
tic wave and the ion fluid. The short wavelength instabili
with Vo fi 0 extracts free energy from the relative drift be
tween the ion and dust fluids. The long wavelength reco
bination instability arises because the introduction of du
has a tendency to extinguish the basic plasma discha
through surface recombination effects; thus the homog
neous steady state is prone to localized quenching at d
compressions by an interplay between dust-acoustic d
turbances and recombination phenomena, when they h
similar time scales.

For a general numerical investigation of the dispersio
relation Eq. (7), we express it as a cubic, viz,

2
ib
k2 v̂2sv̂ 2 k̂V̂od 1 v̂2s1 1 tpd 1

ibsv̂ 2 k̂V̂od 2 sa 1 k̂2d ­ 0 , (12)
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wherev̂ ­ vLycdp, k̂ ­ kL, V̂o ­ Voycdp, a ­ nnnio 3

pr2
dsinL2t1y2yZd , b ­ nnsinLZd sndomityneomdd1y2,

andL is a normalizing length (such as the system dime
sion). Figures 1 and 2 illustrate the variations ofv̂r and
ĝ ­

gL
cdp

with k̂ for two interesting parameter regions. A
a specific example, we consider the experiment of
type of Prabhuram and Goree [7], where the typical p
rameters arenn . 2 3 1016 cm23, ni . 5 3 1010 cm23,
rd . 102 nm, miymd . 5 3 1028, sin . 10214 cm2,
Z2

dndoyneo . 500, t , 4, Zd , 200, L , 20 cm giving
the dimensionless parametersa . 104 andb . 50. Fig-
ure 1 shows that the recombination driven growth rate
this case maximizes aroundkL . 30 giving l . few cm,
which compares favorably with the typical scale siz
observed in this experiment. The best examples
dust-acoustic instability driven by ion drift are found i
the low pressure limit where recombination effects a
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FIG. 1. Real frequencŷv and growth ratêg versusk̂. Solid
lines (—): a ­ 30 000, b ­ 10, tp ­ 1, V̂ ­ 0; dashed lines
(– –): a ­ 10 000, b ­ 50, tp ­ 1, V̂ ­ 0; dash-dotted lines
( ? ): a ­ 1000, b ­ 50, tp ­ 1, V̂ ­ 1.

negligible (Fig. 2). These results are more relevant to t
experiments of Prabhakara and Tanna [9] and many plas
processing situations where the dust levitates in a she
region into which ions are drifting typically with velocities
satisfying the Bohm stability conditionVo $ ci. In this
case strong instabilities with typical sizes,few cm are
excited, even whenVo is only a few timescd.

Let us now investigate the nonlinear evolution of th
dust-acoustic perturbations. We first consider the dissip
tive short wavelength instability driven by the relative ion
dust drift velocity. The linearized perturbation fornR ­ 0
is described by the equationµ

≠2

≠t2 2 c2 ≠2

≠x2

∂
ñd ­ 2d

µ
≠

≠t
1 Vo

≠

≠x

∂
ñd , (13)

wherec2 ­ c2
dpys1 1 tpd and d ­ nintpscdpycid2ys1 1

tpd2. This equation reproduces all the salient featur
of the short wavelength instability. Nonlinear dispersiv
wave packets associated with these perturbations can
described if one retains quadratic nonlinearities (“conve
tive” nonlinearities in the dust hydrodynamic equation
and the “Boltzmann” nonlinearities in the electron and
or ion perturbations) and deviations from quasineutrali
[an additional=2w̃ term in Eq. (6)]. Considering non-
linear wave packets traveling to the right with a veloc
ity close to the group velocityc, introducing the variables
l

21
D sx 2 ctd ­ X, vpdt ­ T , U ­ 2ñdy6, we finally

get the nonlinear evolution equation

UT 2 6UUX 1 UXXX ­
d

2
sVo 2 cdU

1
d

2

Z
UT dX , (14)

where we have introduced the standard normalizations
x, t, etc. and the subscripts denote partial derivatives. T
left side is the standardK 2 dV equation for dust-acoustic
perturbations, derived earlier by Raoet al. [10] and others
[14]. The right side of Eq. (14), which we intend to trea
perturbatively, describes the growth and saturation of t
solitons due to the ion drift. We use the perturbation theo
of solitons due to Karpman and Maslov [15] to write th
solution

U ; 2k2sT d sech2Z , (15)
he
ma
ath

e
a-
-

es
e
be

c-
s
/

ty

-

for
he

t
he
ry
e

FIG. 2. Real frequencŷv and growth ratêg versusk̂. Solid
line (—): a ­ 0, b ­ 1, tp ­ 40, V̂ ­ 100; dashed lines (– –):
a ­ 0, b ­ 10, tp ­ 10, V̂ ­ 10; dash-dotted lines ( ? ):
a ­ 10, b ­ 1, tp ­ 10, V̂ ­ 10.

where Z ­ ksT d fX 2 jsT dg, j ­ 4
R

k2 dT 1 correc-
tions of orderd and

k2 ­
1
4 sVo 2 cd

¡ Ω
1 1

∑
Vo 2 c

4k2
o

2 1

∏
3 exp

∑
2

2d

3
sVo 2 cdT

∏æ
. (16)

Equation (16) shows that the amplitude of the soliton
increases from an initial value2k2

o to a saturated value
sVo 2 cdy2. Physically, the soliton saturates becaus
as its amplitude increases, it accelerates and eventua
reaches a velocityVo ; at this velocity, it can no longer
extract energy from the ion drift. The above analysi
shows that the short wavelength collisional instability will
nonlinearly lead to a collection ofK 2 dV solitons which
interact relatively weakly with each other.

We next discuss the nonlinear physics for the lon
wavelength instability driven by recombination processe
In this limit, the modification of the real part of frequency
due to collisions assumes importance and we may write th
linearized wave equation (ignoring the growth terms) as

≠2

≠t2
ñd 1 v2

c ñd ­ c2 ≠2ñd

≠x2
, (17)

wherev2
c ­ aninnRys1 1 tpd. In the long wavelength

limit (kc, ỹd ? = ø vc, etc.), the convective nonlineari-
ties are negligible. The dominant nonlinear effect arise
because of “slow” modulations ofnd (which modulatenR

and hencevc). We may thus writend ­ ndos1 1 ñdd 1

dnds, where dnds is the low frequencyfV ø ksTdy
mdd1y2g response of the dust density to beat-frequenc
perturbations generated by the dust-acoustic wave.
may be noted that this problem has many similarities t
the description of nonlinear Langmuir waves [16,17]
At very low frequenciessV ø kctd , k2c2

i ynind, ion and
electron response will be Boltzmann-like:dñes ­ dw̃s;
dñis ­ 2tdw̃s. The low-frequency dust dynamics is
given by kỹd ? =ỹ

p
dl ­ c2

d=dw̃s 2 c2
td=dñds. Using the

quasineutrality condition, we finally getdndsyndo .
2jỹdj2yfc2

td 1 c2
dpys1 1 tpdg.

We may now modify characteristic frequency in
Eq. (17) asv2

c ­ v2
cos1 1 dndsyndod, express the result-

ing nonlinear equation in terms of̃yd, and eliminate the
425
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co terms by the ansatz̃yd ­ Ṽd exps2ivcotd 1 c.c., to

finally get the nonlinear equation

iUT 1 UXX 1 jUj2U ­ 0 , (18)

whereT ­ vcot, X ­
p

2 svcoxycd, U ­ Ṽd

p
2yfc2

td 1

c2
dpys1 1 tpdg1y2 and we have assumed that the mod

lation wavelengths are much longer than that of the b
sic waves. Equation (18) is the well known nonlinea
Schrödinger equation [16,17]. It shows that in one d
mension, large amplitude harmonic waves are suscept
to modulational instabilities, which finally saturate to giv
envelope soliton solutions. A standard envelope solit
solution has the form

U ­ A sech

∑
A
p

2
sX 2 2koTd

∏
3 cos

∑
koX 2

µ
1 1 k2

o 1
A2

o

2

∂
T

∏
, (19)

where A ­ Ā
p

2yfc2
td 1 c2

dpys1 1 tpdg1y2 is the dimen-
sionless amplitude of the perturbed dust velocitysĀd and
ko ­ k̄ocy

p
2 vco is the dimensionless wave number o

the propagating modulated wave (k̄o being the usual wave
number). When instability terms in the original Eq. (17
are retained, we get a nonlinear Schrödinger equation w
sources, which is also known to generate envelope solito
[17]. We thus expect the long wavelength recombinatio
instability in one dimension to generate a collection of e
velope solitons. However, the behavior for multidimen
sional perturbations is expected to be more complex. It
well known that in such cases the nonlinear Schröding
equation gives no stationary states and instead leads
collapse of wave packets [17]. Such a collapse leads
the formation of localized regions of high concentration
of wave fields, from which dust density is expelled; fur
thermore, intense wave-particle interactions in such loc
ized regions can lead to strong heating of the dust particl
The formation of “voids” and “filamentary structures” in
some dusty plasma experiments [7] may be related to su
phenomena.

In conclusion, we have investigated dust-acoustic ins
bilities in a plasma with a background of neutrals. W
find a short wavelength branch driven by ion drift an
collisional ion-neutral momentum transfer. Nonlinearl
this instability leads to the formation ofK 2 dV solitons.
We also find a long wavelength branch, particularly rel
vant for high neutral pressure situations, which is drive
by recombination effects on the surface of dust particle
This instability nonlinearly favors the formation of enve
lope solitons in one dimension and collapsing wave pac
ets in more than one dimension. We finally comment o
some effects not included in the above treatment. It
widely recognized now that self-consistent fluctuation
the charge on dust particles must also be incorporated i
complete analysis [18–20]. This effect leads to a nov
wave damping which has to be overcome by any ex
tation mechanisms. Since the instability growth rates
collisional mechanisms are fairly strongsg # vr d, it is
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likely that these damping rates will be exceeded in man
realistic experimental situations. Another wave dampin
mechanism which may be important in high pressure e
perimental situations [21,22] arises through dust neutr
collisions. The damping enters through a collisional dra
term 2ndnỹd on the right side of Eq. (2) and would pro-
ceed at a rate of orderndny2 . snnyndd sMny2Mddnnd ,
where nnd is the neutral-dust collision rate,pr2

dynnd .
Comparing this damping rate with the typical growth
rate driven by recombination effects we find that th
growth dominates forklf , 1 #

p
TeyTn sndMdynnMnd,

a condition which is readily satisfied. Another effect no
included in our present calculation is that of strong corre
lations in the dust fluid, which may be important in some
experiments (whereGd ­ Z2

de2ydkTd . 1, d being the
inter-dust-particle spacing). The basic analytic method
of treating such strongly coupled systems either using la
tice models [23] or simple viscoelastic transport phenom
ena [24] are still in their infancy. Detailed investigations
of such effects are therefore left for future work.
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