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We study a model for the nematic–to–smectic-A (NA) transition in aerogel, and find that even
arbitrarily weak quenched disorder (i.e., low aerogel density) destroys translational (smectic) ord
Ignoring elasticanharmonicities, but keeping anharmonic couplings to disorder, leads to the predicti
that there is no “Bragg glass” phase in this system: it is riddled with dislocation loops induced
the quenched disorder. Orientational (nematic) order is destroyed as well, as is the thermodynamic
sharp NA transition, in agreement with recent experimental results. [S0031-9007(97)04632-2]

PACS numbers: 64.70.Md, 61.30.Cz, 64.60.Fr
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Recent experiments [1,2] have focused on the stu
of liquid crystals in the random environment of an
aerogel, as a new paradigm system in which to investiga
the general problem of quenched disorder in condens
matter systems.

In this Letter we develop a theory of such systems. W
find that in a harmonic approximation, even arbitraril
weak disorder destroys both the smectic-A phase and
the nematic–to–smectic-A (NA) transition, and creates
unbound dislocation loops. The formalism we use
demonstrate this defect unbinding is new, powerful, an
potentially applicable to a wide variety of candidate “Brag
glass” [3] systems.

Once dislocations are present, the phase is best cha
terized as a nematic in a random tilt field. However, su
sequent examination of orientational fluctuations in th
nematic leads to the conclusion that tilt disorder destro
the orientational order of the smectic layers as well.

However, a “nematic Bragg glass” and a thermodynam
cally sharp “nematic glass” transition may occur [4], in
agreement with recent dynamic light scattering expe
ments [1] that show a dramatic slowing down of direc
tor fluctuation relaxations in liquid crystals in aeroge
below a temperatureTg near the bulk nematic-isotropic
(NI) transition.

Near the NA transition the center-of-mass nematog
molecular densityrsrd develops strong fluctuations domi-
nated by Fourier components near the smectic orderi
wave vectorq0 ­ n2pyd parallel to the nematic director
n. Defining the local (complex scalar) order parame
ter csrd which distinguishes the smectic-A from the
nematic phase [5] viarsrd ­ Re fr0 1 eiq0?rcsrdg,
where r0 is the mean density of the smectic, we tak
for our free energy F ­ FdG 1 Fdr 1 Fdn, where
FdGfc, ng is de Gennes free energy (which include
the Frank free energy) [5], andFdr and Fdn are the
new disorder parts, which couple the smectic dens
and the nematic director, respectively, to the quench
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disorder of the aerogel matrix, and are combined int
Fd ­ Fdr 1 Fdn:

Fd ­
Z

ddr

"
1
2

dtsrd sr 2 r0d2 1 Usrdr

1 f gsrd ? ng2

#
, (1)

where both the quenched randomTc sssdtsrdddd and the
quenched random potentialUsrd are proportional to the
local aerogel densityrAsrd, and the quenched fieldgsrd
is random andshort-rangecorrelated in direction, with
strength proportional to the local aerogel density.

Combining the “random field” energy [first two terms
of Eq. (1)] with the relation between the smectic orde
parameterc and the densityr, we obtain

Fdrfcg ­
Z

ddr
1
2

fdtsrd jcj2 1 V srdc 1 V psrdcpg ,

(2)

where V srd ; Usrdeiq0z . Note that, despite the long-
ranged correlations ofUsrd, which arise due to the
fractal structure of the aerogel [1],V srd has onlyshort-
ranged correlations. This is because correlations ofV
near q ­ 0 are related to those ofU near q ­ q0ẑ
and the aerogel itself has no particular spatial structur
at the wave vector of the smectic ordering,q0. Thus,
the correlations ofV srd are short ranged, and hence
we can accurately capture the long distance physics b
taking the real space correlations to be zero ranged, a
write V srdVpsr0d ­ DV ddsr 2 r0d whereDV ­ CU sq0ẑd
(overbar denotes quenched disorder average). Expandi
in small deviations from perfect nematic ordern0 ­ ẑ,
writing n̂srd ­ ẑ 1 dnsrd, to linear order indnsrd, Fdn

[the last term in Eq. (1)] becomes

Fdn ø
Z

ddr hsrd ? dn , (3)

where we have defined a quenched random tilt fiel
hsrd ; gzsrdgsrd.
© 1997 The American Physical Society
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Since we expectgsrd to have only short-ranged cor-
relations (with range of order the orientational persi
tence length of the silica fibers), the above correlatio
function of the tilt disorder should also be short range
Furthermore, it must be isotropic. These consideratio
lead to the following form for the correlation function
hisrdhjsr0d ; Dhddsr 2 r0d dij, which isshort ranged.

While it is tempting to directly analyze the mode
F ­ FdG 1 Fdr 1 Fdn written in terms of the smectic
order parameterc, we will not do so here [4]. Our
motivation for this is that such a direct approach
knownto incorrectly predict the lower critical dimension
in, e.g., the random field Ising model (as well as
e.g., completely missing the existence of the Kosterlit
Thouless transition). Indeed, it proves to also do so he
Instead, we proceed byassumingthe existence of smectic
order and writing csrd ­ jc0jeiq0usrd, with a uniform
r
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amplitude jc0j ­ const andusrd the local displacement
of the smectic layers from the perfect periodic orde
Using this low-T ansatz in Eqs. (1)–(3), and integratin
over the nematic director fluctuationsdn, results in the
replacementdn ! ='u, everywhere inFfu, dng (the
Higg’s mechanism). This leads to the elastic free ener
of the disordered smectic-A phase, valid in the long
wavelength limit, to quadratic order in gradients ofu, and
provided dislocations are confined,

Ffug ­
Z

ddr

"
B
2

s≠zud2 1
K
2

s=2
'ud2 1 hsrd ? ='u

2 jc0j sV srdeiq0usrd 1 V psrde2iq0usrdd

#
.

(4)
To compute self-averaging quantities, we employ t

replica “trick.” After replicating and integrating over the
disorder [4], we obtainZn ­

R
fduage2Ffuag, with
Ffuag ­
Z

ddr

"
nX

a­1

√
K
2

s=2
'uad2 1

B
2

s≠zuad2

!
1

nX
a,b­1

√
Dh

4
j='sua 2 ubdj2 2 g cosfq0sua 2 ubdg

!#
, (5)
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whereg ; jc0j
2Dyy2. We have studied this model us

ing the standard momentum shell renormalization gro
(RG) transformation, generalized to allow for anisotrop
scaling:r' ­ r 0

'e,, z ­ z0ev, [4]; the results are the RG
flow equations in 3D,

dgs,d
d,

­ s2 1 v 2 hdg 2 A1g2, (6)

dKs,d
d,

­ sv 2 2dK , (7)

dBs,d
d,

­ s2 2 vdB , (8)

dDhs,d
d,

­ vDh 1 A2g2, (9)

where for simplicity we set the UV cutoffL ­ 1, and
h ­ q2

0y4p
p

KB, A1 ­ 2hy3pK , A2 ­ q2
0hy4K . The

statistical symmetry under global rotation requires that t
disorder generated replica off-diagonal terms be invaria
under uasrd ! uasrd 1 u ? r'. In Eq. (5) the nonlin-
earities only depend on the difference between differe
replica fields and therefore do not depend on the “cen
of mass” field

Pn
a­1 ua , which is therefore a noninter-

acting field. This implies thatK and B are not renor-
malized by disorder [6,7]; i.e., their flow equations a
exact,ignoring (for now) the effects of both anharmoni
elastic terms and topological defects loops inu. Note
that h, which is simply the Caille exponent for the alge
braic decay of smectic correlations in the pure smect
is unrenormalized. The recursion relation for the prop
dimensionless coupling constantg̃ ; 2gy3pK can be
easily obtained by combining Eqs. (6) and (7),

dg̃s,d
d,

­ s4 2 hdg̃ 2 hg̃2, (10)

and, as required, is independent of the arbitrary anisotro
rescaling exponentv. From Eq. (10), we then find
that for h , 4 (large elastic moduli,KB . q4

0y256p2),
well below the NA transition, the smectic fixed line i
-
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unstable to disorder. However, this instability to disord
is stabilized by the nonlinear terms iñg, which terminate
the flow at a new finite disorder fixed line,̃gp ­ s4 2

hdyh. This new fixed line then controls a glassy smecti
A phase, analogous to the super-rough phase of cry
surface on a random substrate [6,7] and the vortex gl
phase of flux-line vortices in type-II superconducto
[6,8].

The flow Eq. (10) also implies that the random-fiel
disorder is irrelevant forh . 4. Since the bulk modulus
B vanishes whileK remains finite throughTNA, h

diverges asT ! T 2
NA, and hence near the bulk NA

transition TNA, we are guaranteedto have a range of
T over which the random-field disorder is irrelevan
However, as we will see below, because tilt disord
(Dh) is a strongly relevant perturbation, the 3D quas
long-range smectic order forh . 4 will be converted
into short-range correlations, even when the random-fi
disorder given byg is irrelevant. It is essential to stres
that the RG flow described above (i.e., relevance f
h , 4 and irrelevance forh . 4 of the random-field
disorder) survives even despite the strong relevance
runaway of the random tilt couplingDh.

As can be seen from the recursion relations, Eq. (
even if the bareDh ­ 0, tilt disorder is generated by
the random-field disorderg upon renormalization. In
contrast to the 2D random-fieldXY model, where the
generatedDh disorder is only marginally relevant and
only weakly affects the quasi-long-range order found f
Dh ­ 0 (replacing log phase correlations by log2) [6,7],
for the 3D smectic-A phaseDh tilt disorder is strongly
relevant. The effect of the tilt disorder is controlle
by the dimensionless couplingg ; DhyBl3, wherel ;
sKyBd1y2. From the recursion relations Eqs. (6)–(9) w
find dgyd, ­ 2g 1 s9p3h2y4dg̃2. For h . 4, g̃s,d !

0 (as we have seen), and sodgyd, ­ 2g, which is
4215
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trivially solved to givegs,d ­ gs0de2,, wheregs0d is a
constant. Thus, the tilt disorderis strongly relevant. We
expect this on physical grounds since random tilt disord
explicitly breaks the rotational invariance of the smecti
A phase.

For h , 4, g̃ ! g̃p . 0. Now, in the 2D random-
field XY model, the existence of a nonzerõgp in the
low-T phase implied completely different behavior fo
the tilt coupling gs,d than in the high-T phase. In
our problem, however, solving Eq. (6) givesgs,d ­
f gs0d 1 9p3h2g̃2

py8ge2, 2 9p3h2g̃2
py8, which asymp-

totically runs away to1` as ,e2, in both phases,in
exactly the same way.Nonuniversal constants (likeg0)
change but the scaling (e2,) does not. This implies
that equal timecorrelation functions scale in exactly the
same way in both the “glassy”sh , 4d and “nonglassy”
sh . 4d phases. We will therefore calculate them in th
4216
er
c-

r

e

nonglassy (h . 4) phase, where we can setg ­ 0; our
results, however, will apply toboth phases. The differ-
ence between these two phases is that thedynamicsare
slower in the glassy phase.

For g ­ 0 we can calculate anything. The quantity o
interestCsr', zd ­ kfusr', zd 2 us0, 0dg2l is

Csr', zd ­ 2
Z d2q'dqz

s2pd3 s1 2 eiq?rd
kusqdusq0dl
ddsq 1 q0d

,

(11)

where the quenched and thermal average
kusqdusq0dl ­ kuasqduasq0dl ­ ddsq 1 q0dGaasqd is
expressed in terms the replicated correlation functio
where no sum ona is implied, and the replica propagator
Gab ­ dabyGq 1 Dhq2

'yG2
q, with Gq ; Kq4

' 1 Bq2
z ,

can be read off from Eq. (5). This together with Eq. (11
gives, in ther ! ` limit,
C ­ 2Dh

Z d2q'dqz

s2pd3

q2
'f1 2 eiq?rg

sKq4
' 1 Bq2

z d2
, (12)

­
Dh

32pBl3

(
4ljzje2r2

'y4ljzj 1 r2
'

"
Ei

√
24lLz

L2
'

!
1 Ei

√
2r2

'

4ljzj

!
1 2 ln

√
L'

r'

!#)
,
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whereEisxd is the exponential integral function, we hav
considered a finite system whose shape is a rectang
parallelepiped of linear dimensionsL' 3 L' 3 Lz , Lz

being the length of the system along the ordering (z)
direction, and dropped the subdominant thermal (finiteT )
contribution toCsr', zd. In the usuallLz ø L2

' limit,
the asymptotic behaviors ofCsr', zd are

C ø

8>>><>>>:
Dh

32pB2l3 f4ljzj 1 r2
' ln j

Lz

z jg, ljzj ¿ r2
',

lLz ø L2
',

Dh

16pB2l3 r2
' lns 2

p
lLz

r'
d, ljzj ø r2

',

lLz ø L2
',

(13)

An unusual feature of this result is that even therelative
displacement of two points withfinite separationssr', zd
diverge as the system sizessL', Lzd go to infinity. This is
because the mean squared real spaceorientationalfluctua-
tions kjdnsrdj2l ­ kj='usrdj2l also diverge asL',z ! `,

kjdnsrdj2l ­ 2Dh

Z d2q' dqz

s2pd3

q4
'

sKq4
' 1 Bq2

z d2
,

­
Dh

4pB2l3 lnsminf
p

lLz, L'gd . (14)

Defining the translational correlation lengthsj' and
jz , as the distancesr' and z at which Csr', zd is
of order a2, where a is a lattice constant, givesjz ­
a28pKByDh, and

j' ­ 4a

√
pB2l3

Dh lns2
p

lLzyj'd

!1y2

. (15)

Furthermore, because the liquid crystal in aerogel lac
long-rangedorientational order, as well, to obtain the
x-ray scattering from aerogel, one must powder avera
the broadring of x-ray scattering that results has width
kpowder > sjzd21 ­ Dhys8pBKa2d.
lar

ks

e;

Theorientationalcorrelation lengthsjo
',z can similarly

be defined as the values ofL',z beyond which the mean
squared orientational fluctuationskjdnj2l of Eq. (14) get
to Os1d. This givesjo

' ­ ae4pB2l3yDh ­ aejzly2a2
, jo

z ­
sa2ylde2pB2l3yDh ­ sa2yldejz ly4a2

. Thus, orientational
order persists out tomuch larger distances than transla
tional order, in the limit of weak disorder whereall the
correlation lengths get large.

All of the above results apply subject to our two initia
assumptions that (1) dislocations werenot generated by
the disorder, and (2) anharmonic terms in the elastic f
energy could be neglected.

We will show now that if we continue to assume (2
(whose validity we will investigate in a future publicatio
[4]), assumption (1) is wrong: in theharmonic elastic
approximation, dislocationsarecreated even by arbitrarily
weak disorder. However, they are felt only on leng
scales longer thanjo

',z, and hence much longer tha
the translational correlation lengths. Thus, our abo
calculations of these lengths remain valid.

We can include dislocations in the “tilt only” model
i.e., Eq. (4) with V srd ­ 0. As discussed earlier, this
theory correctly reproduces all of the static correlati
functions inboth the glassy and the nonglassy regimes.

The dislocations are characterized by an integer-valu
3D vector fieldmsrd defined on the sitesr of a lattice
connected to the displacement fieldu via = 3 v ­ m,
with v ; =u, and a dislocation line continuity constrain
= ? msrd ­ 0. Standard manipulations [4,9] lead to
Coulomb gas theory of these dislocation loop defects,

Hd ­
1
2

Z
q

"
Kq2

'

Gq
P'

ij misqdmjs2qd 1 msqd ? as2qd

#
,

(16)
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where the inverse of the pure smectic propagatorGq ;
q2

z 1 l2q4
', P'

ij sqd ­ d
'
ij 2 q'

i q'
j yq2

', and asqd is a
Fourier transform of the quenched field related to th
original random tilt fieldhsqd via 2ia ­ q 3 hyq2 2

sẑ 3 qdq ? h qzs1 2 l2q2
'dysGqq2d.

The partition function for this model is thenZfhhjg ­P0
hmsrdj e2Sfhmjg, where S ; HdyT 1 EcyT

P
r jmsrdj2,

the sum is over all integer-valued configurations o
m satisfying the dislocation line continuity constrain
= ? m ­ 0, Hd is given by Eq. (16), and we have added
a core energy termEc

P
r jmsrdj2. To proceed, we

enforce the constraint= ? m ­ 0 by introducing a new
auxiliary field fsrd, and introduce a dummy gauge field
A to mediate the long-ranged interaction between defec
loops in the Hamiltonian Eq. (16) obtaining

Z ­
Y

r

Z
df srd dA srd

3
X

hmsrdj
e2Sfhmj,f,Agds= ? AddsAzd ,

S ­ b
X

r
fmsrd ? s2i=fsrd 1 iAsrd 1 asrdd 1 Ecjmj2g

1
1
2

X
q

Gq

Kq2
'

jAj2. (17)

Performing the summation over the dislocation loop de
grees of freedom, replacing the resulting Villain potentia
by a cosine, generalizing to a “soft spin” model describe
by a “disorder” parameterc ­ jcjeif, we finally obtain
[4] a complex“action” S

S ­
X

r
fs= 1 iA 1 adcps= 2 iA 2 adc

1 tjcj2 1 ujcj4g

1
X
q

Gq

2Kq2
'

jAsqdj2, (18)

A complete discussion of the behavior of the abov
model [4] is outside the scope of this Letter; here we a
only interested in the question of whether the dislocation
loops will or will not unbind at any, even infinitesimal,
amount of disorder. Using replicas and computing th
disorder-averaged free energy, we find that the lowe
order contribution to the renormalizeddual temperature
tR comes from the average of the “diamagnetic” term
dS ­

P
rskjAj2l 2 jaj2d jcj2, which gives

tR ­ t0 1 sd 2 2d
Z ddq

s2pdd

"
Kq2

'

Gq
2

Dhq2
z q2

'

q2G2
q

#
,

(19)
where we have used the connection betweenasrd and the
quenched tilt disorderhsrd, averaged overhsrd using its
distribution function, and generalized tod dimensions.

The second, disorder, term in this integral dominate
the first asq ! 0. Indeed, this integral diverges in the
infrared ford # 3Z

ddq
q2

z q2
'

q2sq2
z 1 l2q4

'd2
~

Z dd21q'

q2
'

, (20)

where we used the fact that the dominant regime of th
integral isqz , lq2

'. This divergence implies thattR is
e
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e

driven to2` (note the minus sign) by the disorder ind ­
3. Indeed, we find in 3DtR ­ t0 2

Dh

l lnsLyad 3 Os1d,
where L is an IR cutoff (e.g., the lateral extent of the
smectic layers) anda is the UV cutoff (e.g.,,10 Å, the
size of the liquid crystal molecules).

This implies that thedual (dis-)order parameter is
always in its ordered phase, which, in turn, implies that
the dislocation loops of the original smectic model are
always unbound, thereby destroying the smectic order,
even atT ­ 0, for any infinitesimal amount of disorder.

These results of theharmonictheory imply that for 3D
disordered smectics the dislocations are unbound, even
T ­ 0, for arbitrarily weak disorder. This means that there
is no thermodynamicallysharp continuousNA transition,
and the low temperature phase must have afinite smectic
translational correlation length (even atT ­ 0), once the
liquid crystal is put in aerogel. Afirst order transition
between nematics with short and long (but finite) smectic
correlation lengths, or a smeared analytic crossover, are
of course, always possible and have been observed i
experiments of Refs. [2] and [1], respectively. We have
also shown [4] that once the dislocations are unbound, th
staticdirector fluctuations are precisely those of anematic
in a random tilt field. This implies that the system can
be thought of as a nematic in such a random field, a
all temperatures and all disorder strengths. This, in turn
can be shown [4] to imply that long-ranged orientational
(nematic) order is destroyed as well, again in agreemen
with experiments [1].

Finally, preliminary investigation ofanharmonicelas-
tic effects suggests that theymayprevent dislocation un-
binding and stabilize orientational order [4]. Furthermore,
our resultsdo not imply that there is no thermodynami-
cally sharp phase transition in this system analogous to th
nematic to isotropicphase transition in the pure system.
Indeed, preliminary investigation suggests that a kind of
nematic Bragg glass phase may exist in these system
This possibility will be further discussed in a future publi-
cation [4].
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