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We study a model for the nematic—to—smectiqgNA) transition in aerogel, and find that even
arbitrarily weak quenched disorder (i.e., low aerogel density) destroys translational (smectic) order.
Ignoring elasticanharmonicities, but keeping anharmonic couplings to disorder, leads to the prediction
that there is no “Bragg glass” phase in this system: it is riddled with dislocation loops induced by
the quenched disorder. Orientational (nematic) order is destroyed as well, as is the thermodynamically
sharp NA transition, in agreement with recent experimental results. [S0031-9007(97)04632-2]

PACS numbers: 64.70.Md, 61.30.Cz, 64.60.Fr

Recent experiments [1,2] have focused on the studgisorder of the aerogel matrix, and are combined into
of liquid crystals in the random environment of an F; = Fy, + Fy,:
aerogel, as a new paradigm system in which to investigate 11 5
the general problem of quenched disorder in condensed Fg = f dr o 81(r)(p — po)” + U(r)p
matter systems. 5

In this Letter we develop a theory of such systems. We + [g(r) - n]" |, 1)
find that in a harmonic approximation, even arbitrarily
weak disorder destroys both the smectighase and Where both the quenched randof (6:(r)) and the
the nematic—to—smecti¢- (NA) transition, and creates duenched random potentiai(r) are proportional to the
unbound dislocation loops. The formalism we use tdocal aerogel density,(r), and the quenched fielg(r)
demonstrate this defect unbinding is new, powerful, andS random andshort-rangecorrelated in direction, with
potentially applicable to a wide variety of candidate “BraggStrength proportional to the local aerogel density.
glass” [3] systems. Combining the “random field” energy [first two terms

Once dislocations are present, the phase is best chars®- Ed. (1)] with the relation between the smectic order
terized as a nematic in a random tilt field. However, subParametes and the density, we obtain
sequent examination of orientational fluctuations in this . a1 2 % %
ne?natic leads to the conclusion that tilt disorder destroyslr:d”[*y:| N ]d ) [or(e) [y ” + V) + Via)yr],
the orientational order of the smectic layers as well. )

However, a “nematic Bragg glass” and athermodynaml—Where V(r) = U(r)ei:. Note that, despite the long-

cally sharp “nematic glass” transition may occur [4], in . . )
agreement with recent dynamic light scattering experi-;?:C%:;jst(;S;ilfg'g?Sthgzg% ;\(Tf]t'( ?r;]saes glrjf str?or?-]e
ments [1] that show a dramatic slowing down of direc- 9 T y

tor fluctuation relaxations in liquid crystals in aerogel ranged correlations. This is because correlations 10f

below a temperaturd, near the bulk nematic-isotropic e’ d = 0 are related to those ot near g = goZ
(NI) transition. and the aerogel itself has no partlcular s_patlal structure
Near the NA transition the center-of-mass nematoge t the wave vector of the smectic ordering, Thus,

molecular density (r) develops strong fluctuations domi- ¢ : c(g)r:rzfctll?rg?eIOﬂc/:g)tu?;e thse?(l)(r)tn ragi%?:ﬁczndh h;}(?geb
nated by Fourier components near the smectic orderin y cap 9 pny y

wave vectorqy = n27/d parallel to the nematic director ng—the r*ea! space C;)rrelatlc/)ns to be zero rang(?d, and
n. Defining the local (complex scalar) order parame-"'€ VIOV (r') = Ay8(r — 1) whereAy = Cy(go2)
ter (r) which distinguishes the smectic-from the (overbar denptg:-s quenched disorder avc_arage). Expiandmg
nematic phase [5] viap(r) = Re[py + €Ty (r)], in _s_mal[ dewatlons from perf_ect nematlc_ ordes = 2,
where py is the mean density of the smectic, we takewt:'t"rg A(r) =z 6n(r)l,3 to linear order indn(r), Fo,

for our free energyF = Fy6 + Fqp, + Fgy, Where [the last term in Eq. (1)] becomes

Fusl¢,n] is de Gennes free energy (which includes Fu, zfddrh(r) . on, 3)

the Frank free energy) [5], andy;, and Fy, are the

new disorder parts, which couple the smectic densitywwhere we have defined a quenched random tilt field
and the nematic director, respectively, to the quencheli(r) = g,(r)g(r).
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Since we expecg(r) to have only short-ranged cor- amplitude || = const andu(r) the local displacement
relations (with range of order the orientational persis-of the smectic layers from the perfect periodic order.
tence length of the silica fibers), the above correlatiorlsing this low? ansatz in Egs. (1)—(3), and integrating
function of the tilt disorder should also be short rangedover the nematic director fluctuatior#n, results in the
Furthermore, it must be isotropic. These considerationseplacementén — V  u, everywhere inF[u,én] (the
lead to the following form for the correlation function: Higg's mechanism). This leads to the elastic free energy
hi(r)h;(x') = A, 89(r — r') §;;, which isshort ranged. of the disordered smecti¢- phase, valid in the long

While it is tempting to directly analyze the model wavelength limit, to quadratic order in gradientsugfand
F = Fq6 + F4, + Fg, written in terms of the smectic provided dislocations are confined,
order parametery, we will not do so here [4]. Our B K
motivation for this is that such a direct approach is Flu] = [ddl‘|:7 (9:u)* + T(Viu)z + h() - V,u
knownto incorrectly predict the lower critical dimension iqoule) £ —igou(r)
in, e.g., the random field Ising model (as well as, = ol (V(r)e + Vi(r)e ) |-

e.g., completely missing the existence of the Kosterlitz- )
Thouless transition). Indeed, it proves to also do so here.
Instead, we proceed lssuminghe existence of smectic
order and writing ¢ (r) = |ole“®, with a uniform

To compute self-averaging quantities, we employ the
replica “trick.” After replicating and integrating over the
| disorder [4], we obtai” = [[dug]e "], with
—( K B < A
Flug] = [ ddr|: Z(?(Viua)z + 7(‘%”0()2) + Z (Th V. (ue — uﬁ)|2 — ycodqo(ua — uﬁ)] , (5
a,B=

a=1 1

wherey = ||*A, /2. We have studied this model ué- unstable to disorder. However, this instability to disorder
ing the standard momentum shell renormalization groups stabilized by the nonlinear terms 4n which terminate
(RG) transformation, generalized to allow for anisotropicthe flow at a new finite disorder fixed ling;" = (4 —
scaling:r, = rle, z = /¢! [4]; the results are the RG 7)/n. This new fixed line then controls a glassy smectic-
flow equations in 3D, A phase, analogous to the super-rough phase of crystal

dy(t) 2t w—n)y— A 6) surface on a random substrate [6,7] and the vortex glass
© Y 17 phase of flux-line vortices in type-Il superconductors
aK0) _ o, [6,8].
at (@ = 2)K, (7) The flow Eq. (10) also implies that the random-field
dB(¢) _ (2 - )B (g) disorder is irrelevant fo > 4.  Since the bulk modulus
’ B vanishes whileK remains finite throughTnya, 7
da,6) _ why + Ayy?, ) diverges asT — Tya, and hence near the bulk NA

de transition Ty, we are guaranteedto have a range of
where for simplicity we set the UV cutofA = 1, and T over which the random-field disorder is irrelevant.
n = q5/AnJKB, A, = 29/37K, A, = ¢im/4K. The However, as we will see below, because tilt disorder
statistical symmetry under global rotation requires that th€A,) is a strongly relevant perturbation, the 3D quasi-
disorder generated replica off-diagonal terms be invarianbbng-range smectic order fo, > 4 will be converted
underu,(r) — u,(r) + @ - r;. In Eqg. (5) the nonlin- into short-range correlations, even when the random-field
earities only depend on the difference between differentlisorder given byy is irrelevant. It is essential to stress
replica fields and therefore do not depend on the “centethat the RG flow described above (i.e., relevance for
of mass” field>” _, u,, which is therefore a noninter- 5 < 4 and irrelevance forn > 4 of the random-field
acting field. This implies thak and B are not renor-  disorder) survives even despite the strong relevance and
malized by disorder [6,7]; i.e., their flow equations arerunaway of the random tilt couplingy,.
exact,ignoring (for now) the effects of both anharmonic As can be seen from the recursion relations, Eq. (9),
elastic terms and topological defects loopsuin Note even if the bareA, = 0, tilt disorder is generated by
that n, which is simply the Caille exponent for the alge- the random-field disordery upon renormalization. In
braic decay of smectic correlations in the pure smecticcontrast to the 2D random-fieldY model, where the
is unrenormalized. The recursion relation for the propegeneratedA, disorder is only marginally relevant and
dimensionless coupling constaft= 2y/37K can be only weakly affects the quasi-long-range order found for
easily obtained by combining Egs. (6) and (7), A, = 0 (replacing log phase correlations by d6,7],
dy(t) _ 4= )5 — 03’ 10y for the 3D smecticd phaseA, tilt disorder is strongly
e WY v (10) relevant. The effect of the tilt disorder is controlled
and, as required, is independent of the arbitrary anisotroply the dimensionless coupling= A;/BA3, where =
rescaling exponenw. From Eg. (10), we then find (K/B)"/2. From the recursion relations Egs. (6)—(9) we
that for < 4 (large elastic modulikB > ¢3/25672), find dg/dt = 2g + (9m3n2/4)¥%. Forn > 4, ¥({) —
well below the NA transition, the smectic fixed line is 0 (as we have seen), and stg/df = 2g, which is
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trivially solved to giveg(€) = g(0)e?‘, whereg(0) is a

constant. Thus, the tilt disordées strongly relevant. We

nonglassy f > 4) phase, where we can sg¢t= 0; our
results, however, will apply tdoth phases. The differ-

expect this on physical grounds since random tilt disordeence between these two phases is thatdyx@amicsare
explicitly breaks the rotational invariance of the smectic-slower in the glassy phase.

A phase.

Forn <4, ¥ — %" > 0. Now, in the 2D random-

field XY model, the existence of a nonzefd in the

low-T phase implied completely different behavior for

the tilt coupling g(€) than in the highF phase. In
our problem, however, solving Eq. (6) giveg(f) =
[g(0) + 9731272 /8]e** — 973 7n?52/8, which asymp-
totically runs away to+% as ~e¢*’ in both phases,n
exactly the same wayNonuniversal constants (likeg)

change but the scalinge{‘) does not. This implies
that equal timecorrelation functions scale in exactly the

same way in both the “glassyn < 4) and “nonglassy”

(p > 4) phases. We will therefore calculate them in tt|1e

d?q dq. qi[1 — e'7]
27 (Kql + Bg?)?’

CZZAhf

T 327BA

Ay .
! ‘4A|z|e rifaAll ri|:Ei<

For y = 0 we can calculate anything. The quantity of
interestC(r,z) = (u(r,,z) — u(0,0)]?) is

_ d*q.dq; iqry (u(@u(q)
C(“’Z)_zf emp T S+ )
(11)
where the quenched and thermal averaged

(u(@u(q")) = (ua(@ua(q)) = 6%(q + q)Gaalq) s
expressed in terms the replicated correlation function,
where no sum om is implied, and the replica propagator
Gap = 8ap/Ty + Mngl/T2, with T, = Kq! + Bg?,
can be read off from Eq. (5). This together with Eq. (11)
gives, in ther — oo limit,

(12)

—4AL —r? L
=)+ Eil =2 ) + 2 =2 ) |,
Ll 4)l|Z| ry

whereEi(x) is the exponential integral function, we have Theorientationalcorrelation lengthg ] ; can similarly
considered a finite system whose shape is a rectangulbe defined as the values ff, ; beyond which the mean

parallelepiped of linear dimensiorls, X L, X L., L,

being the length of the system along the orderiny (

direction, and dropped the subdominant thermal (fifiixe
contribution toC(r, z). In the usualAL, < L% limit,
the asymptotic behaviors @f(r, z) are

A 2 L, 2
o 4zl + riIn| ] Alz| > 1,

AL, < L?

C~1_a AL : * (13)
67BN r In(=7=), Azl < 2,
AL, < L%,

An unusual feature of this result is that even thkative
displacement of two points witfinite separationgr | , z)
diverge as the system sizs, , L,) go to infinity. This is
because the mean squared real spaintationalfluctua-
tions{|dn(r)|?) = |V u(r)|?) also diverge as., , — o,
d*q, dg. g1

Qm)?  (Kqt + Bg?)?’

— 473;’2 5 In(min[/AL,,L.]).

Defining thetranslational correlation lengthst; and

¢,, as the distances; and z at which C(r,z) is

of order a?, wherea is a lattice constant, give§, =
a’8wKB/A,, and

(I6n(r)[%) = 24,

(14)

. B2\ 2
SR VTN, v ) A

(15)

Furthermore, because the liquid crystal in aerogel lack
long-rangedorientational order, as well, to obtain the

squared orientational fluctuatiofsSn|2) of Eqg. (14) get
to O(1). This gives¢] = ae*™BV/5r = geth2¢ g0 =
(a%/N)e2™ BN /A = (g2/))eé:A/4a*  Thus, orientational
order persists out tonuchlarger distances than transla-
tional order, in the limit of weak disorder whegsdl the
correlation lengths get large.

All of the above results apply subject to our two initial
assumptions that (1) dislocations weret generated by
the disorder, and (2) anharmonic terms in the elastic free
energy could be neglected.

We will show now that if we continue to assume (2)
(whose validity we will investigate in a future publication
[4]), assumption (1) is wrong: in théarmonic elastic
approximation, dislocatiorere created even by arbitrarily
weak disorder. However, they are felt only on length
scales longer thar¢? ., and hence much longer than
the translational correlation lengths. Thus, our above
calculations of these lengths remain valid.

We can include dislocations in the “tilt only” model,
i.e., Eq. (4) withV(r) = 0. As discussed earlier, this
theory correctly reproduces all of the static correlation
functions inboththe glassy and the nonglassy regimes.

The dislocations are characterized by an integer-valued
3D vector fieldm(r) defined on the sites of a lattice
connected to the displacement fieldvia V X v = m,
with v = Vu, and a dislocation line continuity constraint
V - m(r) = 0. Standard manipulations [4,9] lead to a
Toulomb gas theory of these dislocation loop defects,

2
x-ray scattering from aerogel, one must powder averagey, — % ][% Pimi(q)m;(—q) + m(q) - a(_q):|’
q q

the broadring of x-ray scattering that results has width

Kpowder = (gz)il = Ah/(SWBKaz).
4216
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where the inverse of the pure smectic propagdtpr=  driven to—< (note the minus sign) by the disorderdn=
g> + Aqt, Pi(q) =8} — qifqi/4}, and a(q) is a 3. Indeed, we find in 3Dz = #, — 52 In(L/a) X O(1),
Fourier transform of the quenched field related to thewhere L is an IR cutoff (e.g., the lateral extent of the

original random tilt fieldh(q) via —ia = q X h/¢*> —  smectic layers) and is the UV cutoff (e.g.,~10 A, the
(2 X q)q - hg,(1 — A%¢7)/(T,4%. size of the liquid crystal molecules).
The partition function for this model is then[{h}] = This implies that thedual (dis-)order parameter is

Simepe U™ where S = Hy/T + E./TY, Im(r)]>, always in its ordered phase, which, in turn, implies that
the sum is over all integer-valued configurations ofthe dislocation loops of the original smectic model are
m satisfying the dislocation line continuity constraint always unbound,thereby destroying the smectic order,
V -m = 0, H; is given by Eq. (16), and we have added even atl" = 0, for any infinitesimal amount of disorder.

a core energy termk.> . |m(r)|>. To proceed, we These results of thearmonictheory imply that for 3D
enforce the constrain? - m = 0 by introducing a new disordered smectics the dislocations are unbound, even at
auxiliary field ¢(r), and introduce a dummy gauge field T = 0, for arbitrarily weak disorder. This means that there
A to mediate the long-ranged interaction between defectis no thermodynamicallgharp continuousNA transition,

loops in the Hamiltonian Eq. (16) obtaining and the low temperature phase must hav¥miée smectic
7 — l—[ dé (r) dA (v) traqslational c_orrelati_on length (evep At= 0), once t.he
r liquid crystal is put in aerogel. Airst order transition

% Z o SHmheAlS(V . A)5(A.). between nematics with short and long (but finite) smectic

correlation lengths, or a smeared analytic crossover, are,
{m(r)} ) ) . .
S = IBZ[m(r) “(=iVe(r) + iA(r) + a(r)) + E./m|?] of course, always possible and have been observed in
T experiments of Refs. [2] and [1], respectively. We have
+ 1 Z Ty A2, (17) also shown [4] that once the dislocations are unbound, the
2 9 K% staticdirector fluctuations are precisely those ohamatic

Performing the summation over the dislocation loop dein @ random filt field. This implies that the system can
grees of freedom, replacing the resulting Villain potential?€ thought of as a nematic in such a random field, at
by a cosine, generalizing to a “soft spin” model described!! temperatures and_aII disorder strengths. Th|s, in turn,
by a “disorder” parametey = ||e®, we finally obtain ~ ¢an be shown [4] to imply that long-ranged orientational

[4] a complex‘action” § (nematic) order is destroyed as well, again in agreement
. . ) with experiments [1].
§ = Z[(V tiA+a)y (V- iA —a)y Finally, preliminary investigation odnharmonicelas-

r

+ gl + ulgl!] tip e_ffects suggests tha_tt theyayprevent dislocation un-
binding and stabilize orientational order [4]. Furthermore,
+ Z qu |A(q)2, (18) our resultsdo notimply that there is no thermodynami-
a 2Kq1 cally sharp phase transition in this system analogous to the
A complete discussion of the behavior of the abovenematic to isotropighase transition in the pure system.
model [4] is outside the scope of this Letter; here we ardndeed, preliminary investigation suggests that a kind of
only interested in the question of whether the dislocation;mematic Bragg glass phase may exist in these systems.
loops will or will not unbind at any, even infinitesimal, This possibility will be further discussed in a future publi-
amount of disorder. Using replicas and computing thecation [4].
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