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Gyro-Bohm Scaling of Ion Thermal Transport from Global Numerical Simulations
of Ion-Temperature-Gradient-Driven Turbulence
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The ion gyroradius scaling of ion thermal transport caused by ion-temperature-gradient-driven
turbulence is studied with a global fluid simulation code in three-dimensional toroidal geometry.
It is found that the effective conductivity scales like the ion gyroradius (gyro-Bohm scaling).
[S0031-9007(97)04510-9]
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Understanding the origin of the empirical scaling law
of tokamak confinement as a function of the variou
plasma parameters is one of the challenging areas
theoretical investigations. Particularly crucial for the ex
trapolation of present day scaling laws to future device
is the assessment of the dependence of tokamak trans
on the scale separation parameterrp ­ rsya, wherers

is the ion sound Larmor radius (the Larmor radius me
sured at the electron temperature) anda is some macro-
scopic machine scale length (usually the tokamak min
radius).

Whereas the actual scaling laws may eventually tu
out to be the result of different scaling regimes in differen
regions of the discharge, attempting to understand t
transport in individual regions has been the favore
approach to this complex problem. In recent years, th
leading candidate for ion thermal transport in the “good
confinement” region (the intermediate region between th
surface at which the safety factor is equal to 1 an
the plasma edge) has been the ion-temperature-gradie
driven (ITG) turbulence [1,2]. Thus it is natural to
investigate therp dependence of the ion thermal transpo
caused by ITG turbulence.

In the following brief review of therp scaling prob-
lem, “large scale” normalizations are adopted; that i
lengths are measured in units ofa and times in units
of a2yscTeyeBd, where Te is the electron temperature,
B the toroidal magnetic field,e the electron charge, and
c the speed of light. In these units, the transport co
efficients are measured in Bohm unitscTeyeB. Thus,
in general, the ion thermal conductivityx will scale as
x , ra

p , where a ­ 1 for gyroradius scaling (the so-
called gyro-Bohm scaling) anda ­ 0 for Bohm scaling,
and the dependence on other parameters like the te
perature gradient, the safety factor, the magnetic she
and the aspect ratio is not of concern in the prese
discussion.

Turbulent transport coefficients are often estimate
by means of heuristic dimensional arguments, such
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x , l2yt, where l and t are some suitable length
and time. In the case of transport of pollutants (lik
trace impurities in a tokamak), it is natural to iden
tify l with the step size of a random walk occurrin
in a time t. In the case of ITG turbulence, the rele
vant quantity to compute is the ion heat fluxF which
takes the form of a correlation function of the fluctua
ing velocity vE ­ csE 3 BdyB2 and the fluctuating ion
temperatureT̃i , F ­ kvET̃il, whereE is the fluctuating
electric field andk≤l denotes average over the fluctuation
time scale and (possibly) over the magnetic surface. I
not clear how to relatel andt to F in general, and one
may well take the attitude to compute only the flux. Sti
much research has been carried out attempting to iden
suitablel andt from the features of the fluctuating field
This is briefly reviewed here.

Linear theory in a cylinder produces eigenfunction
whose radial extensiondrcyl scales likerp. Thus, iden-
tifying l with drcyl, l , rp, and t with the inverse of
the mode frequency [which for ITG is the drift frequenc
vpT ­ scTeyeBd skuyLT d associated with the tempera
ture scale lengthLT ], t , rp, one could conclude that
x , rp (gyro-Bohm scaling).

However, recent work on the linear theory in a toru
[3–5] has shown that the radial extension of the eige
functions changes todrtor , srsLT d1y2 , r

1y2
p due to

toroidal coupling, when the calculations are taken to se
ond order [6] in the ballooning formalism [7]. Since
the scaling of the frequency is left unchanged by t
toroidal coupling, the identification ofl with drtor leads
to x , const, independent ofrp (Bohm scaling).

In the nonlinear regime, Cowleyet al. [8] have shown
that radially elongated structures tend to be unstable
secondary instabilities which reduce their aspect rat
making the resulting vortices somewhat roundish. Su
a tendency to isotropization is well known from man
numerical simulations of various models. Thus on
can conclude that the radial extension of the vortic
should scale like the poloidal extension, but this
© 1997 The American Physical Society
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not enough to determine the gyroradius scaling. In
recent work [9] it has been suggested that the poloid
scale length (and hence the radial scale length) can
estimated as the inverse of the poloidal wave number
marginally stable eigenmodes. The rationale behind t
hypothesis is the tendency of turbulent fluctuations to c
cade towards large scales; it is then natural to assume
this process would stop where the fluctuations are damp
Naive linear theory carried out by replacing the parall
derivative operator=k with a constant,=k ! 1ysqRd,
where q is the safety factor andR the major radius,
shows that modes of sufficiently long wavelength a
stabilized by ion Landau damping whenvpT ø csysqRd.
This implies dr , rssqRyLT d, which yields again a
gyro-Bohm scaling. The natural objection to the latt
estimates is that naive linear theory is incorrect. Inde
it is known that unstable linear eigenmodes that de
Landau damping by assuming parallel derivatives sma
than 1ysqRd are possible [10]. Although it is plausible
that these long wavelength eigenmodes may not play
important role in the turbulent dynamics because of th
small growth rate, their existence still casts a doubt on t
above construction.

It is the scope of this Letter to assess the problem of
gyroradius scaling by investigating ITG transport by mea
of direct numerical simulations of a relevant model. O
main conclusion is that ITG thermal transport, at least w
above the instability threshold, has gyro-Bohm scaling.

Direct numerical simulation has been the favored to
to investigate tokamak turbulence in recent years. O
can refer to Ref. [11] for a partial review. Two types o
approaches have been pursued, gyrokinetic and gyrofl
Furthermore, the various codes can be characterized
either global or local. Local codes are unsuitable to stu
the scaling withrp because they rely on an orderin
of the fluctuation scale length that assumes gyro-Boh
scaling. This is often done for the practical purpos
of simplifying the nonlinear terms. Global codes ca
advance the model equations either in the full torus
in a toroidal annulus (the volume contained between tw
specified flux surfaces). They can in principle address
rp-scaling problem, provided that the simulations are r
to steady state for at least one (ion) energy confinem
time. However, the global ITG simulations available i
the literature (which are all gyrokinetic [12–14]) have bee
carried out in “decaying mode,” i.e., initializing the cod
with some temperature profile and allowing it to rela
under the effect of the ensuing fluctuations, without ener
injection. The consequence is that transport is stud
on some intermediate time scale when turbulence is
a relaxed state, often with temperature profiles close
marginal stability. The implications of this approach a
discussed below.

In this Letter the ITG scaling problem is analyzed with
global fluid code, with a focus on forced turbulence stea
states well above marginality. The minimal ITG mode
can be written as
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dwydt 1 2evdsF 1 Tid 1 A=ky

­ Dw=2w 2 gpfdr2
p kFl , (1)

dyydt 1 A=ksF 1 Tid ­ Dy=2y , (2)

dTiydt 1 GkTilA=ky ­ 2AkTil1y2j=kjTi 1 DT =2Ti ,

(3)

wherew ­ sF 2 kFldyTe 2 r2
p=2F is the generalized

vorticity (effectively the ion guiding center density),F is
the electric potential,y the parallel ion velocity,Ti the ion
temperature,dydt ­ ≠t 1 vE ? = the advection opera-
tor, vd ­ s1yrd cosu≠u 1 sinu≠r the curvature op-
erator, =k ­ s1yqd sq≠f 1 ≠ud the parallel derivative
operator,k≤l denotes flux surface average,A ­ eyrp, and
G is a constant. Units ofTe for the temperature,Teye
for the potential, andcs ­ sTeyMid1y2 for the velocity
are employed. The main control parameters arerp and
the aspect ratioe. Furthermore,Dw , Dy, and DT are
small artificial perpendicular dissipation coefficients se
to damp the smallest scales andgpfd models the poloidal
flow damping. The model is written for a low-b plasma
with circular magnetic surfaces identified by the radia
coordinater; u andf are the poloidal and toroidal angles,
respectively.

This model can be viewed as a simplified version of the
“3 1 1” gyrofluid model [15], where the pressure tensor is
taken isotropic and a number of finite Larmor radius (FLR
terms are dropped. This is justified by the interest in th
dynamics of long wavelengths: if long wavelengths play
a dominant role in determining the transport scaling, the
FLR terms are irrelevant. In general, a shift of the peak o
the spectrum fromrsku , 1 to larger scales is expected in
the saturated nonlinear state.

The dominant damping mechanism is ion Landau damp
ing, which is modeled by thej=kj term in Eq. (3), follow-
ing the prescription employed in gyrofluid models [16].
Since the goal is to study the scaling behavior and no
to reproduce accurate predictions, the constant in front o
the Landau damping operator is set to unity. SimilarlyG

is also set to unity. Unlike the3 1 1 gyrofluid model,
enforcing the isotropy of the pressure tensor preven
the model from effectively damping the self-generated
poloidal flow. Therefore the poloidal flow damping must
be introduced artificially by settinggpfd with the correct
scaling. Since the actual damping is proportional to th
ion transit frequencyyiysqRd [15], one must takegpfd ­
g0seyqrpd, whereg0 is a constant of order one (g0 ­ 0.25
throughout this study). It turns out that, with this choice of
g0, the poloidalE 3 B flow is comparable to the diamag-
netic flow. It was previously verified [15,17] that, when
the flow damping is set to zero, the plasma accelerates a
the transport drops substantially.

A further simplification is introduced by settingkTil ­
Te, where kTil appears as a coefficient in front of the
operators of Eq. (3) and taking the electron temperatur
4191
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constantTe ­ 1. Thus Eqs. (1)–(3) are reinterpreted a
the equations of the evolution of the ion temperatu
gradient normalized toTeya.

In the following, the simulation domain is an annulu
with inner radiusra ­ 0.5. Flux boundary conditions,
with prescribed heat flux, are taken atr ­ ra, while Ti ­
0 at r ­ 1. The fluctuating components are set to ze
at the boundaries. In order to inject the desired amou
of energy, the productFin ­ DT =Ti must be fixed at
r ­ ra. In order to avoid excessively high gradients a
the inner boundary, it is convenient to setDT sufficiently
large atr ­ ra and gradually decrease it as a functio
of radius until it reaches its nominally small value a
somer ­ rb. The rangera , r , rb defines a buffer
region where the turbulence is gradually switched on.
this Letter rb ­ 0.6. In order to simplify the analysis
the shear parameter̂s ­ rd ln qydr is taken constant,
ŝ ­ 1, and the safety factor profile is therefore linea
in the region of interest,q ­ qar with qa ­ 4, so that
2 , q , 4.

Equations (1)–(3) are advanced with a hybrid cod
spectral in the angles and finite difference in radiu
Time advancing is carried out with a modified leap-fro
algorithm that has been found convenient for turbulen
simulations due to its weak dissipativity.

The rp scaling study is carried out by first running
a long simulation atrp ­ 1y50 until a steady state was
reached. A suitable resolution for this run is81 3 128 3

32 sradial 3 poloidal 3 toroidald points. Other parame-
ters aree ­ 1y2, Fin ­ 0.01, Dw ­ Dy ­ DT ­ 0.001
[with DT srad ­ 0.01]. The instantaneous confinemen
time tE ­ EthyfDT sr ­ 1d=Tisr ­ 1dg (whereEth is the
total ion thermal energy) turns out to betE ø 18, which
is shorter than the total simulation timestsim ­ 20d, thus
confirming that a steady state is indeed achieved.

In a second runrp is set to rp ­ 1y100 and the
energy injection is halved,Fin ­ 0.005. The dissipation
coefficients are also halved, all the other paramete
being held fixed. The initial conditions are given b
the configuration obtained at the end of the first ru
The code has been run at a resolution of121 3 192 3

48 for another 15 units of time. The main result i
that the confinement time doubles totE ø 36 (Fig. 1),
while the temperature profile remains almost unchang
(Fig. 2). In terms of the effective conductivityx ­
Finy=T , one can deducex , rp from this numerical
experiment.

The contour plots of a poloidal cross section of th
electric potential are shown in Fig. 3 for the two case
Note that the vortices are almost isotropic, in contra
with the elongated structures predicted by linear theo
and in agreement with Cowleyet al. [8]. It is apparent
that the vortex size (both poloidal and radial) decreas
with rp, suggesting a scalinglc , rp for the radial
correlation lengthlc. A more precise way to evaluate
lc is to compute the radial correlation functionCsdrd ;
kfsr 1 dr, udfsr, udl, where the average is taken ove
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FIG. 1. Instantaneous confinement time for both simulatio
At t ­ 20, rp is switched fromrp ­ 1y50 to rp ­ 1y100.

the poloidal angle and over the time when the fluctuati
level is roughly stationary. It is found that the correlatio
function essentially vanishes fordr ø 10rp. This result
provides an estimate for the radial correlation leng
lc ø 10rp (for our set of parameters). The nonlinea
correlation timetc was also found consistent with th
scaling tc , rp. Thus the nonlinear time and lengt
scales are compatible with the observed scaling
the effective conductivityx , l2

cytc , rp. Finally, we
verified that the fluctuation level is also about halved
therp ­ 1y100 case.

A simulation was also run by reinitializing the fluctua
tions to a very low level, while maintaining the same pr
files for the macroscopic fields. After a transient pha
the fastest growing eigenfunctions are selected and g
exponentially. These are radially extended modes co
posed by several poloidal harmonics, as predicted by
linear theory of toroidal drift waves. At a later time, th

FIG. 2. Temperature profiles at the end of the simulatio
with rp ­ 1y50 st ­ 20d (solid) and rp ­ 1y100 st ­ 35d
(dashed).
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FIG. 3. Poloidal cross section showing the isolines ofF. (a) rp ­ 1y50; (b) rp ­ 1y100.
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nonlinear coupling causes these structures to break do
and the characteristic radial length is reduced.

Thus, all our observations support the main conclusio
of this Letter, that ion transport in the ITG model scale
like gyro-Bohm, at least in the present regime, which
well above the stability threshold.

This conclusion differs from what was obtained in re
cent papers based on global gyrokinetic simulations [12
14], where transport is close to Bohm. However, a
explained before, those simulations were carried out
decay mode. The consequence is that transport is stud
in a slowly evolving relaxed state close to marginal stab
ity. In these conditions, one expects the dynamics to
dominated by a small number of degrees of freedom a
sociated with few radially extended linear eigenfunction
which are the first modes to be destabilized when the s
bility boundary is crossed.

An alternative explanation of the scaling behavior ne
threshold is put forth by Garbet and Waltz [18]. By
employing a reduced model with prescribed radial sha
of eachsm, nd components, these authors found that th
effect of theE 3 B flow is to introduce corrections to the
basic gyro-Bohm scaling in the formrp ! rps1 2 aprpd,
where ap is a constant, nominally of order 1, which
measures the strength of the flow. The effect is importa
at moderaterp and when the flow is large, especially nea
threshold where the leading term is small. Thus Garb
and Waltz attribute the deviations from gyro-Bohm to
change of the stability properties near threshold rather th
to a change of the scaling of the correlation length.

In summary, we have performed numerical experimen
based on a simplified 3D fluid model which retains th
fundamental terms needed for a correct description
toroidal ITG turbulence. Simulations run for over an io
energy confinement time strongly indicate that the effe
tive ion thermal conductivity obeys a gyro-Bohm scalin
law. This is in disagreement with recent gyrokinetic re
sults obtained, however, in a different regime, close
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marginal stability. Further work with our code is required
to clarify this point.
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