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Instability and Stretching of Vortex Lines in the Three-Dimensional Complex
Ginzburg-Landau Equation
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The dynamics of curved vortex filaments is studied analytically and numerically in the framework of
a three-dimensional complex Ginzburg-Landau equation (CGLE). It is proved that a straight vortex line
is unstable with respect to spontaneous stretching and bending in a certain range of parameters of the
CGLE, resulting in formation of persistent entangled vortex configurations. The analysis shows that the
standard approach relating the velocity of the filament with the local curvature is insufficient to describe
the instability and stretching of vortex lines. [S0031-9007(97)04441-4]

PACS numbers: 47.32.Cc, 05.45.+b, 47.20.Ky, 47.27.Eq

The complex Ginzburg-Landau equation (CGLE), de-filament), and under no condition can the vortex filament
rived some 20 years ago by Newell [1] and Kuramoto [2],expand [18].
has become a paradigm model for a qualitative descrip- In the Letter we show that under very general con-
tion of weakly nonlinear oscillatory media (see for reviewditions and in an extensive part of the parameter space
[3]). Under appropriate scaling of the physical variablesyortex filamentsexpandand result in persistent vortex
the equation assumes the universal form configurations even if there is no bulk instability of emit-
. . 2 . ted waves. The condition for the expansion of the vortex
GA = A= (L+ic)lAFA + (1 +ib)AA, (1) filament is simplyb > b.(c). In this IFi)mit Eqg. (2) is not
whereA is the complex amplitudeh and c are real pa- valid, because formally higher-order corrections, omitted
rameters, and = 9 + 95 + o7 is a three-dimensional in Eq. (2), cause severe instability of the filament and per-
Laplace operator. Although the equation is formally validsistent stretching. This instability is a three-dimensional
only at the threshold of a supercritical Hopf bifurcation, it manifestation of the two-dimensional core instability of
has been found that the CGLE often reproduces qualitaspiral waves (called in Ref. [Sdcceleration instability.
tively correct phenomenology over a much wider range oft originates from breakdown of the Galilean invariance
the parameters. As a result, the predictions drawn fronof the CGLE for anye = 1/b # 0, causing spontaneous
the analysis of the CGLE (mostly in one and two spatialacceleration of the spiral waves [5]. Although in 2D the
dimensions, see, e.g., [4—6]) were recently successfullinstability is relatively weak, the situation is different in
confirmed by experiments in optical and chemical systemshree dimensions. As we will show, the bending of the
[7,8]. Moreover, some results obtained from the CGLEfilament greatly enhances the instability, resulting in for-
(for example, symmetry breaking of spiral pairs) weremation, after some transient, of a highly entangled and
instructive for interpretation of experiments in far more dense vortex configuration. The conditibr> 1 is read-
complicated systems of chemical waves [9] and coloniedy fulfilled for many physical and chemical systems. For
of amoebae [10,11]. example, in the context of nonlinear optics, where the
Recently, the dynamics dhree-dimensiona3D) vor-  CGLE can be derived from the Maxwell-Bloch equation
tex filaments has attracted substantial attention [12—16]n the good cavity limit [19], this parameter is very small:
In the context of the 3D CGLE, Gabbay, Ott, and Guz-e = 1/b ~ 10"%-1073. For an oscillating chemical re-
dar [13] applied a generalization of Keener's method foraction the diffusion rates of various components can be
a scroll vortex in reaction-diffusion systems [17]. They varied over a wide range by adding extra chemicals.
derived that the ring of radiuR collapses in finite time As a test for instability, we consider the dynamics of a
according to the following evolution law: weakly curved vortex filament. We apply the generaliza-
dR 1 + b2 tion of the method of Ref. [5] for the case of 3D vortices,
o - TR (2) and make perturbations near the 2D spiral wave solution

. _ . . to the CGLE. For convenience, we redefine> r/v/b.
This result generalizes Keener's ansatz by including therhen Eq. (1) assumes the form

curvature-induced shift of the filament's wave number and ) 5 )

corrects the erroneous estimate of Ref. [12]. Thereby, as A =A— (1 +i)|AFA + (e + DAA. (3)
follows from Eq. (2), vortex filaments initially existing In the following discussion, we assufle< ¢ < 1tobe a

in the system will always shrink (if, of course, there is small parameter. Our objective is to relate the acceleration
no bulk instability of the waves emitted by the vortex of the vortex filament,v with the velocityv and local
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curvaturex of the filament. We obtain that far << 1the  Herer’ = r + vt, W is the perturbation to the spiral
equation of filament motion can be written as solution which we require to be small, arfk, is the

a,v + K[ev + (1 + €)xkN] =0, (4) correction to the wave number due to curvature of the
filament. In principle, this correction can be absorbed in
W but it is convenient to retain this form since we can can-
cel part of the perturbation exactly by adjustifg, [13].
The perturbation procedure to derive Eq. (4) is practically
T . S "’ identical to that of Refs. [4,5]. Substituting the ansatz
9rvp). f is the friction tensor satisfyingKy, = Eqg. (7) into the CGLE, and assuming,v|, xk < 1, one
K»,K1» = —K»,. Dropping the first term in Eq. (4), : DT . .

obtains from Eg. (3) in first order ire an inhomoge-

we reproduce the result of Ref. [13] for the collapse rate i ion for th . hich i
vy = (1 + e2)x/e (becausex — —1/R and v, — n;eo#s f|nea[ equation hor the correctlcw, which is
—9,R). However, ifK;; < 0, which we will show is the of the form LW = H, where LW = [1 + i — 2(1 %

: 2 _ . 2 yx7 . — 22 2
case fore < e.(c) [4], the acceleration has a significant Il;) 1!:;1&' l‘;[(/jer irlle:rlv-li;)?gVch;;rl]tAigtllAh; S tv(?/g Jtrefr% <
effect and leads to a stretching of the vortex filament b P '

and the persistence of entangled vortex configurationZH = Hy + Hoi, WhereHy contributes to the displace-

. ) . - . ment of the vortex filament, anff,,;, contributes to the
Moreover, the three-dimensional instability persists for_, . . .
I, : shift of the vortex frequency. We are interested only in
(small) positiveK, i.e., fore > €.. Forc¢ = 0.5 we

obtainede,. = 0.1557, whereas the stretching instability Hy (the c.ontr'lbutlonHmt is not responsible for the insta-
. o bility), which is of the form
disappears a¢ = 0.37.

In order to develop the perturbation theory for a weakly
curved vortex filament in 3D, we begin with the stationary
:)hneefg:med isolated spiral solution to Eq. (3), which is of T e + i)k — i6k)VA . (®)

— . + The derived system of equations is very close to that con-
Aolr, 0) = F(r)expilwt = 6 + ¢ ()], ®) sidered in Ref. [5] in the context of the acceleration in-
stability of a spiral wave in 2D. The acceleration can
be obtained as a result of the solvability condition requir-
ior F(r)—4/1 — €kd, ¢'(r)— ko for r— o and ing thatW be regular at the core of the spiral and does
F(r) ~r, ¢'(r) ~ r for r = 0. The wave numbek, not divergeexponentiallyat larger. (Slower, power-law
of the waves emitted by the spiral is determined uniquelydivergence oW is permitted.) To impose the solvabil-
for givene, ¢ [20]. Fore = 0 one has a type of Galilean ity condition a specific humerical procedure is required
invariance, and then, in addition to the stationary spiral(see for details [4,5]). Equation (8) contains an extra term
there exists a family of spirals moving with arbitrary (e + i) (k — i8k,)d:Ap with respect to that considered

whereN is the unit vector pointing toward the center of
curvature, andB is the unit vector perpendicular to the
filament andN. Velocity and acceleration have corre-
spondingly two components, = (vy, vg), 9;v = (d;vy,

A
Hy = —1'owv 170 + ievVAy

where (r,0) are polar coordinates. The real func-
tions F and ¢ have the following asymptotic behav-

constant velocity [5], in [5], which originates from the Laplace operator in a
ey local basis (in the limit of small curvature and torsion
A(r,t) = F(r") expi[w’r + 60+ (') — 5 } (6) 7):A=—kd; + 02+ a% + 92 + .... However, addi-

tional numerical integration is not necessary to account for
wherer’ = r + v, ' = w + v?/4, and the functions the effect of this term, because, as was found in Ref. [13],
F,y¢ are those of Eqg. (5). (This invariance holds forthis term can be cancelegkactlyto first order inx by
any stationary solution.) Fo¢ # 0 the diffusion term  a proper choice of6k, = —ex. After this modifica-
~eAA destroys the family and leads to acceleration okjon, H,, assumes the formil,, — —r’a,v% + ieVVA,,
deceleration of the spiral proportional ta, depending where vy = vy + (1 + €*)k/e and vy = vp. It is
on the value ok. Fore < e.(c) the spiral is unstable with easy to see that it now coincides with the corresponding
respect to spontaneous acceleration skige<0 [S].  function considered in Ref. [5]. Following the lines of
Let us now consider the dynamics of an almost straighnalysis of Ref. [5], we observe that the relation between

vortex line in the filament-based coordinate SyStem (Se@rv andv is identical to that considered in [5]1 and is of
for details [13]). The position in space is represented the form

by local coordinates, %, ¥, wheres is the arclength along B
the filament, andX = R(s) + ¥N(s) + yB(s), whereR , v + ekv =0. o (_9).
is the coordinate of the filament. In this basis the weaklylhus we obtain Eq. (4). The coefficients of the friction

curved filament moving with velocity can be written in ~ tensor K;; coincide with those calculated in Ref. [5]
the form using numerical matching, and fer < €. it was found

that K;; < 0, which would guarantee the instability with
respect to spontaneous acceleration of the vortex filament.
2 Since in 3D the direction of motion of the filament in

Sk, , general varies along the filament, this instability results in
Tt )} + W(r'0.5). (7)  stretching of the vortex line.

r v

A(r,t) = F(r')ex;{z(w’t + 6 + y(r') —

4175



VOLUME 79, NUMBER 21 PHYSICAL REVIEW LETTERS 24 NVEMBER 1997

In the case of the acceleration instabiliff,; < 0 and  The result is in convincing agreement with the theoretical
the curvature has a strong destabilizing effect. Indeedjependence in small limit. Remarkably, the maximum
for an almost straight vortex parallel to the axjave can  growth rate of the 3D instability exceeds byo®ders of
parametrize the position along the filament by theo-  magnitudethe corresponding growth rate in 2D. The evo-
ordinate:(Xy(z), Yo(z)). Since in this limit the arclength Ilution of straight vortex is shown in Fig. 2. We see that
s is close toz, the curvature correction to the velocity the length of the vortex line grows. The dynamics seems
kN is simply kN = (32X, d2Y). After simple algebra to be very rapidly varying in time, and the line intersects
one derives the following relation for the growth ratg)  itself many times, forming numerous vortex loops. The
of linear perturbationXy(z), Yo(z) ~ exdA(k)r + ikz]: long-time dynamics show, however, some kind of satura-
A2 + (K + iK1p) (e + k%) = 0. Fork > e we ob- tion when a highly entangled vortex state is formed and the
tain A = */— (K1 + iK;p)k > €. Thus, for finitek length of the line cannot grow any more due to repulsive
the growth ratex(k) may significantly exceed the incre- interaction between closely packed line segments. The de-
ment of the acceleration instability in 2D (correspondingpendence of the line length on time is shown in Fig. 3. As
to k =0): \g = —€e(Ky; + iK12). We can expect that, a measure of the filament lengthwe used the following
as a result of such an instability, highly curved vortex fila-quantity:L = Sy ' [ ©[Aq — |A(x, v, z)|]dx dy dz, where
ments will be formed. Therefore, the above considered® is a step function®(x) = 1if x > 0 and® = 0 other-
“small-curvature” approximation can be valid only for fi- wise. Ay = 0.1 was used as a threshold value to identify
nite time. Moreover, it is naive to expect a saturation ofthe vortex. Sy is a constant determined from the condi-
this instability in a steady-state configuration with finite tion that for the straight line the above integral coincides
curvature. In contrast, we suggest that frequent reconnegvith the actual length. We can identify two distinct stages
tion of various parts of the filaments, formation of vortex of the dynamics: First, fast growth of the length; second,
loops, etc., will result in persistent spatiotemporal dynam-oscillations of the line's length around some mean value.
ics of a highly entangled vortex state. Remarkably, we observed an increase in the amplitude of

In order to follow further development of the instabil- the oscillation moving through negativevalues in the
ity we performed numerical simulations of the 3D CGLE. regime of spatiotemporal intermittency in the 2D CGLE. It
We studied a system of 8@imensionless units of Eq. (3) is plausible that the symmetry breaking mechanism respon-
with no-flux boundary conditions. The numerical solutionsible for persistent intermittent behavior in the 2D system
was performed on an R10000 SGI workstation by an imstill has some importance in 3D.
plicity Crank-Nicholson algorithm. The number of grid  Persistent entangled vortex configurations are known
points was 108, We performed simulations far = 0.02  from numerical simulations of excitable reaction-diffusion
in the parameter regime away from amplitude turbulencesystems [14,15,21]. However, there is also a signifi-
in 2D [5]. As an initial condition we used a straight vortex cant difference between these two phenomena. For the
line perturbed periodically or by small noise. In Fig. 1 we
show the dependence of real part of the growth rate for pe-
riodic perturbation obtained by direct integration of CGLE.
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FIG. 1. The growth rate R&k) as function ok for ¢ = 0.02,
¢ = 0.1. Solid line is the theoretical result fér < 1, dashed FIG. 2. Instability of a straight vortex filament. 3D isosur-
line with symbols the result of numerical solution of 3D CGLE. faces of|A(x,y,z)| = 0.1 for e = 0.02, ¢ = —0.03, shown at
Inset: Blowup of smalk region. four times: 50 (a), 150 (b), 250 (c), and 500 (d).
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6000 ‘ be formally interpreted as a dynamics of a thin rod with
negativeelasticity. We also speculate that our results are

relevant for inviscid hydrodynamics. Inthe limitbfc —
o, EQ. (1) reduces to the defocusing nonlinear Schrodinger
2000 | l' J p\ 1 ﬂ equation (NSE), which is a paradigm model for compress-
A

ible inviscid hydrodynamics. Although the vortex lines are
B stable in the framework of the NSE, the corrections arising
| from the CGLE cause their destabilization and stretching.
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FIG. 3. The dependence of filament lengtlon time. Solid
line corresponds t& = 0.02, ¢ = —0.03; dashed line corre-
sponds toe = 0.02, ¢ = —0.5.
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