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Instability and Stretching of Vortex Lines in the Three-Dimensional Complex
Ginzburg-Landau Equation
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The dynamics of curved vortex filaments is studied analytically and numerically in the framework of
a three-dimensional complex Ginzburg-Landau equation (CGLE). It is proved that a straight vortex line
is unstable with respect to spontaneous stretching and bending in a certain range of parameters of the
CGLE, resulting in formation of persistent entangled vortex configurations. The analysis shows that the
standard approach relating the velocity of the filament with the local curvature is insufficient to describe
the instability and stretching of vortex lines. [S0031-9007(97)04441-4]
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The complex Ginzburg-Landau equation (CGLE), d
rived some 20 years ago by Newell [1] and Kuramoto [2
has become a paradigm model for a qualitative descr
tion of weakly nonlinear oscillatory media (see for review
[3]). Under appropriate scaling of the physical variable
the equation assumes the universal form

≠tA ­ A 2 s1 1 icd jAj2A 1 s1 1 ibdDA , (1)

whereA is the complex amplitude,b and c are real pa-
rameters, andD ­ ≠2

x 1 ≠2
y 1 ≠2

z is a three-dimensional
Laplace operator. Although the equation is formally val
only at the threshold of a supercritical Hopf bifurcation,
has been found that the CGLE often reproduces quali
tively correct phenomenology over a much wider range
the parameters. As a result, the predictions drawn fro
the analysis of the CGLE (mostly in one and two spati
dimensions, see, e.g., [4–6]) were recently successfu
confirmed by experiments in optical and chemical system
[7,8]. Moreover, some results obtained from the CGL
(for example, symmetry breaking of spiral pairs) wer
instructive for interpretation of experiments in far mor
complicated systems of chemical waves [9] and coloni
of amoebae [10,11].

Recently, the dynamics ofthree-dimensional(3D) vor-
tex filaments has attracted substantial attention [12–1
In the context of the 3D CGLE, Gabbay, Ott, and Guz
dar [13] applied a generalization of Keener’s method f
a scroll vortex in reaction-diffusion systems [17]. The
derived that the ring of radiusR collapses in finite time
according to the following evolution law:

dR
dt

­ 2
1 1 b2

R
, (2)

This result generalizes Keener’s ansatz by including t
curvature-induced shift of the filament’s wave number an
corrects the erroneous estimate of Ref. [12]. Thereby,
follows from Eq. (2), vortex filaments initially existing
in the system will always shrink (if, of course, there i
no bulk instability of the waves emitted by the vorte
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filament), and under no condition can the vortex filame
expand [18].

In the Letter we show that under very general co
ditions and in an extensive part of the parameter spa
vortex filamentsexpandand result in persistent vortex
configurations even if there is no bulk instability of emit
ted waves. The condition for the expansion of the vort
filament is simplyb . bcscd. In this limit Eq. (2) is not
valid, because formally higher-order corrections, omitte
in Eq. (2), cause severe instability of the filament and pe
sistent stretching. This instability is a three-dimension
manifestation of the two-dimensional core instability o
spiral waves (called in Ref. [5]acceleration instability).
It originates from breakdown of the Galilean invarianc
of the CGLE for anye ­ 1yb fi 0, causing spontaneous
acceleration of the spiral waves [5]. Although in 2D th
instability is relatively weak, the situation is different in
three dimensions. As we will show, the bending of th
filament greatly enhances the instability, resulting in fo
mation, after some transient, of a highly entangled a
dense vortex configuration. The conditionb ¿ 1 is read-
ily fulfilled for many physical and chemical systems. Fo
example, in the context of nonlinear optics, where th
CGLE can be derived from the Maxwell-Bloch equatio
in the good cavity limit [19], this parameter is very smal
e ­ 1yb , 1024 1023. For an oscillating chemical re-
action the diffusion rates of various components can
varied over a wide range by adding extra chemicals.

As a test for instability, we consider the dynamics of
weakly curved vortex filament. We apply the generaliz
tion of the method of Ref. [5] for the case of 3D vortices
and make perturbations near the 2D spiral wave soluti
to the CGLE. For convenience, we redefiner ! ry

p
b.

Then Eq. (1) assumes the form

≠tA ­ A 2 s1 1 icd jAj2A 1 se 1 idDA . (3)

In the following discussion, we assume0 , e ø 1 to be a
small parameter. Our objective is to relate the accelerat
of the vortex filament≠tv with the velocityv and local
© 1997 The American Physical Society
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curvaturek of the filament. We obtain that fore ø 1 the
equation of filament motion can be written as

≠tv 1 K̂fev 1 s1 1 e2dkNg ­ 0 , (4)

whereN is the unit vector pointing toward the center o
curvature, andB is the unit vector perpendicular to the
filament andN. Velocity and acceleration have corre
spondingly two components,v ­ syN , yBd, ≠tv ­ s≠tyN ,
≠tyBd. K̂ is the friction tensor satisfyingK11 ­
K22, K12 ­ 2K21. Dropping the first term in Eq. (4),
we reproduce the result of Ref. [13] for the collapse ra
yN ­ 2s1 1 e2dkye (becausek ­ 21yR and yn ­
2≠tR). However, ifK11 , 0, which we will show is the
case fore , ecscd [4], the acceleration has a significan
effect and leads to a stretching of the vortex filamen
and the persistence of entangled vortex configuratio
Moreover, the three-dimensional instability persists f
(small) positiveK11, i.e., for e . ec. For c ­ 0.5 we
obtainedec ø 0.1557, whereas the stretching instability
disappears ate ­ 0.37.

In order to develop the perturbation theory for a weak
curved vortex filament in 3D, we begin with the stationar
one-armed isolated spiral solution to Eq. (3), which is
the form

A0sr , ud ­ Fsrd expifvt 6 u 1 csrdg , (5)

where sr , ud are polar coordinates. The real func
tions F and c have the following asymptotic behav-

ior Fsrd !

q
1 2 ek2

0 , c 0srd ! k0 for r ! ` and
Fsrd , r, c 0srd , r for r ! 0. The wave numberk0
of the waves emitted by the spiral is determined unique
for given´, c [20]. For e ­ 0 one has a type of Galilean
invariance, and then, in addition to the stationary spir
there exists a family of spirals moving with arbitrary
constant velocityv [5],

Asr , td ­ Fsr 0d expi

∑
v0t 1 u 1 csr 0d 2

r0 ? v
2

∏
, (6)

where r0 ­ r 1 vt, v0 ­ v 1 v2y4, and the functions
F, c are those of Eq. (5). (This invariance holds fo
any stationary solution.) Fore fi 0 the diffusion term
,´DA destroys the family and leads to acceleration
deceleration of the spiral proportional toey, depending
on the value ofe. Fore , ecscd the spiral is unstable with
respect to spontaneous acceleration sinceK11 , 0 [5].

Let us now consider the dynamics of an almost straig
vortex line in the filament-based coordinate system (s
for details [13]). The position in spaceX is represented
by local coordinatess, x̃, ỹ, wheres is the arclength along
the filament, andX ­ Rssd 1 x̃Nssd 1 ỹBssd, whereR
is the coordinate of the filament. In this basis the weak
curved filament moving with velocityv can be written in
the form

Asr, td ­ Fsr 0d exp

∑
i

µ
v0t 1 u 1 csr 0d 2

r0 ? v
2

1
dkxx̃

2

∂∏
1 W sr 0, u, sd . (7)
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Here r0 ­ r 1 vt, W is the perturbation to the spiral
solution which we require to be small, anddkx is the
correction to the wave number due to curvature of th
filament. In principle, this correction can be absorbed i
Wbut it is convenient to retain this form since we can can
cel part of the perturbation exactly by adjustingdkx [13].
The perturbation procedure to derive Eq. (4) is practicall
identical to that of Refs. [4,5]. Substituting the ansat
Eq. (7) into the CGLE, and assumingj≠tyj, k ø 1, one
obtains from Eq. (3) in first order ine an inhomoge-
neous linear equation for the correctionW, which is
of the form L̂W ­ H, where L̂W ­ f1 1 iv 2 2s1 1

icd jA0j
2gW 2 s1 1 icdA2

0Wp 1 iD'W , D' ­ ≠
2
x̃ 1 ≠

2
ỹ.

In first order theW-independent partH has two terms,
H ­ Htr 1 Hrot, whereHtr contributes to the displace-
ment of the vortex filament, andHrot contributes to the
shift of the vortex frequency. We are interested only in
Htr (the contributionHrot is not responsible for the insta-
bility), which is of the form

Htr ­ 2r0≠tv
iA0

2
1 iev=A0

1 se 1 id sk 2 idkxd=A0 . (8)

The derived system of equations is very close to that co
sidered in Ref. [5] in the context of the acceleration in
stability of a spiral wave in 2D. The acceleration can
be obtained as a result of the solvability condition requir
ing that W be regular at the core of the spiral and doe
not divergeexponentiallyat larger. (Slower, power-law
divergence ofW is permitted.) To impose the solvabil-
ity condition a specific numerical procedure is required
(see for details [4,5]). Equation (8) contains an extra term
se 1 id sk 2 idkxd≠x̃A0 with respect to that considered
in [5], which originates from the Laplace operator in a
local basis (in the limit of small curvaturek and torsion
t): D ­ 2k≠x̃ 1 ≠

2
x̃ 1 ≠

2
ỹ 1 ≠2

s 1 . . . . However, addi-
tional numerical integration is not necessary to account fo
the effect of this term, because, as was found in Ref. [13
this term can be canceledexactly to first order ink by
a proper choice ofdkx ­ 2ek. After this modifica-
tion, Htr assumes the formHtr ­ 2r0≠tv

iA0

2 1 iev=A0,
where yN ­ yN 1 s1 1 e2dkye and yB ­ yB. It is
easy to see that it now coincides with the correspondin
function considered in Ref. [5]. Following the lines of
analysis of Ref. [5], we observe that the relation betwee
≠ty andy is identical to that considered in [5], and is of
the form

≠tv 1 eK̂v ­ 0 . (9)

Thus we obtain Eq. (4). The coefficients of the friction
tensor Kij coincide with those calculated in Ref. [5]
using numerical matching, and fore , ec it was found
that K11 , 0, which would guarantee the instability with
respect to spontaneous acceleration of the vortex filame
Since in 3D the direction of motion of the filament in
general varies along the filament, this instability results i
stretching of the vortex line.
4175
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In the case of the acceleration instability,K11 , 0 and
the curvature has a strong destabilizing effect. Indee
for an almost straight vortex parallel to the axisz, we can
parametrize the position along the filament by thez co-
ordinate:sssX0szd, Y0szdddd. Since in this limit the arclength
s is close toz, the curvature correction to the velocity
kN is simply kN ­ s≠2

zX0, ≠2
zY0d. After simple algebra

one derives the following relation for the growth ratelskd
of linear perturbationX0szd, Y0szd , expflskdt 1 ikzg:
l2 1 sK11 1 iK12d sel 1 k2d ­ 0. For k ¿ e we ob-
tain l ø 6

p
2sK11 1 iK12d k ¿ e. Thus, for finite k

the growth ratelskd may significantly exceed the incre-
ment of the acceleration instability in 2D (correspondin
to k ­ 0): l0 ­ 2esK11 1 iK12d. We can expect that,
as a result of such an instability, highly curved vortex fila
ments will be formed. Therefore, the above considere
“small-curvature” approximation can be valid only for fi-
nite time. Moreover, it is naive to expect a saturation o
this instability in a steady-state configuration with finite
curvature. In contrast, we suggest that frequent reconn
tion of various parts of the filaments, formation of vortex
loops, etc., will result in persistent spatiotemporal dynam
ics of a highly entangled vortex state.

In order to follow further development of the instabil-
ity we performed numerical simulations of the 3D CGLE
We studied a system of 503 dimensionless units of Eq. (3)
with no-flux boundary conditions. The numerical solution
was performed on an R10000 SGI workstation by an im
plicity Crank-Nicholson algorithm. The number of grid
points was 1003. We performed simulations fore ­ 0.02
in the parameter regime away from amplitude turbulenc
in 2D [5]. As an initial condition we used a straight vortex
line perturbed periodically or by small noise. In Fig. 1 we
show the dependence of real part of the growth rate for p
riodic perturbation obtained by direct integration of CGLE

FIG. 1. The growth rate Relskd as function ofk for e ­ 0.02,
c ­ 0.1. Solid line is the theoretical result fork ø 1, dashed
line with symbols the result of numerical solution of 3D CGLE
Inset: Blowup of smallk region.
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The result is in convincing agreement with the theoretic
dependence in smallk limit. Remarkably, the maximum
growth rate of the 3D instability exceeds by 2orders of
magnitudethe corresponding growth rate in 2D. The evo
lution of straight vortex is shown in Fig. 2. We see tha
the length of the vortex line grows. The dynamics seem
to be very rapidly varying in time, and the line intersec
itself many times, forming numerous vortex loops. Th
long-time dynamics show, however, some kind of satur
tion when a highly entangled vortex state is formed and t
length of the line cannot grow any more due to repulsiv
interaction between closely packed line segments. The
pendence of the line length on time is shown in Fig. 3. A
a measure of the filament lengthL we used the following
quantity:L ø S21

0

R
QfA0 2 jAsx, y, zdjgdx dy dz, where

Q is a step function,Qsxd ­ 1 if x . 0 andQ ­ 0 other-
wise. A0 ­ 0.1 was used as a threshold value to identif
the vortex. S0 is a constant determined from the cond
tion that for the straight line the above integral coincide
with the actual length. We can identify two distinct stage
of the dynamics: First, fast growth of the length; secon
oscillations of the line’s length around some mean valu
Remarkably, we observed an increase in the amplitude
the oscillation moving through negativec values in the
regime of spatiotemporal intermittency in the 2D CGLE.
is plausible that the symmetry breaking mechanism resp
sible for persistent intermittent behavior in the 2D syste
still has some importance in 3D.

Persistent entangled vortex configurations are know
from numerical simulations of excitable reaction-diffusio
systems [14,15,21]. However, there is also a signi
cant difference between these two phenomena. For

FIG. 2. Instability of a straight vortex filament. 3D isosur
faces ofjAsx, y, zdj ­ 0.1 for e ­ 0.02, c ­ 20.03, shown at
four times: 50 (a), 150 (b), 250 (c), and 500 (d).
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FIG. 3. The dependence of filament lengthL on time. Solid
line corresponds toe ­ 0.02, c ­ 20.03; dashed line corre-
sponds toe ­ 0.02, c ­ 20.5.

reaction-diffusion systems the meandering instability
typically supercritical, and may be saturated at a re
tively small amplitude of oscillations. In application to 3D
systems, one expects that highly curved vortex filame
will not develop, and for this reason the intersections a
very seldom. This picture is consistent with the numeric
simulations. Consequently, one may expect that the an
ysis performed on the basis of a small-curvature appro
mation will be valid for a very long time and can captur
the actual dynamics of the filament. In the CGLE the 2
instability is subcritical and the velocity of the spiral in a
infinite system can grow arbitrarily until additional topo
logical defects nucleate in the wake of the accelerating s
ral. In the 3D situation we have shown that curvature
the filament is even a destabilizing factor. Our nume
cal simulations show that the filament does not approa
any steady state. In contrast, it shows “violent” interm
tent behavior, with numerous reconnections and splitti
of vortex rings. As a result, the approximate equation
motion (4) must be considered only as a test for instabil
rather than long-time evolution.

In conclusion, we have derived an equation of motio
for the vortex filament in the CGLE. We have found tha
in a wide range of parameters of the CGLE the vort
filament is unstable with respect to spontaneous stretch
resulting in the formation of persistent entangled vort
configurations. This emphasizes the deficiency of pre
ous approaches relating local filament velocity to local cu
vature. Our result could be verified in experiments wi
autocatalytic chemical reactions in gels in the regime
oscillatory instability. Also, the limit of a large disper
sion b ¿ 1 can probably be achieved by doping with ad
ditional chemicals, thus changing the relative mobility o
one chemical species with respect to another. Recen
the amplitude equation governing the dynamics of an el
tic rod was derived [22]. We note that our instability ca
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be formally interpreted as a dynamics of a thin rod with
negativeelasticity. We also speculate that our results ar
relevant for inviscid hydrodynamics. In the limit ofb, c !

`, Eq. (1) reduces to the defocusing nonlinear Schröding
equation (NSE), which is a paradigm model for compres
ible inviscid hydrodynamics. Although the vortex lines are
stable in the framework of the NSE, the corrections arisin
from the CGLE cause their destabilization and stretching
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