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Transition to Traveling Waves from Standing Waves in a Rectangular Container
Subjected to Horizontal Excitations

Z. C. Feng
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 0

(Received 13 January 1997)

We report an unexpected observation of a transition to traveling waves from standing waves. The
waves are two dimensional and generated in a rectangular container excited by a horizontal sinusoidal
motion along its length. The transition to traveling waves clearly indicates coupling between modes
whose natural frequencies do not satisfy obvious resonance conditions. The observed phenomenon is
beyond our current understanding of surface waves based on low-dimensional models and demands
further study. It implies that care must be taken in developing approximate low-dimensional models
for continuous systems in the presence of nonlinearity. [S0031-9007(97)03567-9]
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When a continuous system is subjected to period
forcings, it is possible that the system response can
captured by just a few modes. This approximation h
been widely used for systems which are not driven too f
away from their equilibrium (hence the nonlinearity can b
considered weak). If the frequency of the small amplitud
forcing is close to the natural frequency of one norm
mode, a single-degree-of-freedom model is often sufficie
to capture the dynamics of the continuous system provid
that the frequencies of other neighboring normal modes a
noncommensurate to the forcing frequency.

When several natural frequencies are commensurate,
ergy transfer between these modes can occur. The dyna
ics of the interacting modes can nevertheless be captu
by those of the coupled nonlinear oscillators containin
the commensurate modes. Therefore, the natural frequ
cies of the normal modes determine the required degre
of freedom of the approximate low-dimensional models fo
the small amplitude forced responses.

The development of the above understanding has grea
simplified the analysis of surface waves in cylindrical con
tainers. Models that include several resonant modes ha
satisfactorily predicted the dynamic behavior of wave
under periodic excitations (Ciliberto and Gollub [1]
Simonelli and Gollub [2], Feng and Sethna [3], Miles an
Henderson [4]). It is in the context of these works tha
the results reported here are surprising and interesting.

Consider water waves in a rectangular container
lengthL and widthW. The depth of the water ish. The
natural frequencies of the lowest modes are not sign
cantly affected by the surface tension if the waveleng
is large (on the order of 10 cm). In the absence of th
surface tension, we have gravity waves whose dispers
relationship given in Whitham [5] is

v  s gk tanhkhd1y2. (1)

For standing waves, the magnitude of the wave numb
vector is a function of the number of half waves (mod
numbers), i.e.,k  pfsmyLd2 1 snyW d2g1y2. Table I
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shows the modal frequencies of the resulting “gravity
waves,” when the capillary effect is ignored, forL 
22.86 cm, W  12.7 cm, and h  10.2 cm 9 in. 3

5 in. 3 4 in.). The mode numbersm and n refer to the
number of half waves along the directions of the lengt
and the width, respectively. In particular, when eithe
m or n is zero, the waves are two-dimensional waves
Although it is difficult to rule out the possibility that the
ratios of some pair of modes are close to those of sma
integers, the frequencies of the two-dimensional wave
seem to be noncommensurate with one another.

Since the natural frequencies of the two-dimensiona
modes are noncommensurate [although the natural fr
quencies of the third mode are nearly twice that of th
first mode, they are not in resonance since both the natu
frequencies and the wave number vectors must satisfy t
resonance conditions; see O. M. Phillips,The Dynamics
of the Upper Ocean(Cambridge University Press, Cam-
bridge, 1967), p. 82], we expect that wave responses
small amplitude periodic forcing can be captured by th
dynamics of a single-degree-of-freedom forced nonlinea
oscillator. Instead we observed a transition phenom
non from two-dimensional one-mode standing waves t
two-dimensional traveling waves which cannot yet be ex
plained based on the low-dimensional models of surfac
waves.

Our experiment is motivated by the observation o
large amplitude traveling waves in horizontally excited
water tanks which are designed to dissipate vibration
energy resulting from wind-structure interactions in tal
buildings and utility towers (Modiet al. [6]). Since the
energy dissipations associated with the breaking of larg
amplitude traveling waves are the main interest of Mod
et al. [6], the transition from the standing wave to the
traveling wave, especially when the forcing amplitude
is small and the weakly nonlinear approximations ar
valid, has not been examined. Yet this transition ha
important implications on using low-dimensional models
to approximate the dynamics of continuous system
© 1997 The American Physical Society 415
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TABLE I. Natural frequencies of the lowest modes.

Mode numbers m  0 m  1 m  2 m  3 m  4 m  5

n  0 0.000 1.738 2.604 3.200 3.696 4.132
n  1 2.463 2.643 3.030 3.456 3.870 4.260
n  2 3.506 3.572 3.750 4.000 4.287 4.587
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Although observations exposing the inadequacies of t
low-dimensional models have been reported before—W
Keolian, and Rudnick [7] have found solitons generate
by periodic forcings—the transition to the traveling
waves from the standing waves has not been report
Furthermore, by the analogy drawn by Ockendonet al. [8]
between surface waves and acoustic oscillations in clos
resonators, the transition from standing waves to traveli
waves may provide another explanation for the loss
stability in acoustic levitators (Rudnick and Barmatz [9])

Experimental configurations.—Experiments are per-
formed in a rectangular tank made of plexiglas which
22.86 cm long, 12.7 cm wide, and 17.8 cm deeps9 in. 3

5 in. 3 7 in.d. The tank is placed on top of a moving plat
form which is part of a hydraulic wave flume at the Ralp
M. Parsons Laboratory of M.I.T. The length of the tan
is aligned with the direction of motion of the platform
The platform is driven into sinusoidal oscillations in th
horizontal plane by a sinusoidal signal from an HP 3325
synthesizer/function generator. The platform is mount
on tracks which are very stiff to keep the unwanted vibr
tion in other directions to a negligible level.

Owing to the relatively large size of the tank, the surfac
tension effect is not important. However, the moveme
of the liquid contact line on the plexiglas walls show
stick-slip behavior. This causes the wave surface to app
rough. The stick-slip behavior is removed by addin
1 cm3 of Kodak Photo-Flo 200 to the tap water in the tan

The motion of the wave flume is controlled by the outpu
of the function generator. The amplitude of the sinusoid
motion of the platform is proportional to the output voltag
of the function generator. The proportionality coefficien
depends on the frequency; the platform motion is bigger
low frequencies than at high frequencies for a fixed sign
amplitude. This dependence on frequency is insignifica
when we examine the transition of the wave type whic
occurs on a very narrow frequency interval (frequenc
change, 0.03 Hz).

Quantitative measurements are made using the follo
ing two methods: for steady periodic wave responses,
wave amplitudes are directly measured using a ruler;
unsteady wave responses, the wave amplitudes are m
sured by reading the wave height at a point 5 mm aw
from the side wall from the still picture frames recorded b
a video camcorder. The measurements by either meth
are accurate up to60.5 mm.

Transition among two dimensional waves.—Table I
shows the natural frequencies of a few low modes wh
the tank is filled with 10.2 cm (4 in.) of water. Unde
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sinusoidal excitations along the length of the tank, onl
two-dimensional waves with mode numbersm  1, m 
3, m  5, etc. can be directly excited. Two-dimensiona
waves with even wave numbers are symmetric wave
they are not directly excited by the horizontal excitation
which are antisymmetric.

In Fig. 1 we plot the wave amplitude responses whe
the signal from the HP function generator is held fixed
at 90 mV (peak-to-peak) and the forcing frequencies ar
slowly changed from 0.5 to 4.05 Hz. The wave amplitud
responses show typical resonance peaks near the natu
frequencies of the first mode and the third mode. Nea
these resonance frequencies, the wave responses
dominated by a single mode. The other modes are to
small to be noticeable. The wave responses of the fir
mode and the third mode are standing waves characteriz
by one and three clearly observable nodes, respective
These nodes are fixed relative to the water tank. At th
frequencies at which the wave responses change fro
the first mode to the third mode, the wave amplitude i
very small. In other words, the resonances of the firs
mode and the third mode are well separated. Near ea
resonance frequency, the wave response is similar to th
of a single-degree-of-freedom nonlinear oscillator. Th
nonlinearity is manifested by the slight asymmetry of the
response curve, which is more easily observable in Fig.

In Fig. 2 we plot more detailed wave responses fo
forcing frequencies between 3.05 and 3.29 Hz. Thi
frequency interval corresponds to the interval on whic
mode 3 standing wave responses have been observ
in Fig. 1. The solid dots with an interpolating line
passing through them are the amplitudes of the thir
mode standing waves when the forcing amplitude i
55 mV. The peak-to-peak amplitude of the moving

FIG. 1. Wave responses at different driving frequencies o
the interval of 0.5 Hz and 4.05 Hz.
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FIG. 2. Wave amplitudes when the forcing amplitudes a
held fixed at 55 and 75 mV, respectively. The five emp
circles represent the maximum wave heights of nonstea
waves measured during a 1 min time interval.

platform corresponding to this signal is about 0.3 mm
The resonant peak occurs near 3.16 Hz as compared to
theoretical value of 3.20 Hz. Moreover, the interpolatin
line leans to the left, indicative of a softening nonlinearit
(Ockendonet al. [8]).

The amplitudes of wave responses when the forci
signal is 75 mV are shown as open circles in Fig.
Exploration of the wave responses on a finer frequen
interval reveals that there is a very narrow frequen
interval, 3.13 to 3.15 Hz, on which the wave respon
is nonstationary. A typical nonsteady wave response
shown in Fig. 3. Here the unsteady wave was record
by a video camcorder after the forcing amplitude an
frequency have been held fixed for several minutes. F
unsteady waves, the wave amplitudes are not defin
hence the five open circles in Fig. 2 correspond to t
largest wave height measured during a time interval abo
1 min long.

As the wave responses change from steady third-mo
standing waves to nonsteady waves, the wave type a
changes. The nonsteady waves are not standing wave

FIG. 3. The nonsteady wave height as a function of tim
observed from consecutive still video frames.
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the third mode with modulating amplitudes, which cou
have been easily identified by the three nodes that are fi
relative to the tank; instead, they are traveling waves w
a peak moving from one side of the tank to the other. Fo
still frames recorded by a camcorder as the wave pe
moves from right to left are shown in Fig. 4. The tim
interval between successive frames is about 0.3 s. T
traveling waves are not solitary waves. The period of o
round trip of the traveling wave is much longer than th
period of the forcing: at forcing frequency 3.14 Hz, th
traveling wave makes 33 to 34 round trips in 1 min. Th
corresponds to a wave speed about 0.26 mys, which is
close to the group speed of the gravity waves0.25 mysd for
k  2pyl wherel is the wavelength of the third mode.

The transition from steady standing waves to nonstea
traveling waves is an easily reproducible phenomeno
The experiments have been repeated several times. D
ing each run, the water tank is mounted on and carefu
aligned with the platform of the wave flume. Fresh ta
water is filled to a desired height and about1 cm3 of Ko-
dak Photo-Flo 200 solution is added to the water. At t
end of each experiment, the water is emptied from t
tank. The tank and the function generator are stored aw
until the next experiment, which usually takes place se
eral days later.

Figure 5 shows the partition of the parameter spa
of the forcing amplitude and frequency. The solid do
denote traveling wave responses. Data for this figu
are obtained by fixing the forcing amplitude and chan
ing the forcing frequencies at 0.005 Hz increments. W
usually wait several minutes before concluding that t
wave is one type or the other. Occasionally, we wa
more than 30 min to rule out the possibility that the no
steady traveling waves are just some very long transi
responses. We observe that as the forcing amplitude
creases, the frequency interval on which traveling wav

FIG. 4. Four still video frames showing the movement of th
peak of the traveling waves. The peak travels from right si
wall to the left side wall. The time sequences are (i) top-le
(ii) top-right, (iii) bottom-left, and (iv) bottom-right. The time
interval between the two consecutive frames is about 0.3 s.
417
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FIG. 5. Types of wave responses for different combinations
the forcing amplitudes and frequencies. Empty circles deno
parameters for which steady standing waves are observed,
solid circles denote parameters for which traveling waves a
observed.

are observed increases. We explored forcing amplitud
up to 90 mV. The corresponding peak-to-peak displac
ment of the water tank is about 0.5 mm. Responses
even larger forcing amplitudes are not explored since w
are interested in small amplitude wave responses (wa
amplitude less than 20 mm in a tank of 228.6 mm long
for which weakly nonlinear models are expected to giv
good approximations. For these forcing amplitudes, th
hysteresis of the transition from one type to the other
the frequency is changed is too small (less than 0.005 H
to be easily quantified.

The transitions to traveling waves have also bee
observed when the water depth is 7.62 cm (3 in.) an
12.7 cm (5 in.) respectively. We are not able to observ
the traveling waves when the water depth is 5.08 c
(2 in.) since our attention is focused on the forcin
frequencies which are close to the resonance frequen
of the third mode. It has been brought to our attentio
that, for shallow water, when forced at a much lowe
frequency, Bridges [10] has observed a traveling hydrau
jump resulting from cnoidal standing waves. Since th
resonance frequencies of the high modes are integ
multiples of the fundamental mode for large amplitud
cnoidal standing waves in shallow water, complicate
modal coupling is thus not surprising.

Low-dimensional models have been successfully em
ployed to study the dynamic responses of surface waves
finite containers (Ciliberto and Gollub [1], Feng and Sethn
[3], Miles and Henderson [4]). These low-dimensiona
models assume from the outset that the free surface is a
perposition of standing waves of several resonant mod
These selective modes act like coupled nonlinear oscil
tors. Their responses to the periodic forcing capture th
overall system responses. Among infinitely many norm
418
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modes, only modes which are in resonance with the e
ternal forcing and with one another are known to have
effect on the system dynamics. This drastically simplifie
the analysis of weakly nonlinear systems.

Throughout these experiments, the wave responses
main two-dimensional even when the waves become no
steady traveling waves. The geometry corresponding
our experiments is such that none of the two-dimension
modes are resonantly coupled to the third two-dimension
mode. The occurrence of the transition to traveling wav
points to new possible solutions in this simple well-studie
problem. Although other unexpected solutions have be
found in this context (Wu, Keolian, and Rudnick [7] re
port the generation of nonpropagating solitons in simil
wave experiments), the transition to the traveling wav
from standing waves has not been reported before.

The observed transition may also suggest instabiliti
of standing waves in other physical context. Ockend
et al. [8] draw an analogy between the sloshing of liquid
in a horizontally oscillated, rectangular tank and on
dimensional radially symmetric acoustic oscillations in
closed resonator. This analogy suggests that the stand
waves in an acoustic levitator may become unstable. T
loss of stability is likely to cause the loss of the abilit
to levitate objects. This can provide another explanati
to the onset of translational instability in single-mod
acoustic levitators (Rudnick and Barmatz [9]).
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