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Modulational Instability Induced by Cavity Boundary Conditions
in a Normally Dispersive Optical Fiber

S. Coen and M. Haelterman
Service d’Optique et Acoustique, Université Libre de Bruxelles, 50 Av. F. D. Roosevelt, CP 194y5, B-1050 Bruxelles, Belgium

(Received 17 June 1997)

We study experimentally the role played by cavity boundary conditions in the onset of modulational
instability in nonlinear and dispersive waves. This study is performed by means of an externally driven
optical cavity made of a single-mode silica fiber. Spectral measurements of the intracavity field allow
us to identify modulational instability in the presence of normal dispersion. This finding demonstrates
that cavity boundary conditions fundamentally alter the physical mechanisms which are at the origin of
modulational instability. [S0031-9007(97)04357-3]

PACS numbers: 42.65.Sf, 42.60.Da, 42.65.Re, 42.65.Wi
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Modulational instability is a general feature of wave
propagation in nonlinear dispersive media and is of com
mon occurrence in such diverse fields as plasma phys
[1], fluid dynamics [2], and nonlinear optics [3]. It refers
to the physical process in which a weak periodic perturb
tion of a uniform intense carrier wave grows exponentiall
as a result of the interplay between dispersion and nonl
earity. In the field of nonlinear optics special attention ha
been paid to modulational instability in dispersive Ker
media (e.g., optical fibers) in which light-wave propaga
tion is ruled by the nonlinear Schrödinger (NLS) equatio
[3]. In this context, nonlinear propagation phenomena a
commonly described in terms of the parametric four-wav
mixing processes which underlie them [3]. In particula
modulational instability arises in dispersive Kerr medi
because its underlying four-wave mixing process is nat
rally phase matched by the intensity-dependent refracti
index. In self-focusing Kerr media, such as silica optica
fibers, anomalous dispersion is required in order for th
phase-matching process to occur. In the presence of n
mal dispersion, phase matching can be achieved only w
the help of an extra degree of freedom that is provide
by the coupling with an additional intense carrier wave o
different polarization [4] or wavelength [5].

In 1992 Haeltermanet al. suggested in a theoretical
work that this extra coupling mechanism is not necessa
to obtain an extension of the phenomenon of modulation
instability to the normal dispersion regime [6]. It was
shown that when nonlinear dispersive waves are subje
to cavity boundary conditions, the underlying four-wav
mixing processes are altered so as to make possi
modulational instability with normal dispersion. The aim
of the present Letter is to provide experimental evidenc
for this fundamental role of cavity boundary condition
in the onset of modulational instability. Since cavitie
are commonly encountered in nonlinear systems a
since modulational instability is a ubiquitous phenomeno
in nonlinear science, our observations are liable to b
relevant to other fields of research such as plasma phys
or fluid dynamics.
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Our investigation of intracavity modulational instability
has been performed with the all-fiber ring cavity depicte
in Fig. 1. This type of device has already been studie
experimentally by several authors with the aim of demon
strating and characterizing optical bistability, modu
lational instability, chaos, and turbulence [7–11]. Its
principle of operation is the following: Light is launched
into the cavity by means of a fiber coupler (C1). It then
propagates along the fiber where it suffers the effec
of the chromatic dispersion and the Kerr nonlinearity o
silica. Besides these effects, the intracavity light wav
undergoes cavity boundary conditions which manifes
themselves by an attenuation due to the input coupl
transmission and, more importantly, by a recurren
coherent superposition with the input beam (we negle
throughout the additional loss due to the output couple
C2). These four physical processes are mathematica
described by the following infinite-dimensional map

En11s0, td ­
p

r EnsL, td expsic0d 1
p

u Ei , (1)

≠Ensz, td
≠z

­ 2i
b2

2
≠2Ensz, td

≠t2 1 igjEnsz, tdj2Ensz, td ,

(2)

FIG. 1. Experimental setup. BS: 5% beam splitter; PC: polar
ization controller; STR: mechanical stretcher; PZT: piezoelec
tric stretcher; S: servo-control system; PD: photodetector; OSA
optical spectrum analyzer.
© 1997 The American Physical Society 4139
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where Ensz, td is the electric field envelope during the
nth pass in the cavity,z is the longitudinal coordinate
along the fiber axis, andt is the time in a reference
frame traveling at the group velocity of light. The
parametersr and u are the intensity reflection and
transmission coefficients of the input coupler on whic
a wave of amplitudeEi is launched (r 1 u ­ 1). L
is the cavity length whilec0 is the linear phase shift
acquired by the light wave over this length.b2 and g

are, respectively, the group velocity dispersion and Ke
nonlinearity coefficients of the fiber.

The map, Eqs. (1) and (2), is similar to that introduce
by McLaughlinet al. to study the dynamics of diffractive
light beams in nonlinear ring cavities [12]. On the bas
of analytical and numerical results, these authors show
that, when accounting for the transverse dimension of t
light beams, the transition to chaos does not follow th
scenario of period-doubling cascade predicted in the ea
work of Ikeda [13]. The reason for this is that comple
spatial structures are generated through the combin
action of diffraction and nonlinearity. Although they
are due to a different phenomenology, our experimen
observations are intimately linked to this theoretica
prediction.

Let us now briefly consider the theory of intra-
cavity modulational instability (MI). To this end we
introduce the scalingj ­ zyL, Un ­

p
gL En, t ­ typ

jb2jL so that the NLS equation (2) writesUn
j ­ 2ishy

2dUn
tt 1 ijUnj2Un, whereh is the sign of dispersion,h ­

b2yjb2j. The instability against the growth of periodic
perturbations of a steady-state continuous wave (cw
Unsj, td ­ U0 expsijU0j

2jd, propagating along the
cavity fiber, is investigated by introducing, in the
NLS equation, the ansatzUnsj, td ­ fU0 1 y

n
1 sjd 3

expsiVtd 1 y
n
21sjd exps2iVtdg expsijU0j

2jd. At first
order in the amplitudes of the Stokes wavesy

n
61, we ob-

tain the linear problem d $ynydj ­ M $yn, where
$yn ­ syn

1 , y
np
21dT . Its general solution is $yn ­

san , bndT expsmjd 1 scn, dndT exps2mjd, where the
eigenvector components satisfy the relation

anybn ­ dnycn ­ 2jU0j
2ysjU0j

2 1 hV2y2 1 imd ,

(3)
and the eigenvaluem writes

m ­ V

q
2hjU0j2 2 V2y4 , (4)

which provides the MI gain seen by the wave whe
propagating in the cavity fiber. This well-known resul
shows that the gain maximum is obtained for a modulatio
4140
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frequency ofVopt ­
p

22hjU0j2 which corresponds to
phase matching of the underlying wave mixing proces
[3]. We see, in particular, that MI cannot occur in
normally dispersive fibers, i.e., whenh ­ 1.

We shall now see that the introduction of the cavity
boundary conditions drastically alters this result. Sinc
we follow a procedure similar to that of Ref. [12], we
only give the main lines of the developments. Assumin
that the incident wave amplitudeEi is constant, the cavity
boundary conditions for the Stokes waves write

yn11
61 sj ­ 0d ­

p
r expfisc0 1 jU0j

2dg yn
61sj ­ 1d .

(5)
Expressing these relations in terms of the compo
nents an, bn, cn, dn and using Eq. (3), we obtain
an algebraic equation of the formsan11, cn11dT ­
Qsr, c0, jU0j

2, hV2d san, cndT . When the modulus of
at least one of the eigenvalues of the matrixQ is larger
than unity, the Stokes waves undergo exponential grow
during their multiple passes in the cavity. Since thi
matrix depends on the cavity parametersr and c0 one
can easily anticipate a strong influence of the cavit
boundary conditions on MI.

The potentially unstable eigenvalues ofQ are

q6 ­
p

r sp 6

q
p2 2 1d , (6)

where p ­ cossfd coshsmd 2 sjU0j
2 1 hV2y2d sinsfd 3

sinhsmdym, with f ­ c0 1 jU0j
2. For the sake of sim-

plicity, we shall now restrict our analysis of intracav-
ity MI to the good cavity limit; i.e., we assume that
u ­ 1 2 r ø Os1d. In this limit, we can introduce the
mean field approximation which implies, in the presen
context, thatjU0j

2, hV2, u ø Os1d [6]. Accordingly, the
in-line MI gain m given in Eq. (4) is also a quantity of or-
der one. At first order, we havep ø cossfd 2 sjU0j

2 1

hV2y2d sinsfd and from expression (6) of the intracavity
MI gain, one can easily infer that the instability appear
for values ofc0 close to a multiple ofp , i.e., for the
largest values ofjpj. Practically, this means that MI oc-
curs either close to cavity resonancesc0 ø 2mp or under
antiresonant conditionsc0 ø s2m 1 1dp . In the former
(latter) caseq1 (q2) is the corresponding unstable eigen
value. This observation allows us to introduce a small de
tuning parameterd ø Os1d which measures the distance
from resonance in one case,d ­ 2mp 2 c0, and from
antiresonance in the other,d ­ s2m 1 1dp 2 c0. With
this definition, we can simplify the eigenvalues, Eq. (6)
by means of a first order expansion which yields
q6 ­ 6

"
1 2

u

2
1

vuut4

√
d 2

hV2

2

!
jU0j2 2

√
d 2

hV2

2

!2

2 3jU0j4

#
, (7)
is
in
in
where the sign1 (2) refers to the resonant (antireso
nant) condition. Equation (7) provides the MI gain
GMI ­ jq6j 2 1, characteristic of the exponential growth
-
,
of the Stokes waves circulating in the cavity. Th
yields a MI gain spectrum identical to that derived
Ref. [6]. Note, however, that the negative eigenvalue
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Eq. (7), corresponding to antiresonant conditions, was n
described in the analysis of Ref. [6]. This negative eige
value is important since it indicates that MI in antiresona
conditions manifests itself with a change of sign of th
Stokes waves at each round trip. This behavior is rem
niscent of period-doubling instabilities [12]. That is why
in order to differentiate the resonant and antiresonant
regimes, we call them cw-MI and P2-MI, respectively.

The important result of this analysis is that it predic
the onset of MI in the normal dispersion regime. Th
can be easily seen by analyzing the gain spectrum Eq.
whose maximum is located inVopt ­

p
2hsd 2 2jU0j2d.

It was shown in Ref. [6] for cw-MI that this relation
corresponds to the phase-matching condition of the fo
wave mixing process that underlies intracavity MI. W
can therefore conclude that MI occurs in the norm
dispersion regime (h ­ 1) owing to the role played by
the cavity detuning in the phase-matching conditions.

To complete our theoretical description, we sho
in Fig. 2 an example of MI gain spectrum,GMI ­
jq6j 2 1, as given from the exact expression Eq. (6
This spectrum consists of a series of peaks represen
alternatively cw-MI and P2-MI. A good approximation
of the optimal frequenciesVk corresponding to the peaks
maxima is provided by their values in the good cavit
limit

2jU0j
2 1 hV2

k y2 1 c0 ­ kp , (8)

where even (odd) values ofk correspond to cw-MI (P2-
MI).

Experiment.—For obvious reasons of mathematica
simplicity, the above theoretical developments are bas
on the stability analysis of a cw light beam. Howeve
in practice, due to the weakness of the silica fiber no
linearity, the input peak powers required to get modul
tional instability are much too high (. 1 kW) to allow for
cw operation. Therefore, in our experiment (see Fig.
we used a mode-locked laser (Ti-sapphire) as input lig
source. This laser emits 1.25 ps sech-shaped pulses w
a repetition rate of 82 MHz and a wavelength of 980 n
for which the fiber dispersion isb2 ­ 26 ps2ykm. Aver-
age output powers of up to 1 W corresponding to 8 kW
peak power can be achieved. In order to make our mo
Eqs. (1) and (2) valid with such a source, we must adju
the fiber lengthL so that, at each round trip, the intra
cavity pulse is superposed upon the input pulses. F

FIG. 2. MI gain spectrum: thin (bold) lines indicate cw-MI
(P2-MI) sidelobes.
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technical reasons this synchronization has been achie
with L ­ 7.38 m which corresponds to 3 pulses pe
cavity round trip (the length adjustment is performed b
means of a mechanical fiber stretcher, STR).

As discussed above, the theory predicts that the d
tuning plays a fundamental role in the dynamics of th
cavity. The control of this parameter is therefore cru
cial for the experimental study of intracavity MI. We
achieved accurate control of the cavity detuning by mea
of an interferometric stabilization scheme based on cav
polarization mode nondegeneracy. Its principle of oper
tion is sketched in Fig. 1. A small fraction (5%) of the
laser beam is deflected (by beam splitter BS) towards
second input port of the coupler C1. Since the intensity
this counterpropagating signal is low, the cavity behav
in its respect as a linear Fabry-Pérot resonator. Note t
the nonlinear effects due to cross-phase modulation w
the pump beam can be neglected due to the short du
tion of the pulses. The cavity can therefore be stabiliz
by tuning the fiber length in such a way that the counte
propagating signal is kept on resonance. This can be e
ily achieved by means of a servo-control device (S) th
drives a piezoelectric fiber stretcher (PZT) on the bas
of the resonator transmitted intensity measured throug
photodetector (PD).

Since a fiber always exhibits residual birefringenc
the cavity possesses in general two nondegenerate
of resonances corresponding to orthogonal polarizati
eigenstates. The separation between the resonance
each polarization depends on the amount of birefringen
The use of polarization controllers at both cavity inpu
ports (PC1 and PC2) allows us to pump the cavity alo
one polarization eigenstate with the nonlinear wave a
along the orthogonal one with the linear control wave.
this situation, since the linear wave is kept on resonan
the cavity detuningd seen by the nonlinear wave can b
tuned by modifying the degree of birefringence throug
a third polarization controller inside the cavity (PC3
This system allows us to tune continuously the detuni
parameterd over a range of2p with an accuracy
estimated at 5%.

Owing to the excellent stability properties of ou
experimental setup, we have been able to comforta
study the spectra of the intracavity pulses by mea
of a high resolution optical spectrum analyzer (OSA
According to the above theory, when the power
sufficiently high, one must expect that the spectra app
as series of sideband peaks corresponding to the ph
matching conditions Eq. (8). However, since the puls
we have at our disposal are short (,1 ps) as compared to
typical MI oscillations (,1 THz), these phase-matching
conditions cannot be merely applied by replacingjU0j

2

by the pulse peak power. The value of the effectiv
cw intensity that must be considered in Eq. (8) is of th
order of the average pump intensity (i.e., the intensity
the cw component of the pump signal) and is natura
much lower. As a matter of fact, we have seen
4141
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numerical simulations of the experiment that the position
of the sideband peaks exhibit only a very weak nonline
dependence and that they can be well approximated
neglecting the contribution of the intensity in Eq. (8).

Figure 3(a) shows a typical example of MI spectrum
It is obtained withd ­ 0.8p and an input peak power of
700 W (hered refers to the distance from resonance, th
distance from antiresonance being given byd 6 p). One
clearly identifies a series of 4 symmetric sidebands. The
sidebands are located inf0 ­ 0.82 THz, f1 ­ 1.22 THz,
f2 ­ 1.53 THz, and f3 ­ 1.78 THz, as predicted by
Eq. (8) which in real units writes2p2b2f2

k L 2 d ø kp .
However, for even values ofk the physical interpretation
of the sideband peaks is ambiguous. Indeed, even in
linear regime, peaks can appear in the spectrum at t
frequencies predicted by Eq. (8) with even values ofk
and when neglecting the cavity intensity. These pea
would simply correspond to the excitation of the close
resonances of the linear ring cavity. This excitatio
occurs when the spectrum of the cavity pulse is larg
enough to contain frequencies for which the dispersio
phase-shift2p2b2f2L compensates for the detuningd.
This is what happens in our experiment due to the spect
broadening induced by self-phase modulation.

To the contrary, for odd values ofk corresponding
to P2-MI, the situation is unequivocal since the corre
sponding sidebands are located near antiresonant con
tions for which the linear cavity transmission exhibits fla
minima. The presence of sidebands atf1 ­ 1.22 THz
and f3 ­ 1.78 THz constitutes therefore an irrefutable
proof of the existence of the cavity-boundary-conditions
induced MI mechanism predicted theoretically. This in
terpretation is confirmed in Fig. 3(b) which shows th

FIG. 3. Experimental pulse spectrum obtained ford ­ 0.8p
with input powers of (a),700 W (inset is a vertical zoom) and
(b) ,450 W. Arrows indicate P2-MI sidelobes. (c) Numerical
simulations of (a).
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spectrum for the same detuningd ­ 0.8p but with an in-
put power lower than the MI threshold. As expected, th
cavity resonances are still visible while the P2-MI peak
have completely vanished. Figure 3(c) shows the result
a numerical simulation of the experiment for the same p
rameter as those of Fig. 3(a) (i.e., with no fit parameter
Comparison with Fig. 3(a) reveals an excellent agreeme
between theory and experiment. The inset in Fig. 3(c
shows the modulated pulses emitted in the correspondi
P2-MI regime, each pulse corresponding to half a perio
of the P2 cycle. Note that Fig. 3(c) is obtained by av
eraging the spectra of these two pulses, as is natura
performed in the experimental measurement. Similar n
merical results have been reported by Vallée in Ref. [14
as regards both spectral and temporal behaviors.

In conclusion, we have demonstrated experimental
that cavity boundary conditions can drastically alter th
basic physical mechanisms that are at the origin o
modulational instability. This has been performed b
providing evidence for the existence of modulationa
instability in a cavity made of a normally dispersive fiber
The simplicity of this device gives to our study a genera
character. Our conclusions are thus liable to be applied
other fields of nonlinear science and are important for th
identification and understanding of the various comple
spatiotemporal behaviors observed in practical systems
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