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Modulational Instability Induced by Cavity Boundary Conditions
in a Normally Dispersive Optical Fiber
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We study experimentally the role played by cavity boundary conditions in the onset of modulational
instability in nonlinear and dispersive waves. This study is performed by means of an externally driven
optical cavity made of a single-mode silica fiber. Spectral measurements of the intracavity field allow
us to identify modulational instability in the presence of normal dispersion. This finding demonstrates
that cavity boundary conditions fundamentally alter the physical mechanisms which are at the origin of
modulational instability. [S0031-9007(97)04357-3]

PACS numbers: 42.65.Sf, 42.60.Da, 42.65.Re, 42.65.Wi

Modulational instability is a general feature of wave Our investigation of intracavity modulational instability
propagation in nonlinear dispersive media and is of comhas been performed with the all-fiber ring cavity depicted
mon occurrence in such diverse fields as plasma physidas Fig. 1. This type of device has already been studied
[1], fluid dynamics [2], and nonlinear optics [3]. It refers experimentally by several authors with the aim of demon-
to the physical process in which a weak periodic perturbastrating and characterizing optical bistability, modu-
tion of a uniform intense carrier wave grows exponentiallylational instability, chaos, and turbulence [7-11]. Its
as a result of the interplay between dispersion and nonlinprinciple of operation is the following: Light is launched
earity. In the field of nonlinear optics special attention hasnto the cavity by means of a fiber coupler (C1). It then
been paid to modulational instability in dispersive Kerrpropagates along the fiber where it suffers the effects
media (e.g., optical fibers) in which light-wave propaga-of the chromatic dispersion and the Kerr nonlinearity of
tion is ruled by the nonlinear Schrédinger (NLS) equationsilica. Besides these effects, the intracavity light wave
[3]. In this context, nonlinear propagation phenomena arendergoes cavity boundary conditions which manifest
commonly described in terms of the parametric four-wavdhemselves by an attenuation due to the input coupler
mixing processes which underlie them [3]. In particular,transmission and, more importantly, by a recurrent
modulational instability arises in dispersive Kerr mediacoherent superposition with the input beam (we neglect
because its underlying four-wave mixing process is natuthroughout the additional loss due to the output coupler
rally phase matched by the intensity-dependent refractiv€2). These four physical processes are mathematically
index. In self-focusing Kerr media, such as silica opticaldescribed by the following infinite-dimensional map
fibers, anomalous dispersion is required in order for this E"0,1) = Jp E"(L.t) explio) + VOE;, (1)
phase-matching process to occur. In the presence of nor-

n 2rn
mal dispersion, phase matching can be achievgd onlywit IE"(z,1) _ —i B2 L(zz’t) + iyE" (2, OIPE" (2, 1),
the help of an extra degree of freedom that is provided 92 2 ot
by the coupling with an additional intense carrier wave of (2)

different polarization [4] or wavelength [5].
In 1992 Haeltermaret al. suggested in a theoretical

i i ism | e
work that this extra coupling mechanism is not necessary # beam 4 % Ti:Sapphire

. . . 5%
to obtain an extension of the phenomenon of modulational > °

: Al ¢ ] ) N Control $
instability to the normal dispersion regime [6]. It was Q beam

shown that when nonlinear dispersive waves are subject PC1 PC2
to cavity boundary conditions, the underlying four-wave Vi N B 4 VA

mixing processes are altered so as to make possible
modulational instability with normal dispersion. The aim STR
of the present Letter is to provide experimental evidence
for this fundamental role of cavity boundary conditions
in the onset of modulational instability. Since cavities

are commonly encountered in nonlinear systems and [OsA] <

since modulational instability is a ubiquitous phenomenorhG. 1. Experimental setup. BS: 5% beam splitter: PC: polar-

in nonlinear Sc'ence' our observations are liable to b,?zation controller; STR: mechanical stretcher; PZT: piezoelec-
relevant to other fields of research such as plasma physiggc stretcher; S: servo-control system; PD: photodetector; OSA:
or fluid dynamics. optical spectrum analyzer.
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where E"(z,1) is the electric field envelope during the frequency ofQ,, = +/—27[Uy[? which corresponds to
nth pass in the cavityz is the longitudinal coordinate phase matching of the underlying wave mixing process
along the fiber axis, and is the time in a reference [3]. We see, in particular, that MI cannot occur in
frame traveling at the group velocity of light. The normally dispersive fibers, i.e., whep= 1.
parametersp and 6 are the intensity reflection and We shall now see that the introduction of the cavity
transmission coefficients of the input coupler on whichboundary conditions drastically alters this result. Since
a wave of amplitudeE; is launched ¢ + 8 = 1). L  we follow a procedure similar to that of Ref. [12], we
is the cavity length whiley, is the linear phase shift only give the main lines of the developments. Assuming
acquired by the light wave over this length3, and y  that the incident wave amplitudg is constant, the cavity
are, respectively, the group velocity dispersion and Kerboundary conditions for the Stokes waves write
nonlinearity coefficients of the fiber. Dl . 1 n

The map, Egs. (1) and (2), is similar to that introduced Vi (& = 0) = /p exdi(o + [Uol)]vi, (£ = 1).
by McLaughlinet al. to study the dynamics of diffractive (5)
light beams in nonlinear ring cavities [12]. On the basisgxpressing these relations in terms of the compo-
of analytical and numerical results, these authors showefents 4", »", ¢", d" and using Eq. (3), we obtain
that, when accounting for the transverse dimension of thgn  aigebraic equation of the fornta"*!,c"* )T =
light beams, the transition to chaos does not follow they (. y. |UI2, nQ2) (a”, c")T. When the modulus of

scenario of period-doubling cascade predicted in the earlyt |east one of the eigenvalues of the matixis larger
work of Ikeda [13]. The reason for this is that complexthan unity, the Stokes waves undergo exponential growth
spatial structures are generated through the combinegliing their multiple passes in the cavity. Since this
action of diffraction and nonlinearity. ~Although they matrix depends on the cavity parametgrsand i, one

are due to a different phenomenology, our experimentatan easily anticipate a strong influence of the cavity
observations are intimately linked to this theoreticalpoundary conditions on M.

prediction. . . , The potentially unstable eigenvalues@fare
Let us now briefly consider the theory of intra-
g= =P (p £4p? = 1), (6)

cavity modulational instability (MI). To this end we

introduce the scalingé =z/L, U"=./yLE", 7=t/

JIBAIL so that the NLS equation (2) writds} = —i(n/  Where p =cog¢) costiu) — (IUo|* + nQ?/2) sin(¢) X
2)U"_+ i|U"2U", wheren is the sign of dispersiony =  Sinf(w)/p, with ¢ = ¢ + |Uol*. For the sake of sim-
B2/1B2l. The instability against the growth of periodic Plicity, we shall now restrict our analysis of intracav-
perturbations of a steady-state continuous wave (cw)ty Ml to the good cavity limit; i.e., we assume that
U"(&,7) = UgexplilUol?¢), propagating along the ¢ =1 — p = O(1). In this limit, we can introduce the
cavity fiber, is investigated by introducing, in the mean field approximation which implies, in the present
NLS equation, the ansatd/”(£,7)=[U,+ v}(&) x  context, thatUsl*, nQ?, 6 ~ O(1) [6]. Accordingly, the
expiQ7) + v (&) exp(—iQ )] expli|Upl2¢). At first in-line Ml gair_1 n givenin Eq. (4) is also a quantity of or-
order in the amplitudes of the Stokes wavd, we ob-  der one. At first order, we have =~ cos¢) — (|Upl* +

t@in the linear problem di"/dé = Mu", where 1€Q7/2)sin() and from expression (6) of the intracavity
"=}, v™)T. Its general solution is " = Ml gain, one can easily infer tha_lt the instgbility appears
(@, b") exgwé) + (c",d")" exp(—ué), where the for values ofyy close to a multiple ofr, i.e., for the
eigenvector Components Satisfy the relation |argeSt values Orpl PraCtica”y, this means that M| oc-
" non 2 2 2 . curs either close to cavity resonang@gs= 2mar or under
= = — + + : .
a"/b" = d*/c oI/ (10" + nQ7/2 + i), antiresonant conditiongy =~ (2m + 1)ar. In the former
(3) (latter) casey+ (¢-) is the corresponding unstable eigen-
and the eigenvalug writes value. This observation allows us to introduce a small de-
> > tuning parameteb = O(1) which measures the distance
H= Q\/_77|UO| - Q2/4, (4)  from resonance in one casé,= 2mw — i, and from

which provides the MI gain seen by the wave whenantiresonance in the othet,= 2m + )7 — i¢. With
propagating in the cavity fiber. This well-known result this definition, we can simplify the eigenvalues, Eq. (6),
shows that the gain maximum is obtained for a modulat\orby means of a first order expansion which yields

2 2\?
g+ = ¢[1 - % + J4<5 - %)|Uo|2 - (6 - %) - 3|U0|4:|, (7)

where the sign+ (—) refers to the resonant (antirescL— of the Stokes waves circulating in the cavity. This
nant) condition. Equation (7) provides the MI gain, yields a Ml gain spectrum identical to that derived in
Gwm1 = lg+| — 1, characteristic of the exponential growth Ref. [6]. Note, however, that the negative eigenvalue in
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Eq. (7), corresponding to antiresonant conditions, was ndechnical reasons this synchronization has been achieved
described in the analysis of Ref. [6]. This negative eigenwith L = 7.38 m which corresponds to 3 pulses per
value is important since it indicates that Ml in antiresonantcavity round trip (the length adjustment is performed by
conditions manifests itself with a change of sign of themeans of a mechanical fiber stretcher, STR).
Stokes waves at each round trip. This behavior is remi- As discussed above, the theory predicts that the de-
niscent of period-doubling instabilities [12]. That is why, tuning plays a fundamental role in the dynamics of the
in order to differentiate the resonant and antiresonant Mtavity. The control of this parameter is therefore cru-
regimes, we call them cw-MI and P2-MI, respectively. cial for the experimental study of intracavity Ml. We
The important result of this analysis is that it predictsachieved accurate control of the cavity detuning by means
the onset of Ml in the normal dispersion regime. Thisof an interferometric stabilization scheme based on cavity
can be easily seen by analyzing the gain spectrum Eg. (Polarization mode nondegeneracy. Its principle of opera-
whose maximum is located i}, = +/27(6 — 2|Upl?).  tion is sketched in Fig. 1. A small fraction (5%) of the
It was shown in Ref. [6] for cw-MI that this relation laser beam is deflected (by beam splitter BS) towards the
corresponds to the phase-matching condition of the foursecond input port of the coupler C1. Since the intensity of
wave mixing process that underlies intracavity MI. Wethis counterpropagating signal is low, the cavity behaves
can therefore conclude that MI occurs in the normalin its respect as a linear Fabry-Pérot resonator. Note that
dispersion regimer{ = 1) owing to the role played by the nonlinear effects due to cross-phase modulation with
the cavity detuning in the phase-matching conditions.  the pump beam can be neglected due to the short dura-
To complete our theoretical description, we showtion of the pulses. The cavity can therefore be stabilized
in Fig. 2 an example of MI gain spectrunGy; = by tuning the fiber length in such a way that the counter-
lg=] — 1, as given from the exact expression Eq. (6).propagating signal is kept on resonance. This can be eas-
This spectrum consists of a series of peaks representinly achieved by means of a servo-control device (S) that
alternatively cw-MI and P2-MI. A good approximation drives a piezoelectric fiber stretcher (PZT) on the basis
of the optimal frequencieQ, corresponding to the peaks of the resonator transmitted intensity measured through a
maxima is provided by their values in the good cavityphotodetector (PD).
limit Since a fiber always exhibits residual birefringence,
20U + 9 Q2/2 + o = ki, (8) the cavity possesses in gf_aneral two nondegenera_ﬂe sets
of resonances corresponding to orthogonal polarization
eigenstates. The separation between the resonances of
each polarization depends on the amount of birefringence.
he use of polarization controllers at both cavity input
orts (PC1 and PC2) allows us to pump the cavity along
one polarization eigenstate with the nonlinear wave and
along the orthogonal one with the linear control wave. In
. . . ; this situation, since the linear wave is kept on resonance,
tional instability are much too high=( 1 kW) to allow for the cavity detuningd seen by the nonlinear wave can be

cw operation. Therefore, in our experiment (see Fig. 1 e .
we used a mode-locked laser (Ti-sapphire) as input Iighg:ed by modifying the degree of birefringence through

source. This laser emits 1.25 ps sech-shaped pulses wi third polarization controller inside the cavity (PC3).
" ) - i t Il tot ti ly th tuni
a repetition rate of 82 MHz and a wavelength of 980 nm is system allows us to tune continuously the detuning

. . X ST parameteré over a range of2z with an accuracy
for which the fiber dispersion i8, = 26 ps’/km. Aver- estimated at 5%.

age output powers of up to 1 W corresponding to 8 KW Owing to the excellent stability properties of our

peak power can be gchi_eved. In order to make our m(_)d xperimental setup, we have been able to comfortably
Egs. (1) and (2) valid with such a source, we must adjus, tudy the spectra of the intracavity pulses by means

the_f|ber Ieng_thL so that, at each roun'd trip, the intra- of a high resolution optical spectrum analyzer (OSA).

cavity pulse is superposed upon the input pulses. FOAccording to the above theory, when the power is

sufficiently high, one must expect that the spectra appear

as series of sideband peaks corresponding to the phase

06+ o =0.1m, |[Up2 =1, ] matching conditions Eq. (8). However, since the pulses

n=1,p=095 we have at our disposal are shortl( ps) as compared to

] typical Ml oscillations &1 THz), these phase-matching

- ] conditions cannot be merely applied by replacirg|>

0 . . (\ A, by the pulse peak power. The value of the effective

0 1 2 3 4 5 cw intensity that must be considered in Eq. (8) is of the
Q order of the average pump intensity (i.e., the intensity of

FIG. 2. MI gain spectrum: thin (bold) lines indicate cw-mI the cw component of the pump signal) and is naturally
(P2-MI) sidelobes. much lower. As a matter of fact, we have seen in
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where even (odd) values @f correspond to cw-MI (P2-
MI).

Experiment—For obvious reasons of mathematicaIT
simplicity, the above theoretical developments are baseg
on the stability analysis of a cw light beam. However,
in practice, due to the weakness of the silica fiber non
linearity, the input peak powers required to get modula
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numerical simulations of the experiment that the positionspectrum for the same detunidg= 0.87 but with an in-
of the sideband peaks exhibit only a very weak nonlineaput power lower than the Ml threshold. As expected, the
dependence and that they can be well approximated bgavity resonances are still visible while the P2-MI peaks
neglecting the contribution of the intensity in Eq. (8). have completely vanished. Figure 3(c) shows the result of
Figure 3(a) shows a typical example of Ml spectrum.a numerical simulation of the experiment for the same pa-
It is obtained with = 0.87 and an input peak power of rameter as those of Fig. 3(a) (i.e., with no fit parameter).
700 W (hereé refers to the distance from resonance, theComparison with Fig. 3(a) reveals an excellent agreement
distance from antiresonance being givendby- 7). One  between theory and experiment. The inset in Fig. 3(c)
clearly identifies a series of 4 symmetric sidebands. Thesghows the modulated pulses emitted in the corresponding
sidebands are located ji = 0.82 THz, f = 1.22 THz, = P2-MI regime, each pulse corresponding to half a period
f2 = 153 THz, and f; = 1.78 THz, as predicted by of the P2 cycle. Note that Fig. 3(c) is obtained by av-
Eq. (8) which in real units write3728,f7L — 8 ~ kw.  eraging the spectra of these two pulses, as is naturally
However, for even values df the physical interpretation performed in the experimental measurement. Similar nu-
of the sideband peaks is ambiguous. Indeed, even in thmerical results have been reported by Vallée in Ref. [14]
linear regime, peaks can appear in the spectrum at th&s regards both spectral and temporal behaviors.
frequencies predicted by Eq. (8) with even valueskof In conclusion, we have demonstrated experimentally
and when neglecting the cavity intensity. These peakthat cavity boundary conditions can drastically alter the
would simply correspond to the excitation of the closestbasic physical mechanisms that are at the origin of
resonances of the linear ring cavity. This excitationmodulational instability. This has been performed by
occurs when the spectrum of the cavity pulse is larggroviding evidence for the existence of modulational
enough to contain frequencies for which the dispersionnstability in a cavity made of a normally dispersive fiber.
phase-shift27r2 8, 2L compensates for the detunilgy  The simplicity of this device gives to our study a general
This is what happens in our experiment due to the spectraharacter. Our conclusions are thus liable to be applied to
broadening induced by self-phase modulation. other fields of nonlinear science and are important for the
To the contrary, for odd values of corresponding identification and understanding of the various complex
to P2-MI, the situation is unequivocal since the corre-spatiotemporal behaviors observed in practical systems.
sponding sidebands are located near antiresonant condi-This research was supported by the Fonds National
tions for which the linear cavity transmission exhibits flatde la Recherche Scientifique (Belgium) and the Inter-
minima. The presence of sidebands fat= 1.22 THz  University Attraction Pole program of the Belgian gov-
and f3 = 1.78 THz constitutes therefore an irrefutable ernment under Grant No. P4-07.
proof of the existence of the cavity-boundary-conditions-
induced MI mechanism predicted theoretically. This in-
terpretation is confirmed in Fig. 3(b) which shows the
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