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Exponentially Rapid Decoherence of Quantum Chaotic Systems
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We use a recent result to show that the rate of loss of coherence of a quantum system incre
with increasing system phase-space structure and that a chaotic quantal system in the semiclassica
decoheres exponentially with rate2l2, wherel2 is a generalized Lyapunov exponent. As a result, for
example, the dephasing time for classically chaotic systems goes to infinity logarithmically with th
temperature, in accord with recent experimental results. [S0031-9007(97)04643-7]
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Decoherence [1,2] which is, in general, the loss of i
terference effects in a quantal system due to its int
action with the environment [3], is important in field
that rely on the maintenance of delicate quantal coh
ence, including the rapidly growing areas of coherent co
trol [4], quantum computation [5], and charge transpo
in mesoscopic devices [6]. It also plays a central ro
in treatments of classical-quantum correspondence [1
Preliminary studies have suggested that systems which
chaotic in the classical limit decohere rapidly [7–9]. How
ever, the rate of this decoherence and its dependence
system properties is unclear. Here we derive the fun
tional form for the rate of decoherence, provide an expli
link between the rate and the extent of the system’s pha
space structure and demonstrate that decoherence oc
exponentially, with a rate determined by a generalized Ly
punov exponent, for quantum systems with a chaotic cl
sical analog. In addition, we note that the decoheren
rate is reduced for̄h sufficiently large, although in genera
the decoherence of a quantal system may be maxim
rapid for a finite value ofh̄. Finally, we show that our
results explain the recent experimental result [6] that t
decoherence rate in mesoscopic devices saturates as
temperatureT ! 0. All of these results follow from an
analysis of decoherence in light of a recent approach [1
which connects the exponentially fast growth of structu
in the distribution dynamics of chaotic systems to a gen
alized Lyapunov exponentl2 of the classical dynamics in
phase space.

Consider the Wigner representations; rW d [11]
of a quantal density matrix; it is suitably normalize
sTrfrW g  1d, but is in general not a “pure state
sTrfsrW d2g fi 1d. The relevant decoherence equation f
rW , derived from the quantum system evolving under t
potential V sqd and coupled to an external environmen
through the position operator, is [1–3,7]

≠rW

≠t
 hH, rW j 1

X
n$1

h̄2ns21dn

22ns2n 1 1d!
≠2n11

≠q2n11
V sqd

3
≠2n11

≠p2n11
rW 1 D

≠2

≠p2
rW . (1)

The first term on the right of this equation is the Poi
son bracket or classical Liouville operator, which gene
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ates the classical evolution forrW ; the terms inh̄ add
the quantal evolution, with the expansion being formal
valid for a potentialV sqd analytic in q. The decoher-
ence is contained in the term dependent onD; its precise
form and parameter dependence rests upon assumpt
about the form of the system-environment coupling an
the spectrum of the environment. The standard form [1
for example, hasD  2gMkBT , whereM is the system
mass,T the temperature of the environment,kB is the
Boltzmann constant, andg an unknown measure of the
system-environment coupling. Different forms forD may
also obtain [2,12], althoughD always depends monotoni-
cally on the coupling and the temperature of the env
ronment. The particular form of the couplingD ≠2

≠p2 rW

comes from the choice of coupling through position
coupling through momentum would giveD ≠2

≠q2 rW . For
full generality it is appropriate to useD=2rW , where=2 is
the Laplacian operator in phase space. By using the

lationship dÂ
dt 

≠Â
≠t 1

1
i h̄ fÂ, Ĥg for the time evolution of

an arbitrary operator̂A, Eq. (1) can also be written as

drW

dt
 D=2rW . (2)

We use the=2 form hereafter; the arguments are entire
unchanged if either the momentum or the position co
pling is used.

Our criterion for monitoring the degree of system dec
herence is the Renyi entropy [1,13]S  lnsTrfsrW d2gd.
This function maximizes at zero for a pure state and
a direct measure of the degree of mixing of the quantu
state [1,14]. The time dependence ofS thus provides in-
formation about the rate at which a “coherent” quantu
pure state is transformed into an “incoherent” or statis
cal mixture of states. It is straightforward to show, usin
Eq. (2), that

dS
dt

 2D
TrfrW =2rW g

TrfsrW d2g
; 22Dx2. (3)

The quantityx [10] (which is in general time depen-
dent) affords insight insofar as it is the root-mean-squa
Fourier radius of the distribution, and a measure of pha
space structure. That is, if we Fourier expand any d
tribution r as rsp, qd 

R R
dm dn e2pismp1nqdr̃sm, nd,
© 1997 The American Physical Society 4131
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where the tilde now represents the Fourier-transform
function, we get that

x2  2
Trfr=2rg

Trfr2g


Trfj=rj2g
Tr fr2g


4p2

R
dk k2jr̃skdj2R

dk jr̃skdj2
, (4)

where the second equality follows from integration b
parts and wherek ; sm, nd. Since higher Fourier modes
are related to increased structure,x measures the structure
in the distribution, and Eq. (3) shows thatthe decoherence
rate of a quantal system is directly proportional to the
extent of system structure in phase space[15]. Note
that since dS

dt is negative definite, the system canno
“recohere” [16] and hence much of the decoherence
determined by the short-time behavior ofxstd. Therefore,
as long as the term inD is not initially dominant, we
can make quantitative predictions ofdSydt based upon
the time dependence of the phase-space structure from
Hamiltonian part of the evolution forrW [17].

Consider first time-independent states (e.g., a mixtu
of Hamiltonian eigenstates). To first order, i.e., befor
decoherence becomes significant, we can estimatex2 from
the initial rW , and find that lower energy states, with les
structure, decohere more slowly. Thus, for example, f
thenth eigenstate of the harmonic oscillatorx2 ~ n so that
decoherence is proportional ton, explaining the numerical
results of Knight and Garraway [18]. Hence we deduc
that in general stationary distributions with lower energ
are more stable with respect to environmental perturbatio

For time-evolving distributions we need to conside
Eq. (3). For nonchaotic systems some insight results fro
a simple analysis since in this instance an adequate m
sure of the time-dependentx2 is the time-averaged̄x2.
For pure states of the harmonic oscillator, for exampl
working within the approximation that an initially pure
state remains so, this criterion yields that minimum unce
tainty coherent states are the most stable [1].

For chaotic systems insight obtains from examining th
behavior ofx2 in the semiclassical limit. In this limitrW

is known [10] to behave like the classical result, at lea
for early times. Consider then the behavior ofx2 for a
classically chaotic system. Let the equations of motio
of a point in phase space beÙx  fsxd. The equations of
motion for the vectors in the tangent space are obtain
by linearizing the dynamicsx ! x 1 ß around a fiducial
trajectory to yield

dß

dt
 Mß , (5)

where the Jacobian matrixM has the elementsMij 
≠fj

≠xi

at the pointxstd. It is straightforward to show [10] that
d
dt

=r  2M=r ; (6)

that is, the equations for evolution ofß and =r are
identical except for a minus sign, where=r is the phase-
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space gradient of the classical probability densityr. This
implies that the usual maximal Lyapunov exponent may b
computed from the distribution gradient evaluated along
trajectory as

lsxd  lim
t!`

1
t

lnsj=rsssxstddddjd . (7)

We now note thatx2 is the distribution average of
this gradient. Thus, adapting the results of the standa
thermodynamic approach for similar averages which us
ß instead of=r [13], we have [10] that

lim
t!`

1
t

lnsxd  l2 . (8)

Herel2, which is independent of trajectories, is a genera
ized Lyapunov exponent related to the ordinary Lyapuno
exponent byl2  l 1 z , wherez $ 0 measures the lo-
cal phase-space fluctuations inl (equivalent to a measure
of the degree of intermittency in chaos [13]). The quantit
l2 has the particularly simple interpretation [10] in that i
measures the exponentially rapid increase of structure f
a chaotically evolving distribution in a Hamiltonian sys-
tem and is in this sense a fundamental exponent for cha
in distribution dynamics. From this treatment it is clea
that xstd grows exponentially rapidly in a chaotic system
as

x2std  x2s0d fexps2l2td 1 Cg , (9)

where C in general fluctuates or grows slower than
exponentially with time.

Thus, substituting Eq. (9) in Eq. (3) we get that the ini
tial decoherence rate of a quantal system in the semicla
sical limit, to first order inD, is

dS
dt

 22Dx2s0d fexps2l2td 1 Cg , (10)

an equation which displays a direct correlation betwee
decoherence rates and the generalized Lyapunov expon
of the underlying classical system.

Note that Eq. (10) implies that in the limit of chaotic
semiclassical behavior, all time-dependent quantum sta
decohere exponentially rapidly and hence that there
only a marginal dependence on the initial distribution
This is in contrast to nonchaotic systems where, as not
above, the rate is strongly affected by the initial state.

We have numerically solved the discrete map version
Eq. (1), with the full=2 coupling to the environment, for
a quantum chaotic cat map [19,20], to explore the natu
of Sstd as a function ofa (a scaledh̄ [19,20]). Results
for a  1021 to 1025 are shown in Fig. 1, withD chosen
at a typical value of1026. Several features are evident:
(a) in the limit of a ! 0, S decreases exponentially
rapidly initially with a rate determined byl2  l 
0.9624 [21], consistent with Eq. (10), (b) the initial deco-
herence rate increases witha for small a, with maximal
falloff for an a ø 0.001, and (c) fora sufficiently large,
the entropy decreases quite slowly.
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entropy
shown
FIG. 1. Time dependence of the degree of incoherent mixing of quantal distributions as measured by the change in
fSstd 2 Ss0dg for the chaotic quantal cat map coupled to the environment. The effect of approaching the classical limit is
by varyinga from 1021 to 1025, wherea is a scaledh̄. D, which is a measure of the coupling to the environment, is1026. See
text for details.
h
s
s
r
st

t-

ate
an

ts
e
he
,

ix-
on-
he
”
f

or-
tial
to
Examination of the first quantum correction to Eq. (10
provides some insight into the observed dependence
Sstd on a. Note first that ash̄ is increased away from
0 and for small t, there is anincrease in the amount
of structure in the distribution. That is, one expec
rW to adiabatically follow the classical distribution, bu
with added fringes [22] (interference structures). Th
added structure can be seen, for example, in compar
the contour maps (Figs. 1–3, Ref. [20]) of the evolvin
distributions. From the first quantal term in Eq. (1), w
can estimate that the quantum correction to an individu
Fourier component̃rskd is r̃skd ! r̃W skd ø r̃skd s1 1

c0h̄2k3d, wherec0 depends on the potential and include
all other constants. Thus, for an initial distribution tha
is not very structured (vanishing support at largek), rW

is very close tor. However, even when the quantum
terms are small,x2 sums them over all the Fourie
components, weighted by the factork2. A crude estimate
[23] then yields that the quantum correctedx2

q relates
to the classical estimatex2

c as x2
q ø x2

c s1 1 ch̄2x6
c d.

Hence the quantum correction tox2 can be quite large.
This analysis of the contribution of an individua

Fourier component to the enhancement of structure bre
down for h̄2k3  O s1d; this happens rapidly, since for
classically chaotic dynamics the support for the dist
bution at largerk values increases exponentially fas
Hence, higher-order contributions also have to be es
mated, which is in general extremely difficult. By thi
time, however, the second quantal effect enters: Qu
tum distributions resist the growth of structure at scal
smaller thanh̄ [22] and the support of the distribution
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travels slowly across thek ø 1
a boundary in Fourier

space. This is marked by [10] a slowdown of the growt
of x at O s 1

a d. The interplay between these two effect
leads to a value of̄h where the quantum system decohere
maximally rapidly for early times. Quantum systems fo
h̄ larger than this critical value are, however, stable again
decoherence, as seen in Fig. 1.

A second interesting effect emerging from this trea
ment is the dependence of the decoherence rate onD. It
has been recently observed [6] that the decoherence r
for quantal mesoscopic devices goes to zero slower th
any power of the temperatureT as the systems are cooled
to near-zeroT . The measure used in these experimen
is the dephasing time, which is monitored through th
change in coherent quantal backscattering effects in t
device (weak localization) [6]. In our theoretical analysis
arguing that an increase in the degree of incoherent m
ing reduces this coherent backscattering effect, a reas
able analog of the dephasing time may be taken to be t
time tR at which the system has “sufficiently decohered,
i.e., when the entropy has fallen to some fixed fraction o
its initial valueR  Ss0d 2 SstRd  lns Trhf rW s0dg2j

TrhfrW stRdg2j d  1,
for example. Since these mesoscopic devices are dis
dered systems, with the electrons experiencing substan
chaotic scattering from impurities, Eq. (10) is expected
apply in the semiclassical limit. If we now solve for the
effect onSstd of the dominant exponential term from this
equation, we get the expression

tR 
1

2l2
ln

∑
Rl2

Dx2s0d
1 1

∏
. (11)
4133



VOLUME 79, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 24 NOVEMBER 1997

)

r,

.

of

ch
The 1yD term dominates asT , and henceD, ! 0 and in-
dicates that,independentof the particular power-law de-
pendence ofD on the temperature, the dephasing tim
goes to infinity logarithmically with vanishing tempera-
ture, i.e., slower than any power law. Equation (11) is,
fact, able to reproduce the general shape of Figs. 1 an
of Ref. [6], albeit with free parameters. In addition to thi
logarithmic dependence onD in the semiclassical limit,
a different effect shows up as the system becomes m
quantal: Since (1) the decoherence rate grows asDx2

and (2) the growth of structure slows down atx  O s 1
h̄ d,

the decoherence term has a distinctly greater impactp
D $ O sh̄d. This behavior can be seen in the slow de

crease inS for a  1022, 1021 in Fig. 1.
In summary, we have demonstrated that the decohere

rate of a quantal system coupled to the environment
governed by the degree of structure in the system
measured by the quantityx. This has enabled us to
make various deductions about the stability of distribution
under the action of the environment which generaliz
several recent [1,7,8] discussions. We have shown th
since the structure of a distribution increases exponentia
fast for a classically chaotic system, distributions in suc
systems decohere exponentially fast in the semiclassi
limit, with the exponent given by the quantityl2. This
behavior is manifest, for example, in the observation [6
that the dephasing time for semiclassical systems whi
are classical chaotic goes to infinity logarithmically with
the temperature.
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