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Exponentially Rapid Decoherence of Quantum Chaotic Systems
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We use a recent result to show that the rate of loss of coherence of a quantum system increases
with increasing system phase-space structure and that a chaotic quantal system in the semiclassical limit
decoheres exponentially with ra2e.,, wherea, is a generalized Lyapunov exponent. As a result, for
example, the dephasing time for classically chaotic systems goes to infinity logarithmically with the
temperature, in accord with recent experimental results. [S0031-9007(97)04643-7]

PACS numbers: 05.45.+b, 03.65.Sq, 05.40. +j

Decoherence [1,2] which is, in general, the loss of in-ates the classical evolution fgr"; the terms in/ add
terference effects in a quantal system due to its interthe quantal evolution, with the expansion being formally
action with the environment [3], is important in fields valid for a potentialV(g) analytic ing. The decoher-
that rely on the maintenance of delicate quantal coherence is contained in the term dependentigrits precise
ence, including the rapidly growing areas of coherent conform and parameter dependence rests upon assumptions
trol [4], quantum computation [5], and charge transportabout the form of the system-environment coupling and
in mesoscopic devices [6]. It also plays a central rolethe spectrum of the environment. The standard form [1],
in treatments of classical-quantum correspondence [1,2for example, ha®d = 2yMkgT, whereM is the system
Preliminary studies have suggested that systems which areass,T the temperature of the environmetiz is the
chaotic in the classical limit decohere rapidly [7—9]. How- Boltzmann constant, angt an unknown measure of the
ever, the rate of this decoherence and its dependence sgstem-environment coupling. Different forms formay
system properties is unclear. Here we derive the funcalso obtain [2,12], althougP always depends monotoni-
tional form for the rate of decoherence, provide an explicitcally on the coupling and the temperature of the envi-
link between the rate and the extent of the system’s phasg@onment. The particular form of the couplirig%pw
space structure and demonstrate that decoherence occdtimes from the choice of coupling through position;
exponentially, with a rate determined by a generalized Lya- i

punov exponent, for quantum systems with a chaotic cla coupling through momentum would gi\B;—quW' For
, - L ) > W 5
sical analog. In addition, we note that the decoheren Tl generality it is appropriate to usBV=p™, wherev*is

[ . . .
rate is reduced fok sufficiently large, although in general the Laplacian oppratolr in phase space. By using the re-

. - dA dA AR . .
the decoherence of a quantal system may be maximallptionshipZz = 37 + 7 [A, H] for the time evolution of

rapid for a finite value ofi. Finally, we show that our an arbitrary operatod, Eq. (1) can also be written as
results explain the recent experimental result [6] that the dp"

_ 2 W
decoherence rate in mesoscopic devices saturates as the dt DVip™. (2)

temperaturel” — 0. All of these results follow from an  \ye use thev? form hereafter; the arguments are entirely

analysis of decoherence in light of a recent approach [10}nchanged if either the momentum or the position cou-
which connects the exponentially fast growth of structuré,jing is used.

in.the distribution dynamics of chaotic systems to a gener- o criterion for monitoring the degree of system deco-
alized Lyapunov exponentt, of the classical dynamics in  perence is the Renyi entropy [1,18]= In(Tr[(p")?]).

phase space. _ _ W This function maximizes at zero for a pure state and is
Consider the Wigner representatiof= p”) [11] 5 girect measure of the degree of mixing of the quantum
of a quantal density matrix; it is suitably normalized giate [1,14]. The time dependenceSthus provides in-
(TT[PWMJ = 1), but is in general not a “pure state” formation about the rate at which a “coherent” quantum
(Tr[(p™)°] # 1). The relevant decoherence equation fory e state is transformed into an “incoherent” or statisti-

p", derived from the quantum system evolving under the5| mixture of states. It is straightforward to show, using
potential V(¢) and coupled to an external envwonmentEq. (2), that

through the position operator, is [1-3,7]

ds Tr[p"V2p"] _ >
P w th —1)" 82”+1 - = —2Dy*. 3
% ={H.p"}+ > 22"(251 +)1)' agrt V9 a Tel(o YY) § )
_— n=1 ) ) The quantity y [10] (which is in general time depen-
> 9 oV + D 97 oV 1) dent) affords insight insofar as it is the root-mean-square
gpntl ap? Fourier radius of the distribution, and a measure of phase-

The first term on the right of this equation is the Pois-space structure. That is, if we Fourier expand any dis-
son bracket or classical Liouville operator, which gener-ribution p as p(p,q) = [ [du dv e*™#r+7D p(u, v),
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where the tilde now represents the Fourier-transformedpace gradient of the classical probability dengity This

function, we get that implies that the usual maximal Lyapunov exponent may be
5 Tr[pV2p]  Tr[|Vpl?] computed from the distribution gradient evaluated along a
- Tr[pz] - Tr [pz] trajectory as

_ 4m? [dkIp0P @ Aw) = lim — (Vo (o)) ™

Jaklpl?
where the second equality follows from integration byWe now note thaty® is the distribution average of
parts and wheré = (u, »). Since higher Fourier modes this gradient. Thus, adapting the results of the standard
are related to increased structugemeasures the structure thermodynamic approach for similar averages which use
in the distribution, and Eq. (3) shows thhe decoherence s instead ofVp [13], we have [10] that
rate of a quantal system is directly proportional to the |
extent of system structure in phase sp4dt6]. Note ![TJC?'n(X) = A (8)
that sinced—f is negative definite, the system cannot|_|ere)\2
“recohere” [16] and hence much of the decoherence i ;
determined by the short-time behavioryfr). Therefore,

which is independent of trajectories, is a general-
Tzed Lyapunov exponent related to the ordinary Lyapunov
A oY ! exponent byd, = A + £, where/ = 0 measures the lo-
as long as the term i is not initially dominant, we 5 yhage-space fluctuationsAr{equivalent to a measure
can make quantitative predictions d8/dr based upon ¢ e gegree of intermittency in chaos [13]). The quantity
the time dependence of the phase—sgvace structure from the o< the particularly simple interpretation [10] in that it
Hamllto_nlan part (.)f th(_e evolution fgs™ [17]. . measures the exponentially rapid increase of structure for
Cons!der _f|rst t.|me-|ndependent states (e.g_., a mixturg chaotically evolving distribution in a Hamiltonian sys-
of Hamiltonian elgensta_tes_)._ To first order,_ l.e., beforeem ang is in this sense a fundamental exponent for chaos
decoherence becomes significant, we can estigpateom in distribution dynamics. From this treatment it is clear

PSR . ;
the initial p*, and find that lower energy states, with Iessthat)((t) grows exponentially rapidly in a chaotic system
structure, decohere more slowly. Thus, for example, fo%s

thenth eigenstate of the harmonic oscillaget « n so that

decoherence is proportional &g explaining the numerical x2(1) = x*(0)[exp2A51) + C], 9)
results of Knight and Garraway [18]. Hence we deduc§ynere ¢ in general fluctuates or grows slower than
that in general stationary distributions with lower energyexnonentially with time.

are more stable with respect to environmental perturbation. Thus, substituting Eq. (9) in Eqg. (3) we get that the ini-

For time-evolving distributions we need to considerig| decoherence rate of a quantal system in the semiclas-
Eg. (3). For nonchaotic systems some insight results frongj4| limit. to first order inD. is

a simple analysis since in this instance an adequate mea-

sure of the time-dependent? is the ti_me—averageqrz. as _ —2D ¥ 2(0) [exp2Aat) + C], (10)

For pure states of the harmonic oscillator, for example, dt

working within the approximation that an initially pure an equation which displays a direct correlation between
state remains so, this criterion yields that minimum uncerdecoherence rates and the generalized Lyapunov exponent
tainty coherent states are the most stable [1]. of the underlying classical system.

For chaotic systems insight obtains from examining the Note that Eq. (10) implies that in the limit of chaotic
behavior ofy? in the semiclassical limit. In this limjp"  semiclassical behavior, all time-dependent quantum states
is known [10] to behave like the classical result, at leastlecohere exponentially rapidly and hence that there is
for early times. Consider then the behavior pf for a  only a marginal dependence on the initial distribution.
classically chaotic system. Let the equations of motionThis is in contrast to nonchaotic systems where, as noted
of a point in phase space he= f(x). The equations of above, the rate is strongly affected by the initial state.
motion for the vectors in the tangent space are obtained We have numerically solved the discrete map version of
by linearizing the dynamics — x + s around a fiducial Eq. (1), with the fullV?> coupling to the environment, for

trajectory to yield a quantum chaotic cat map [19,20], to explore the nature
ds of S(¢) as a function ofae (a scaleds [19,20]). Results
i Ms, (5)  fora = 107! to 1075 are shown in Fig. 1, wittD chosen

) , of, at a typical value ofi0~®. Several features are evident:
where the Jacobian matrik has the element®;; = 5 (3) in the limit of @ — 0, S decreases exponentially

at the pointx(z). It is straightforward to show [10] that rapidly initially with a rate determined by, = A =
d Vp = — MVp - ) 0.9624 [21], consistent with Eq. (10), (b) the initial deco-
dt p P> herence rate increases withfor small a, with maximal
that is, the equations for evolution of and Vp are falloff for an a = 0.001, and (c) fora sufficiently large,
identical except for a minus sign, whelép is the phase- the entropy decreases quite slowly.
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FIG. 1. Time dependence of the degree of incoherent mixing of quantal distributions as measured by the change in entropy
[S(z) — S(0)] for the chaotic quantal cat map coupled to the environment. The effect of approaching the classical limit is shown
by varyinga from 10~! to 107>, wherea is a scaledi. D, which is a measure of the coupling to the environment0is®. See

text for details.

Examination of the first quantum correction to Eq. (10)travels slowly across th& = é boundary in Fourier
provides some insight into the observed dependence apace. This is marked by [10] a slowdown of the growth
S(t) on a. Note first that agi is increased away from of y at (9(%), The interplay between these two effects
0 and for smallt, there is anincreasein the amount |eads to a value of where the quantum system decoheres
of structure in the distribution. That is, one expectsmaximally rapidly for early times. Quantum systems for
p" to adiabatically follow the classical distribution, but 7 larger than this critical value are, however, stable against
with added fringes [22] (interference structures). Thedecoherence, as seen in Fig. 1.
added structure can be seen, for example, in comparing A second interesting effect emerging from this treat-
the contour maps (Figs. 1-3, Ref. [20]) of the evolvingment is the dependence of the decoherence rat®.orit
distributions. From the first quantal term in Eq. (1), wehas been recently observed [6] that the decoherence rate
can estimate that the quantum correction to an individuajor quantal mesoscopic devices goes to zero slower than
Fourier componeng (k) is p(k) — p" (k) = p(k)(1 +  any power of the temperatue as the systems are cooled
¢'i?k?), wherec’ depends on the potential and includesto near-zerof. The measure used in these experiments
all other constants. Thus, for an initial distribution thatis the dephasing time, which is monitored through the
is not very structured (vanishing support at laide p"  change in coherent quantal backscattering effects in the
is very close top. However, even when the quantum device (weak localization) [6]. In our theoretical analysis,
terms are small,y*> sums them over all the Fourier arguing that an increase in the degree of incoherent mix-
components, weighted by the factor. A crude estimate ing reduces this coherent backscattering effect, a reason-
[23] then yields that the quantum correctgd relates able analog of the dephasing time may be taken to be the
to the classical estimatg? as y; = xZ(1 + ci’x0). time rz at which the system has “sufficiently decohered,”
Hence the quantum correction 4@ can be quite large. i.e., when the entropy has fallen to some fixed fraction of

This analysis of the contribution of an individual its initial valueR = S(0) — S(tg) = In(%‘%) —1,
Fourier component to the enhancement of structure breaksr example. Since these mesoscopic devices are disor-
down for 72k* = O(1); this happens rapidly, since for dered systems, with the electrons experiencing substantial
classically chaotic dynamics the support for the distri-chaotic scattering from impurities, Eq. (10) is expected to
bution at largerk values increases exponentially fast. apply in the semiclassical limit. If we now solve for the
Hence, higher-order contributions also have to be estieffect onS(r) of the dominant exponential term from this
mated, which is in general extremely difficult. By this equation, we get the expression
time, however, the second quantal effect enters: Quan-
tum distributions resist the growth of structure at scales 1 | [ R, }

smaller than/ [22] and the support of the distribution R = 24 LDy2(0)

(11)
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