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Recoil Effects in Positronium Energy Levels to Ordera6
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Corrections to the positronium energy levels of ordera6 due to photon exchanges are calculated
in the effective Hamiltonian approach. The quoted results are valid for allS states and arbitrary
mass ratios. We further present implications on the comparison of theory and experime
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Positronium is a fundamental system for the study
quantum electrodynamics (QED) theory. Consisting
an electron and a positron, it includes only negligib
contributions from strongly interacting particles. Fo
these reasons, one can calculate the positronium ene
levels with a high accuracy, unlimited by the finite
nuclear size effect. In contrast, theoretical predictio
for the Lamb shift and hyperfine structure of hydroge
are limited by the uncertainty in the proton electric an
magnetic formfactors. Therefore positronium opens
window for high precision QED tests. The ground sta
hyperfine structure (HFS) and the sharp13S1-23S1 two-
photon transition are particularly interesting.

The theoretical treatment of bound states is a dist
guished problem in quantum electrodynamics. The Beth
Salpeter equation [1] provides a starting point for most
the calculations. In a previous paper [2], we introduced
different approach to bound state QED and calculated a
coil correction of ordera6 to the HFS ofnS states. In this
Letter we complete the calculation of recoil corrections
the positroniumS levels. Our effective Hamiltonian ap-
proach is based on Lepage’s idea of nonrelativistic qua
tum electrodynamics [3], on Khriplovich and co-workers
calculations using Breit expansions [4], and on our pr
vious calculations of the hydrogen Lamb shift and th
hyperfine structure [5]. We construct an effective Ham
tonian, where all momenta are of the order ofma, by intro-
ducing a cutoff parameterl. The high momentum region
is accounted for by addingd-like terms. Coefficients for
these terms are determined by comparing resolvents c
structed from the QED Hamiltonian and those construct
from the effective Hamiltonian. The equivalence of bot
resolvents ensures that the poles, i.e., the energy lev
are at the same position. The calculation of Khriplovic
et al. of the positroniumP levels [4] was performed with-
out any cutoff. Such a threshold was not required sin
the P-wave function vanishes at the origin, however, fo
S states the corresponding corrections would diverge, a
therefore a cutoff is necessary to keep all the terms fin
and meaningful.

Positronium energy levels.—The main structure of the
positronium spectrum is obtained from the nonrelativist
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Hamiltonian

HS ­
p2

2 m
2

a

r
, (1)

wherem denotes the reduced mass of the system and
equal to half of the electron mass for positronium. Th
corresponding eigenenergies are

En ­ 2
m a2

2 n2
­ 2

ma2

4 n2
. (2)

Leading relativistic effects, of ordera4, are correctly
described by the Breit interaction [cf. Eq. (10)]. Thes
include relativistic corrections to the kinetic energy, a
well as to the spin-orbit, spin-spin, and annihilation
effects. In the following, we consider only tripletS states,
i.e., states withL ­ 0 and S ­ 1. These relativistic
corrections sum to [6]

Es4d ­
ma4

2 n3

µ
11

32 n
1

1
6

∂
. (3)

There are many sources for corrections of the order ofa5.
For triplet S states they are electron and positron sel
energy, the vacuum polarization, two-photon exchang
and a one-loop correction to the one-photon annihilatio
[7]. The complete formula describing these terms is [8]

Es5d ­
ma5

8 p n3

Ω
14
3

∑
ln

µ
2
n

∂
1 Csnd 1 C 1

1
2 n

∏
2

13
5

1
2
3

ln 2 2
16
3

ln k0snd

2 6 lnsad
æ

, (4)

whereC is a logarithmic derivative of EulerG function
and C denotes the Euler constant. The calculation o
the a6 correction has not yet been completed. Th
leading terms, enhanced by lna, come from two sources.
First, the one-photon annihilation contribution [9] can b
written as

DEs6d ­
ma6

n3

∑
2

1
24

lnsad 1 Ksnd
∏

, (5)

where Ksnd denotes a constant term. The second ter
results from the spin-dependent part of the three-phot
© 1997 The American Physical Society
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exchange [10]. A complete formula is obtained from [2
by putting m1 ­ m2 ­ m and dividing by 4 to get the
shift of the triplet state:

DEs6d ­
m a6

12 n3

Ω
1.130s5d 1

1
2

flnsnd 2 Csnd 2 Cg

2
3

2 n2
1

7
4 n

2
1
4

2
1
2

lnsad
æ

. (6)

The calculation of the spin-independent part ofDEs6d is
presented in the following section. As it was found i
[11], this contribution does not lead to lnsad terms.

Details of the calculation.—Some details of the
method used in our work have been described in [
There are two energy regions in the integrals whi
generate thea6 term. The low energy scale is given
by the inverse of Bohr radius, and the high energy sc
is governed by the electron mass. In our method
artificial parameterl is introduced to separate these tw
regions and allow the use of expansions specific to ea
energy region. There is a freedom, how the parametel
]

n

2].
ch
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o
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r

is introduced. Our choice is the following:
1
k2

!
1
k2

L2

k2 1 L2
, (7)

where L ­ lma. This replacement defines the low
energy part. In the case of the Coulomb interaction
takes the form

V ­ 2
a

r
! 2

a

r
s1 2 e2l mard . (8)

Since the value ofl is arbitrary, after the expansion ina,
we can also expand in1yl. This allows the calculation of
all necessary matrix elements, without knowledge of t
exact wave function in the modified Coulomb potential.

In the first step one finds an effective Hamiltonian

HEF ­
p2

2 m
2

a

r
s1 2 e2lmar d 1 DHs4d 1 DHs5d

1 DHs6d 1 a2M5d3srd 1 a3M6d3srd . (9)
The DHsid account for the low momentum region, while
the Mj coefficients account for the contributions from fo
high momentum regime. All terms depend onl. DHs4d

is a Breit Hamiltonian
DHs4d ­ 2
p4

8 m3
1

2
p4

8 m3
2

1
p a

2

µ
1

m2
1

1
1

m2
2

∂
d3srd 2

a

2 m1 m2 r

µ
p2 1

ri rj

r2 pi pj

∂
2

a

4 m1 m2

∑
s1 s2

r3 2
3 s1r s2r

r5 2
8
3

p s1s2 d3srd
∏

, (10)
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which must be regularized according to the prescript
in Eq. (7), otherwise matrix elements in Eq. (11) wou
be divergent. We will keep the two masses differe
throughout the calculation to permit a comparison w
known corrections in the hydrogen atom.DHs5d and
DHs6d are Breitlike Hamiltonians obtained by the high
order expansion in momenta.DHs6d comes from time or-
dered diagrams presented in Fig. 1. This calculation
done in the Coulomb gauge, which is the most appropr
one for this problem. A dashed line denotes a Coulo
interaction, while a wavy line denotes a transverse p
ton. The nominal contribution from double-transvers
double-pair diagrams is of the order ofa5. The retarded
part and the single Coulomb exchange cancel each o
at ordera6. Another cancellation effect allows the “Z”
subdiagram to be treated as a point interaction.

The contribution of theDHsid to the energy in the orde
of a6 is calculated according to standard perturbati
theory

DEL ­ sfjDHs6djfd 1

µ
fjDHs4d 1

sE 2 Hd0
DH s4djf

∂
.

(11)

All matrix elements are calculated analytically in the lim
of largel. As an example, consider the termø

p4

8
1

sE 2 Hd0
p4

8

¿
­ 2

1
8

kV 02l 1
1
2

kV 3l 2
1
n3

2
3

2 n4
1

3
n5

2
5

8 n6
, (12)
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whereV is defined in Eq. (8) and

kV 02l ­
8
n3

∑
l

4
1 ln

µ
3
l

∂
2

11
12

1
1

6 n2
1

1
2 n

1 Csnd 1 C 2 lnsnd
∏

,

kV 3l ­ 2
4
n3

∑
ln

µ
l

4

∂
1 ln

µ
3
4

∂
1

1
2

2
1

2 n

1 lnsnd 2 Csnd 2 C

∏
. (13)

The divergent terms those which are linear or logarithm
in l, are canceled by the coefficientsMi :

DEH ­ kfja2M5d3srdjfls6d 1 kfja3M6d3srdjfl .
(14)

M5 is obtained by comparing the two-photon sca
tering amplitudes derived from QED and from th
effective Hamiltonian. In analogy,M6 is obtained by
comparing three-photon scattering amplitudes. T
contribution fromM5 to the energy in the order ofa6 is
due to its linear divergence inl

ka2M5d3srdls6d ­
l a3

2 m1 m2

√
m2

m1 m2
2 1

!
f2

ls0d , (15)

where f
2
ls0d ­ f2s0d s1 2 4yld. It was convenient in

this calculation to combine thel dependence of the wav
function at the origin withM6. Therefore, M5 only
4121
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cancels out the linear divergence inl in Eq. (11), and the expression for the high energy part is

DEH ­
a6 m3

n3 m1 m2
T , (16)

T ­
1

16 p4

Z
d3p1 d3p2

1

p4
1 q2 p4

2

Ω
gsp1, q, p2d 2

L2

p2
1 1 L2

L2

q2 1 L2

L2

p2
2 1 L2

gs4dsp1, q, p2d 2 gs0, p2, p2d

1

µ
L2

p2
2 1 L2

∂2

gs4ds0, p2, p2d 2 gsp1, p1, 0d 1

µ
L2

p2
1 1 L2

∂2

gs4dsp1, p1, 0d
æ
.

(17)
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The functiong is obtained from the forward scattering
three-photon exchange amplitude at zero momentum
integration with respect to two-photon energies and t
subtraction of lower order terms which correspond
HS , DHs4d, andDHs5d. Thegs4d is a leading term in the
power expansion ofg in momenta, and is of the orderp4.
The algebraic expression forg is very long, so special care
has to be taken to generate a numerically stable express
without any spurious singularities. This was achieved
writing diagrams in mixed time-momentum representatio
and by integrating with respect to the time coordinate
each vertex. This calculation directly corresponds to t
4122
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standard Rayleigh-Schrödinger perturbation theory.
small momenta we take the leading term in the pow
expansion. There are additional terms which we subt
from g because they contribute at photon energies
order a2. They are the nonrelativistic single transver
retardation diagrams Nos. 5, 6, and 7 on Fig. 1. Th
terms are ultraviolet finite and are calculated directly. T
additional subtraction leads to logarithmic dependence
l in (17). The three-dimensional numerical integrati
of T is done to quadrupole precision using the Gauss
method with 15 and 30 points [12]. Errors are estima
by comparing both values. The sum of all terms lead
the expression which is the main result of this work:
DEs6d ­
m a6

n3

∑µ
2

1
8

2
5

16 n3
1

3
4 n2

2
3

8 n

∂
1

m2

m1 m2

µ
F 1

3
16 n3

2
1

4 n2

∂
2

m4

m 2
1 m 2

2

µ
1

16 n3
1

1
3 n2

1
2
n

∂∏
.

(18)
e
8)
e

c-
o-
n

The first term corresponds to the Dirac formula for h
drogenic energy levels with the electron mass replaced
the reduced mass. The second term agrees with the
coil correction calculated in [13] and independently co
firmed in [14]. F is a sum of n-independent terms,
but it depends on the mass ratio. Form1ym2 ! 0, F
is F ­ 20.727s1d, which is very close to the numbe
4 ln 2 2 7y2 ­ 20.727 411. We regard this agreemen
as a significant test of these calculations. For positroniu

FIG. 1. Time ordered diagrams contributing to energy leve
in a6 order.
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m1 ­ m2, and thus

F ­ 21.573s5d . (19)

Figure 2 is a plot ofF for intermediate values ofm1ym2
The third term in Eq. (18) is completely new, and non
of our tests could check its correctness. Equation (1
completes the calculation of the pure photon exchang
correction of the order ofa6. For positronium it becomes

DEs6d ­
m a6

8 n3

∑
22.073s5d 2

69
64 n3 1

8
3 n2 2

2
n

∏
.

(20)
We have developed a novel approach to quantum ele

trodynamics of the bound states and calculated the ph
ton exchange contribution to positronium energy levels i
the order ofa6. Using Eqs. (6) and (20), one can find a
correction to the13S1-23S1 transition in the order ofa6

beyond previously known lna terms, which is

DE ­ 3.5 MHz. (21)

The corrected theoretical prediction for the13S1-23S1

transition becomes

Eth ­ 1 233 607 224.9s8.2d MHz. (22)

where the error is estimated assuming a coefficient1y2
for the unknown terms of orderma6. The measurement
of Feeet al. [15] gives

Eexp ­ 1 223 607 216.4s3.2d MHz. (23)
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FIG. 2. Numerical values ofF as a function ofx ­ sm1 2
m2d2ysm1 1 m2d2.

Although the agreement within an error is maintained, t
new correction increases the deviation from the measu
value. The theoretical predictions are still limited b
unknown other terms in the order ofa6, such as radiative
recoil or a single-photon annihilation. Calculation of th
latter one has recently been completed by Adkinset al.
[16], and independently by Hoanget al. [17]. We point
out that for positronium, the logarithmic corrections o
order a7 ln2sa22d might be important at the current
precision level.

An additional motivation for our work is the problem o
the calculation of the helium energy levels in the order
a6. There have been several high precision measureme
of the Lamb shift of the singlet1S ground state [18], and
the metastable triplet2S state [19]. It is a challenge for
theorists to formulate a formalism for the calculation o
this correction. We believe that the method develop
here could be used in a more complex system like t
helium atom.
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