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Mesoscopic Theory of Granular Fluids
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Using fluctuating hydrodynamics we describe the slow buildup of long range spatial correlations in
a freely evolving fluid of inelastic hard spheres. In the incompressible limit, the behavior of spatial
velocity correlations (including~¢ behavior) is governed by vorticity fluctuations only and agrees
well with two-dimensional simulations up to 50 to 100 collisions per particle. The incompressibility
assumption breaks down beyond a distance that diverges in the elastic limit. [S0031-9007(97)03645-4]

PACS numbers: 46.10.+z, 05.20.Dd, 05.40.+j, 81.05.Rm

In the characterization of granular matter as an unusuajiven by the Enskog theory [8] for@ensesystem of hard
solid, fluid, or gas by Jaegest al.[1], this Letter ad- disks or spheresi(= 2,3) andy, = €/2d. ThenT(¢) =
dresses th@ranular gasregime, controlled by inelastic- To/[1 + yow(To)t]? = Toexp—2yor), where 7 is the
ity, clustering [2], and collapse [3]. Clustering is a long average number of collisions suffered per particle within a
wavelength, low frequency (hydrodynamic) phenomenortime. Itis found by integratinglt = w (T (¢))dt. More-
and inelastic collapse a short wavelength, high frequencgver, this HCS solution iBnearly unstableonce the linear
(kinetic) phenomenon. In the granular gas regime, alsextentL of the system exceeds some dynamic correlation
called rapid granular flows the dynamics is dominated length, which increases with decreasigand is propor-
by inelastic collisions. Here the methods of nonequilib-tional to/y [1-7].
rium statistical mechanics, molecular dynamics, kinetic The dynamics ofluctuations say, in densitygn(r, ),
theory, and hydrodynamics are most suitable for describand flow field,u(r, z), have hardly been studied [2,4,7], in
ing the observed average macroscopic behavior [2—7] ansharp contrast to the large number of publications about
the fluctuations around it. the average behavior. We note that fluctuations are absent

The lack of energy conservation makes the granulain hydrodynamic as well as in Boltzmann-Enskog-type
gas, whether driven or freely evolving, behave verykinetic equations which are based on molecular chaos
differently from molecular fluids. The essential physical(mean field assumption). The objects of interest in this
processes and detailed dynamics are described in [2,BEtter are the spatial velocity and density correlations
and references therein: the similarities and differences 1 , , ,
with molecular fluids; lack of separation of microscales ~ CGap(r.1) = v f dr’{ua(r + r', Dup(r', 1)),
and macroscales, not only because the grains themselves { 1)
are macroscopic, but also because of the existence of G, (r,1) = — f dr'(dn(r + r’,1)én(r',1)),
intermediate intrinsic scales which are controlled by the 4
inelasticity and are only well separated when the systenwith V = L4, and the structure factor§,g(k,?) and
is nearly elastic. A simple model which incorporatess,,(k,t), which are the corresponding Fourier transforms.
the inelasticity of the granular collisions consists of Goldhirschet al. [2] initiated molecular dynamics studies
inelastic hard spheres (IHS), taken here of unit massf S,,(k,7) and S,,(k,1) = >, Saa(k,?), and related
and diameter, with momentum conserving dynamics. Thén a qualitative way the structure at small to the
energy loss in a collision is proportional to timelasticity  most unstable vorticity modes, and presented a nonlinear
parametere = 1 — > where « is the coefficient of analysis to explain the enslaving of density fluctuations
normal restitution. by the vorticity field [9]. A more quantitative description

For an understanding of what follows, we recall twoof the structure factorss,,(k,) [4] and S,,(k,?) [7]
important properties of the undriven granular gas: (i) thenas been recently proposed, based on the dynamics
existence of ahomogeneous cooling staf¢iCS) and of macroscopic unstable modes (Cahn-Hilliard theory
(ii) its instability against spatial fluctuations. The hydro- of spinodal decomposition [10]). However, numerical
dynamic equations for an IHS fluid, started in a uniformevidence from molecular dynamics for the quantitative
equilibrium state with temperaturg,, admit an HCS so- validity of this theory is still lacking.
lution (see, e.g., [2,3,7]) with a homogeneous temperature The main goal of the present Letter is to calculate the
T(1), described byd,T = —2yowT. Here the collision velocity correlation functiorG,z(r, r) in unforced granu-
frequency isw(T) ~ /T /I, with a mean free patly,, lar flows and to show that fluctuating hydrodynamics [11]
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gives a quantitative description of the spatial correlationsvith the self-correlations substracted, which is regular
over a large intermediate time interval, controlled byat the origin. For the same reason the structure factor
linearized hydrodynamics. Because the flows in freelyS,g(k,r) has a plateau valu&,gT(t)/n for k — =,
evolving IHS systems are approximatetycompressible whereasscfﬁ(k,t) — 0 in the same limit. The function
(V - u = 0), the vorticity field,V X u, in the nonlinear s ;(k,r) is an isotropic tensor field, which can be decom-
Navier-Stokes equations is practically decoupled from thgosed into two independent scalar functionskof |k|,
other hydrodynamic fields in the system. This implies thai_e_,sgﬁ(k,t) = ica/}ﬁslr(k, 1)+ (8ap — I%alAcB)SI(k, 1),

the densitys and the temperaturg() = Toexp(—2yo7)  where a caret denotes a unit vector. Tieompressibility
can be considered homogeneous, and an approximaggsumptionimplies thenu(k, ) = 0, and consequently
theory based on vorticity fluctuations alone is justified. S||+ (k,r) = 0. Similarly, G;B(r’ 1) = ffaf-BGlr(r,t) +

~ Thus, we describe the Fourier modes of the vorti_city(gaﬁ — P4Pg)G1(r,1). Consider first the longitudinal
field or transverse flow fieldi, (1) by the mesoscopic gpafial correlationG; (r, 1) = [T(t)/né1gy(r/&; 2yor),

Langevin equation [11] (valid fokly < 1) which is given by
. _ 2y —
gk, 1) + v(T@)ui(k,0) =Fk,0), (2 g, s) = ] (zd_q)deiq-x sinzeexds(i q2)] 1 ,
. . _

whereu,; andF are orthogonal t&k, and wherev(T) ~ K (5)
Ip/T is the kinematic viscosity of the IHS fluid in the _ _ .
HCS. The random nois# is assumed to be white and where co® = ¢ - X. In the incompressible limitthe
Gaussian with a correlation transverse correlation function is given hky, (x,s) =

. A gl(x,s) + [x/(d — 1)]og)(x,s)/dx (see [11], Chap. 3).
(Fa(k,DFp(—k,1)/V = Bap(T()k*6(t = '), (3)  These functions can be expressed as integrals over simple

and a noise strengtB, 5(T) = 28,5Tv(T)/n [11]. With functions. As an example, we quote the resultdor 2:

the additional assumption (see [2,3]) that the IHS vis- _ 1 f " sl exols) [1 — ext—x2/ds!
cosity has the same functional form as for elastic g1(x.5) 27x2 Jo s expsl exp(—x"/4s)].
hard spheres or disks, the solution of the proposed (6)

Langevin theory provides a detailed prediction for
Gqp(r,1) on hydrodynamic spacer (= lp) and time
scales t = 1/w(Ty)] without anyadjustable parameters.
We briefly indicate how this is done by calculating
the structure factors | (k,7) = (Ju .(k,1)[?)/V. Here
the subscripte is one of the(d — 1) equivalent trans-
verse components af ;. We transform Eq. (2) into the

The transverse functiog, (x, s) has a negative minimum;
moreover, g (x, s) is positive for all x,s,d; there are
algebraictails gj(x,s) ~ —(d — 1)g, (x,s) ~ x~¢ with

a correction term ofd (exp(—x2/4s)). Similar algebraic
tails occur in nonequilibrium stationary states in driven
diffusive systems [12]. These functions have structure

standard Langevin equation witime independenthoise on_ h)//dgog)nlgamf ZSpacecaﬁnget'gg]esrca?Se V\g:e;iq;?th
strength and coefficients. This is done by the change of _h g § = 2YoT Il inelastici 9 h
variablese (T(1))dt = dr, u, (k, 1) = JT@)w(k, 7) and with respect to unity. At small inelasticityy( — 0) the

. A . dynamic correlation length and mean free phtare well
Fk,1) = o(T()JT(OE(k,7) and yields o, w(k, ) — : : -
o (Ow(k.7) = f(k.7), with a growth ratez, (k) = separated. Details will be published elsewhere [13].

. To verify the theory quantitatively, we have per-
_ 2&2 — 2 . ) . .
Yo(l = k°¢%) and a noise strengthap = 28ap70€°/1- formed event-driven molecular dynamics simulations of

The dynamic correlation lengtif E_\/V/“”’O IS ime  gmooth inelastic hard disks, using square periodic bound-
independent and of ordég/./yo. With the help of the ary conditions andv = 5 X 10%, 2 X 10, and5 x 10*
relation{|w, (k,0)|>) = V/n, the structure factor is then particles. The inelasticity parameter= 1 — a2 was
found as ) varied between 0.02 and 0.8, and the area fraction from

S. (k1) = T(t){1 L &XH2yor(1 = k°89)] - 1} (4) ¢ = 0.0210 0.4, far below the solid transitionp(oia =

’ n 1 — k%2¢? ’ 0.665). Before considering the range of validity of our re-

which is valid forkl, < 1. In the elastic limit o — 0)  sults, we show in Fig. 1(a) how the relative vorticity fluc-
the standard form of fluctuating hydrodynamics and theuationsw(k, 7) have grown [2,3,7]. The HCS and linear
fluctuation dissipation theorem are recovered. &pr< 1 hydrodynamics start to break down. The vorticity field
this equation describes thew structureof the velocity becomes large and evolves into a “dense fluid of closely
correlationsG,g(r, ) on length scales of orde&ré. At packed vortex structures,” which is still homogeneous on
the end of the Letter we return to the predicted structurascales large compared fo,. The larger the inelasticity
on the largest scales. parametek, the more rapidly this happens.

On the shortest scalesr & 0), Gup(r,1)— Apart from the restrictions to hydrodynamic space and
[T(t)/n]d.p6(r), caused by self-correlations of par- time scales, there are two essential criteria limiting the va-
ticles. As our theory describes only structure on the scalédity of our theory: (i) System size& must bethermo-

r = Iy, we consider the equivalent functioﬁf{,;(r, t)  dynamically large(L > 27 ¢), so that Fourier sums over
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FIG. 1. (a) Snapshot of the momentum densityrat 80 in ’
a system WithN = 5 X 104, L = 313 (¢ = 0.4), @ = 0.9, 05 Wﬁo - msﬁp 4 , . =80
coarse grained over cells @3 X 6.3, representing a rather 0 50 100 150 0 50 100 150 O 50 100 150

stable (still very similar atr = 160) configuration of vortex
structures of typical diametef,(r) = 25 (ly = 0.34) with
nearest neighbors having opposite vorticity for reasons o
stability. (b) If{E(¢)/E(0)] versusr from the same simulation
showing the linear (HCS) regime, whet&(r) = T(r), with
slope—2vy, up to a crossover time,, = 65, and the nonlinear
cooling regime with a smaller slope, where the cooling throug
inelastic collisions is partially compensated by viscous heating

FIG. 2. Correlation functionss, (u = {|l, L}) versusr at
yaripus times, inelasticities and densities fr= 5 X 10*
particles, where simulation results of a single run are compared
with theoretical predictions (solid line). Top row (a) shows
log,,[G)/T] versus log,r at @ = 0.9 and ¢ = 0.245 (I, =
0.8), wherer., = 70. The algebraid /r>-tail is clearly visible.
iddle row (b) showsG, /T versusr at « = 0.94 and ¢ =
0.05 (Iy = 5.8) wherer,; = 100. Bottom row (c) shows5, /T
versusr ata = 0.9 and¢ = 0.4 (I, = 0.34) wherer., = 65.
k space can be replaced hyintegrals. (ii) Times must Note regular oscillations with periofty = 50, which is fixed
be restricted to thénear hydrodynamic regimer < r.,), N time.
so that the system remains close to the HCS. Monitor-
ing the energy per particl&(¢) provides a sensitive cri- tion run atN = 5 X 10* at several(e, ¢) values. The
terion to distinguish the linear from the nonlinear coolinglow noise levels, observed in these data and in Fig. 1(a),
regime, where the appearance of gradients causes viscoare a consequence of the IHS collisions which have
heating and slows down the cooling [2] [see Fig. 1(b)].the tendency to make particles move parallel. There
The crossover timer., in Fig. 1(b), decreasing with in- is reasonable agreement with the theoretical predictions
creasinge and ¢, is anintrinsic time scale that only de- from our Langevin theory, in which the viscosity is
pends on the existing gradients. At large ¢) values taken from Enskog’s theory. No fitting parameters are
criterion (ii) reducesr.,;(€; ¢) to subhydrodynamic time involved. The longitudinalG)(r,¢) in Fig. 2(a) shows
scales, withr.(0.5;0.25) = 15 and7..(0.3;0.4) = 25 as good agreement for a large range (ef ¢) values, well
borderline cases. On the other hand, snfall¢) val- beyond the linear time regime,.,. It exhibits thel/r?
ues combined with small. tend to violate criterion (i). tail. The minimum inG,(r,t) at L, (r) can be identified
The small systems with = 5 X 103, and to some extent with the mean vortex diameter, and the low noise data
even those withv = 2 X 10*, only satisfy the criteria (i) in Fig. 2(c) at differentr show that L,(t) ~ /7 is
and (ii) in very narrow parameter ranges. The systemgrowing through vorticity diffusion. At small(e, ¢)
studied in Ref. [3] ¥ = 1024), [4] (N = 1600), and [7] valuesG(r,t) agrees well with our theory, as illustrated
(N =5 X 10% are, in large regions of parameter space, son Fig. 2(b). Thel/r? tail in G, cannot be observed in
small thatL is comparable t@7 ¢, and theperiodicbound-  a single run because of statistical fluctuations. At larger
aries induce spurious transitions in the granular flows. densities [see Fig. 2(c)] one observes small oscillations
We have measured in simulations the equal time spatiaround the predicted curve with a characteristic length
correlation functionsG,(r,r) with u = {nn,|[, L} by Ry = 50. The oscillations become more pronounced at
two methods, first by summing,(v;)a,(v;) over pairs later times, wherer, stays fixed in time, but varies over
of particles, wherea,(v;) ={1,(v; - r),(v; - r)}, and different runs. Comparison ofi, at v = 80 with the
binning their relative position vectors into circular shells,snapshot in Fig. 1(a) at the same parameters suggests
and secondly by squaring the Fourier transform of thehat G, may be viewed as the pair correlation function
coarse-grained fields, followed by an inverse Fourieof a densely packed fluid of “hard objects” (vortices) of
transformation. The second approach also provides thiypical diameterL,, the oscillation lengthRy = 2L,
correlations ink space, which allows us to separate thebeing approximately equal to the size of a nearest neigh-
contributions ofS(k,7) and S, (k,t) to Gy(r,7) and to  bor (+—) vortex pair. Similar complex structures, per-
G, (r,t) and test the validity of the incompressibility sisting in the nonlinear regime, are typically observed at
assumption. larger (e, ¢) values v = 4 X 10*, e = 0.64, ¢ = 0.05
Figures 2(a)—2(c) show the longitudinal and transvers§2]; N =5 X 10*, e = 0.1,¢ = 0.05, N =2 X 10%,
correlation functions of the flow field of singlesimula- € > 0.05,¢ > 0.25). At smaller (e, ¢) values (linear

413



VOLUME 79, NUMBER 3 PHYSICAL REVIEW LETTERS 214Jy 1997

(b) which is in turn more unstable tha$y,,(k, 7). Finally,
105G, () | if one performs an inverse Fourier transform on the
10%G, () - measuredsS, (k,7) and S(k,r) separately to obtain the
] 10°%G,, (m) | contributions toG)(r,t) and G, (r,t) [see Fig. 3(b)], it
~ - - appears that the contributions frasy(k, 7) are small, and
] 5 1 our description of the fluctuations in terms of a Langevin
0.4 ! 0 ‘ 5'0 100 equation based on incompressibility is confirmed by the

simulations in the linear regime < ;.
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