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Mesoscopic Theory of Granular Fluids
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Using fluctuating hydrodynamics we describe the slow buildup of long range spatial correlations in
a freely evolving fluid of inelastic hard spheres. In the incompressible limit, the behavior of spatia
velocity correlations (includingr2d behavior) is governed by vorticity fluctuations only and agrees
well with two-dimensional simulations up to 50 to 100 collisions per particle. The incompressibility
assumption breaks down beyond a distance that diverges in the elastic limit. [S0031-9007(97)03645-
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In the characterization of granular matter as an unusu
solid, fluid, or gas by Jaegeret al. [1], this Letter ad-
dresses thegranular gasregime, controlled by inelastic-
ity, clustering [2], and collapse [3]. Clustering is a long
wavelength, low frequency (hydrodynamic) phenomeno
and inelastic collapse a short wavelength, high frequen
(kinetic) phenomenon. In the granular gas regime, al
called rapid granular flows, the dynamics is dominated
by inelastic collisions. Here the methods of nonequilib
rium statistical mechanics, molecular dynamics, kinet
theory, and hydrodynamics are most suitable for descr
ing the observed average macroscopic behavior [2–7] a
the fluctuations around it.

The lack of energy conservation makes the granul
gas, whether driven or freely evolving, behave ver
differently from molecular fluids. The essential physica
processes and detailed dynamics are described in [2
and references therein: the similarities and differenc
with molecular fluids; lack of separation of microscale
and macroscales, not only because the grains themse
are macroscopic, but also because of the existence
intermediate intrinsic scales which are controlled by th
inelasticity and are only well separated when the syste
is nearly elastic. A simple model which incorporate
the inelasticity of the granular collisions consists o
inelastic hard spheres (IHS), taken here of unit ma
and diameter, with momentum conserving dynamics. T
energy loss in a collision is proportional to theinelasticity
parameter e ­ 1 2 a2 where a is the coefficient of
normal restitution.

For an understanding of what follows, we recall tw
important properties of the undriven granular gas: (i) th
existence of ahomogeneous cooling state(HCS) and
(ii) its instability against spatial fluctuations. The hydro
dynamic equations for an IHS fluid, started in a uniform
equilibrium state with temperatureT0, admit an HCS so-
lution (see, e.g., [2,3,7]) with a homogeneous temperatu
T std, described by≠tT ­ 22g0vT. Here the collision
frequency isvsTd ,

p
Tyl0 with a mean free pathl0,
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given by the Enskog theory [8] for adensesystem of hard
disks or spheres (d ­ 2, 3) andg0 ­ ey2d. ThenT std ­
T0yf1 1 g0vsT0dtg2 ­ T0 exps22g0td, where t is the
average number of collisions suffered per particle within
time t. It is found by integratingdt ­ vsT stdddt. More-
over, this HCS solution islinearly unstableonce the linear
extentL of the system exceeds some dynamic correlati
length, which increases with decreasinge, and is propor-
tional to l0 [1–7].

The dynamics offluctuations, say, in density,dnsr, td,
and flow field,usr, td, have hardly been studied [2,4,7], in
sharp contrast to the large number of publications ab
the average behavior. We note that fluctuations are abs
in hydrodynamic as well as in Boltzmann-Enskog-typ
kinetic equations which are based on molecular cha
(mean field assumption). The objects of interest in th
Letter are the spatial velocity and density correlations

Gabsr, td ­
1
V

Z
dr0kuasr 1 r0, tdubsr0, tdl ,

Gnnsr, td ­
1
V

Z
dr0kdnsr 1 r0, tddnsr0, tdl ,

(1)

with V ­ Ld , and the structure factorsSabsk, td and
Snnsk, td, which are the corresponding Fourier transform
Goldhirschet al. [2] initiated molecular dynamics studies
of Snnsk, td and Sppsk, td ­

P
a Saask, td, and related

in a qualitative way the structure at smallk to the
most unstable vorticity modes, and presented a nonlin
analysis to explain the enslaving of density fluctuatio
by the vorticity field [9]. A more quantitative description
of the structure factorsSnnsk, td [4] and Sppsk, td [7]
has been recently proposed, based on the dynam
of macroscopic unstable modes (Cahn-Hilliard theo
of spinodal decomposition [10]). However, numeric
evidence from molecular dynamics for the quantitativ
validity of this theory is still lacking.

The main goal of the present Letter is to calculate t
velocity correlation functionGabsr, td in unforced granu-
lar flows and to show that fluctuating hydrodynamics [1
© 1997 The American Physical Society 411
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gives a quantitative description of the spatial correlatio
over a large intermediate time interval, controlled b
linearized hydrodynamics. Because the flows in free
evolving IHS systems are approximatelyincompressible
(= ? u ­ 0), the vorticity field,= 3 u, in the nonlinear
Navier-Stokes equations is practically decoupled from t
other hydrodynamic fields in the system. This implies th
the densityn and the temperatureT std ­ T0 exps22g0td
can be considered homogeneous, and an approxim
theory based on vorticity fluctuations alone is justified.

Thus, we describe the Fourier modes of the vortici
field or transverse flow fieldu'std by the mesoscopic
Langevin equation [11] (valid forkl0 & 1)

≠tu'sk, td 1 nsTstddk2u'sk, td ­ F̂sk, td , (2)

whereu' and F̂ are orthogonal tok, and wherensT d ,
l0

p
T is the kinematic viscosity of the IHS fluid in the

HCS. The random noisêF is assumed to be white and
Gaussian with a correlation

kF̂ask, tdF̂bs2k, t0dlyV ­ BabsT stddk2dst 2 t0d , (3)

and a noise strengthBabsTd ­ 2dabTnsT dyn [11]. With
the additional assumption (see [2,3]) that the IHS vi
cosity has the same functional form as for elast
hard spheres or disks, the solution of the propos
Langevin theory provides a detailed prediction fo
Gabsr, td on hydrodynamic space (r * l0) and time
scales [t * 1yvsT0d] without anyadjustable parameters.

We briefly indicate how this is done by calculating
the structure factorS'sk, td ­ kju'ask, tdj2lyV . Here
the subscripta is one of thesd 2 1d equivalent trans-
verse components ofu'. We transform Eq. (2) into the
standard Langevin equation withtime independentnoise
strength and coefficients. This is done by the change
variablesvsT stdddt ­ dt, u'sk, td ­

p
T stdwsk, td and

F̂sk, td ­ vsTstdd
p

T stdf̂sk, td and yields ≠twsk, td 2

z'skdwsk, td ­ f̂sk, td, with a growth rate z'skd ­
g0s1 2 k2j2d and a noise strengthbab ­ 2dabg0j2yn.
The dynamic correlation lengthj ;

p
nyvg0 is time

independent and of orderl0yp
g0. With the help of the

relation kjwask, 0dj2l ­ Vyn, the structure factor is then
found as

S'sk, td ­
T std

n

Ω
1 1

expf2g0ts1 2 k2j2dg 2 1
1 2 k2j2

æ
, (4)

which is valid forkl0 & 1. In the elastic limit (g0 ! 0)
the standard form of fluctuating hydrodynamics and th
fluctuation dissipation theorem are recovered. Forkj & 1
this equation describes thenew structureof the velocity
correlationsGabsr, td on length scales of order2pj. At
the end of the Letter we return to the predicted structu
on the largest scales.

On the shortest scales (r ! 0), Gabsr, td !

fT stdyngdabdsrd, caused by self-correlations of par
ticles. As our theory describes only structure on the sca
r * l0, we consider the equivalent functionG1

absr, td
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with the self-correlations substracted, which is regul
at the origin. For the same reason the structure fac
Sabsk, td has a plateau valuedabTstdyn for k ! `,
whereasS1

absk, td ! 0 in the same limit. The function
S1

absk, td is an isotropic tensor field, which can be decom
posed into two independent scalar functions ofk ­ jkj,
i.e., S1

absk, td ­ k̂a k̂bS1
k sk, td 1 sdab 2 k̂a k̂bdS1

'sk, td,
where a caret denotes a unit vector. Theincompressibility
assumptionimplies thenuksk, td ­ 0, and consequently
S1

k sk, td ­ 0. Similarly, G1
absr, td ­ r̂a r̂bG1

k sr , td 1

sdab 2 r̂a r̂bdG1
'sr , td. Consider first the longitudinal

spatial correlationG1
k sr , td ; fT stdynjdggksryj; 2g0td,

which is given by

gksx, sd ­
Z dq

s2pdd eiq?x sin2 u
expfss1 2 q2dg 2 1

1 2 q2 ,

(5)

where cosu ­ q̂ ? x̂. In the incompressible limitthe
transverse correlation function is given byg'sx, sd ­
gksx, sd 1 fxysd 2 1dg≠gksx, sdy≠x (see [11], Chap. 3).
These functions can be expressed as integrals over sim
functions. As an example, we quote the result ford ­ 2:

gksx, sd ­
1

2px2

Z s

0
ds0 expss0d f1 2 exps2x2y4s0dg .

(6)

The transverse functiong'sx, sd has a negative minimum;
moreover, gksx, sd is positive for all x, s, d; there are
algebraic tails gksx, sd , 2sd 2 1dg'sx, sd , x2d with
a correction term ofO s exps2x2y4sdd. Similar algebraic
tails occur in nonequilibrium stationary states in drive
diffusive systems [12]. These functions have structu
on hydrodynamic space and time scales where bo
x ­ ryj and s ­ 2g0t can be either large or small
with respect to unity. At small inelasticity (g0 ! 0) the
dynamic correlation length and mean free pathl0 are well
separated. Details will be published elsewhere [13].

To verify the theory quantitatively, we have per
formed event-driven molecular dynamics simulations
smooth inelastic hard disks, using square periodic boun
ary conditions andN ­ 5 3 103, 2 3 104, and5 3 104

particles. The inelasticity parametere ­ 1 2 a2 was
varied between 0.02 and 0.8, and the area fraction fro
f ­ 0.02 to 0.4, far below the solid transition (fsolid ­
0.665). Before considering the range of validity of our re
sults, we show in Fig. 1(a) how the relative vorticity fluc
tuationswsk, td have grown [2,3,7]. The HCS and linea
hydrodynamics start to break down. The vorticity fiel
becomes large and evolves into a “dense fluid of close
packed vortex structures,” which is still homogeneous
scales large compared toLy. The larger the inelasticity
parametere, the more rapidly this happens.

Apart from the restrictions to hydrodynamic space an
time scales, there are two essential criteria limiting the v
lidity of our theory: (i) System sizesL must bethermo-
dynamically large(L ¿ 2pj), so that Fourier sums over
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FIG. 1. (a) Snapshot of the momentum density att ­ 80 in
a system withN ­ 5 3 104, L ­ 313 (f ­ 0.4), a ­ 0.9,
coarse grained over cells of6.3 3 6.3, representing a rather
stable (still very similar att ­ 160) configuration of vortex
structures of typical diameterLystd . 25 (l0 . 0.34) with
nearest neighbors having opposite vorticity for reasons
stability. (b) lnfEstdyEs0dg versust from the same simulation
showing the linear (HCS) regime, whereEstd ­ T std, with
slope22g0, up to a crossover timetcr . 65, and the nonlinear
cooling regime with a smaller slope, where the cooling throug
inelastic collisions is partially compensated by viscous heatin

k space can be replaced byk integrals. (ii) Times must
be restricted to thelinear hydrodynamic regime (t & tcr),
so that the system remains close to the HCS. Monito
ing the energy per particleEstd provides a sensitive cri-
terion to distinguish the linear from the nonlinear coolin
regime, where the appearance of gradients causes visc
heating and slows down the cooling [2] [see Fig. 1(b)
The crossover timetcr in Fig. 1(b), decreasing with in-
creasinge andf, is an intrinsic time scale that only de-
pends on the existing gradients. At largese, fd values
criterion (ii) reducestcrse; fd to subhydrodynamic time
scales, withtcrs0.5; 0.25d . 15 andtcr s0.3; 0.4d . 25 as
borderline cases. On the other hand, smallse, fd val-
ues combined with smallL tend to violate criterion (i).
The small systems withN ­ 5 3 103, and to some extent
even those withN ­ 2 3 104, only satisfy the criteria (i)
and (ii) in very narrow parameter ranges. The system
studied in Ref. [3] (N ­ 1024), [4] (N ­ 1600), and [7]
(N ­ 5 3 103) are, in large regions of parameter space,
small thatL is comparable to2pj, and theperiodicbound-
aries induce spurious transitions in the granular flows.

We have measured in simulations the equal time spa
correlation functionsGmsr, td with m ­ hnn, k, 'j by
two methods, first by summingamsvidamsvjd over pairs
of particles, whereamsvid ­ h1, svi ? rd, svi ? r'dj, and
binning their relative position vectors into circular shells
and secondly by squaring the Fourier transform of th
coarse-grained fields, followed by an inverse Fouri
transformation. The second approach also provides
correlations ink space, which allows us to separate th
contributions ofSksk, td and S'sk, td to Gksr , td and to
G'sr , td and test the validity of the incompressibility
assumption.

Figures 2(a)–2(c) show the longitudinal and transver
correlation functions of the flow field of asinglesimula-
of
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FIG. 2. Correlation functionsGm sm ­ hk, 'jd versus r at
various times, inelasticities and densities forN ­ 5 3 104

particles, where simulation results of a single run are compar
with theoretical predictions (solid line). Top row (a) shows
log10fGkyTg versus log10 r at a ­ 0.9 and f ­ 0.245 sl0 .
0.8d, wheretcr . 70. The algebraic1yr2-tail is clearly visible.
Middle row (b) showsG'yT versusr at a ­ 0.94 and f ­
0.05 sl0 . 5.8d wheretcr . 100. Bottom row (c) showsG'yT
versusr at a ­ 0.9 andf ­ 0.4 sl0 . 0.34d wheretcr . 65.
Note regular oscillations with periodR0 . 50, which is fixed
in time.

tion run at N ­ 5 3 104 at severalse, fd values. The
low noise levels, observed in these data and in Fig. 1(a
are a consequence of the IHS collisions which hav
the tendency to make particles move parallel. The
is reasonable agreement with the theoretical predictio
from our Langevin theory, in which the viscosity is
taken from Enskog’s theory. No fitting parameters ar
involved. The longitudinalGksr, td in Fig. 2(a) shows
good agreement for a large range ofse, fd values, well
beyond the linear time regimetcr . It exhibits the1yr2

tail. The minimum inG'sr , td at Lystd can be identified
with the mean vortex diameter, and the low noise da
in Fig. 2(c) at different t show that Lystd ,

p
t is

growing through vorticity diffusion. At smallse, fd
valuesG'sr , td agrees well with our theory, as illustrated
in Fig. 2(b). The1yr2 tail in G' cannot be observed in
a single run because of statistical fluctuations. At larg
densities [see Fig. 2(c)] one observes small oscillatio
around the predicted curve with a characteristic leng
R0 . 50. The oscillations become more pronounced a
later times, whereR0 stays fixed in time, but varies over
different runs. Comparison ofG' at t ­ 80 with the
snapshot in Fig. 1(a) at the same parameters sugge
that G' may be viewed as the pair correlation function
of a densely packed fluid of “hard objects” (vortices) o
typical diameterLy, the oscillation lengthR0 . 2Ly

being approximately equal to the size of a nearest neig
bor s12d vortex pair. Similar complex structures, per
sisting in the nonlinear regime, are typically observed
larger se, fd values (N ­ 4 3 104, e ­ 0.64, f ­ 0.05
[2]; N ­ 5 3 104, e * 0.1, f * 0.05; N ­ 2 3 104,
e . 0.05, f . 0.25). At smaller se, fd values (linear
413
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FIG. 3. (a) Structure factorsSmsk, td sm ­ h', k, nnjd versus
k from a single simulation run atN ­ 5 3 104, a ­ 0.9,
f ­ 0.245 and t ­ 50 where tcr . 70, compared with the
theoretical prediction (solid line) forS'sk, td. All structure
in Smsk, td contained in the intervalkmin ­ 2pyL . 0.016 ,
k & 1yj ­ 0.25 represents long range correlations of dynam
origin. (b) Correlation functionsGmsr , td sm ­ hk, 'jd from
S' and Sk (solid line), and from S' only (dashed line).
Gnnsr , td (dotted line) corresponds toSnnsk, td.

regime) the vortex diameterLystd ,
p

t, and a transition
to a “sheared state” is induced by the periodic boundar
when Lystd . 1

2 L [7], for instance, att . 600 for
N ­ 2 3 104, e ­ 0.05, f ­ 0.245.

The description of the velocity fluctuationsGabsr, td in
this Letter is based on fluctuating hydrodynamics for th
vorticity fluctuations only, i.e., the absence of longitudina
fluctuations (incompressibility assumption). Figure 3(a
confirms that this assumption is very reasonable inde
as Sksk, td is vanishingly small down to very smallk
values (k * 1yjk . 0.06). However, for the smallest
wave numbers, the incompressibility assumption brea
down. In that range the longitudinal velocity fluctuation
couple to the second unstable mode [3,4,7] with
dispersion relation (to second order ink) zkskd ­ g0s1 2

k2j
2
kd. The nonvanishing contributions ofSksk, td to

Gabstd cause an exponential cutoff on length scalesr *

2pjk ¿ 2pj, and the algebraic decay,1yrd from the
vorticity mode represents intermediate behavior, which
well observable because the two length scalesjk and j

are in general quite different, e.g.,jk . 4.3j in Figs. 2(a)
and 2(c) andjk . 4.5j in Fig. 2(b), and rapidly separate
in the elastic limit.

The results of Fig. 3(a) were obtained by fast Fouri
transformation of the density and momentum field
(coarse-grained into256 3 256 cells), and performing an
angular average ink space. In the same figure one ob
serves thatSksk, td has the smallest width, whileS'sk, td
and Snnsk, td have a comparable width. Moreover, th
growth rate ofS'sk, tdyEstd exceeds that ofSksk, tdyEstd,
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which is in turn more unstable thanSnnsk, td. Finally,
if one performs an inverse Fourier transform on th
measuredS'sk, td and Sksk, td separately to obtain the
contributions toGksr , td and G'sr , td [see Fig. 3(b)], it
appears that the contributions fromSksk, td are small, and
our description of the fluctuations in terms of a Langevi
equation based on incompressibility is confirmed by th
simulations in the linear regimet , tcr .
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