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Spacetime Foam and the Cosmological Constant
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In the saddle point approximation, the Euclidean path integral for quantum gravity closely resembles
a thermodynamic partition function, with the cosmological constamlaying the role of temperature
and the “density of topologies” acting as an effective density of states. AFar0, the density of
topologies grows superexponentially, and the sum over topologies diverges. In thermodynamics, such
a divergence can signal the existence of a maximum temperature. The same may be true in quantum
gravity: the effective cosmological constant may be driven to zero by a rapid rise in the density of
topologies. [S0031-9007(97)04595-X]

PACS numbers: 04.60.Gw, 04.20.Gz, 98.80.Hw

The cosmological constank—in modern language, where the sum is over topologically distinct manifolds and
the energy density of the vacuum—is observed to behe Euclidean actiofi is
less than10~4 GeV*, or 1072 in Planck units. The !
cosmological constant problem [1,2], the problem of I = — 5 f (R — 2A)Jgd*x. 2
explaining the smallness of this number, is one of the l6wLlp Ju

central puzzles of modern physjcs. A natural guess is tha@:P is the Planck length.) General relativity is not
some symmetry forcea to vanish, but the two obvious (enormalizable, so the meaning of the path integral is
candidates, supersymmetry and conformal symmetry, argot entirely clear, but (2) can be regarded as an effective
both badly broken. One can, of course, etto zero  aciion for distances much larger than the Planck scale.

by fiat, but this requires fine-tuning over a vast range of Eyyrema of the action (2) are Einstein metrics, with
energies, and is in any case time dependent, since phasgssical actions

transitions in the early Universe can change the value of

A. One can search for dynamical mechanisms to relax the 3 ) = A Vol(M) = — 9 (M), ()
2 >
P

cosmological constant to zero, but such attempts typically £ 8wL3 8w AL

involve the implicit use of conformal invariance, and fail . i i i
when the symmetry is broken [1]. wheret (M) is the normalized volume, obtained by rescal-

This leaves quantum gravity as a tempting place tdng the metric to set the scalar curvaturextd2. (The

look for an explanation. Perhaps the most intriguing IorO_factor of 12 is conventional; hyperbolic four-manifolds,

posal to date has been Coleman’s wormhole model [3]i.e., manifolds of constant curvaturel, have scalar cur-
in which topological fluctuations of spacetime induce ef-vature —12.) ~ Although is a geometric quantity, nor-
fective nonlocal interactions that smeArinto a proba- malized volumes of Einstein metrics characterize topology

bilistic distribution peaked sharply at zero. The proposafS Well. In particular, forA < 0 there is no known ex-
presented in this paper is similar in spirit to Coleman’s ample of a manifold that admits two Einstein metrics with

but different in detail: | consider a different set of topolo- différent values of [6]. Roughly speakingy (M) mea-

gies, with metrics that (unlike Coleman’s) are exact saddi§ures the topological ~compIeX|ty2(M; for a hyperbolic

points of the functional integral, and | interpret the result-Manifold, for instances (M) = 47y (M)/3, wherey is

ing partition function rather differently. In particular, | the Euler number.

argue that a rapidly growing density of topologies may .

drive the cosmological constant to zero, as processes the) 1

could increasdA| instead merely produce more compli-

cated “spacetime foam.” Z[A] =D Ay exp[
The Euclidean gravitational partition functior-I shall M

work in Euclidean quantum gravity, that is, quantumThe prefactorsA,, are combinations of determinants

gravity “analytically continued” to Riemannian (positive- coming from gauge fixing and from small fluctuations

definite) metrics, since this seems to be the most naturaround the extrema. Their precise values are not known,

setting in which to consider fluctuations of spacetimeput their dependence ok can be computed from the trace

topology. The partition function for the volume canonical anomaly [7]: up to a possible polynomial dependence

In the saddle point approximation, the partition function

L a<M>}. @)

87T LP

ensemble is [4,5] coming from zero modes,
21 =3 [ Taglexsi=1s}. W awn 06 261
. Ay ~ A5y = o xM) — o5 (M) (9)
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For our purposes, the crucial observation is thgtis no  the maximum temperature effectively shrinks to zero [9].
more than exponential ifi. To investigate a system of this sort, one must use the

We shall be primarily interested in manifolds with microcanonical ensemble. The microcanonical inverse
A < 0; this is typical for most topologies [4]. We can temperature is
thus rewrite Eq. (4) as

dlnp(E)
= —, 9
Z[A] =D p(ﬁ)exp[—% 17}, (6) P IE ®)
v 87|ALy and the heat capacity is
where p(#7) is a “density of topologies” that counts the 221 p(E)\"!
number of manifolds (weighted by,) with a given cy = —,82<a—;> . (20)

value of .
Equation (6) closely resembles the expression for th&he condition that the density of states rise superexpo-
canonical partition function of a thermodynamic system, nentially is precisely that the second derivative in (10) be
positive, and thaty thus be negative.
Zinermo B = D p(E) exp{—BE}, (7 Systems with negative heat capacities have been stud-
E ied by a number of authors [10—14]. Such systems are
where the “temperature” for the gravitational partition thermodynamically unstable; placed in contact with a heat
functionisp~' = 87|A|L3/9. The analogy is not exact, bath, they will experience runaway heating or cooling.
of course: the gravitational partition function does notNevertheless, they can occur in nature, and it is possi-
describe dynamics (it is already four dimensional), sdble to make sense of their thermodynamic properties. In
there is no obvious equivalent of heat flow. But theparticular, 37! should now be understood as the tem-
correspondence goes beyond the formal similarity oberature measured by a small thermometer rather than a
Egs. (6) and (7). Like the energy in a thermodynamiclarge heat bath [10]. This quantity retains much of its
system, the normalized volum&(M) can be divided usual statistical significance: if one starts with a large sys-
among small regions dif, with weak interactions coming tem with fixed energye and considers small subsystems
from the need to add boundary terms to the action fowith energiest <« E, the probability of finding a given
an open region. Moreover, even without a dynamicaknergyE is proportional to exp-8E}. Unlike ordinary
model of topology change in which to derive an ergodicthermodynamic systems, however, a system with negative
theorem, we know that by construction, manifolds withheat capacity does not distribute its energy evenly among
the same value of occur with equal probabilities (up to subsystems; the most probable configurations are those in
loop corrections). which almost all of the energy is concentrated in a single
Until now, the standard assumption in Euclidean quansubsystem.
tum gravity has been that(o) grows no faster than poly-  Systems with maximum temperatures and those with
nomially in . As we shall see below, this assumption isnegative heat capacities occur in rather different contexts,
incorrect. To understand the significance of this observaput their thermodynamic behavior has a common physical
tion, let us first consider the thermodynamic analog. basis. If the density of states grows exponentially, an in-
Thermodynamics with a rapidly growing density of flow of energy at the Hagedorn temperature goes entirely
states—The thermodynamics of a system with an expo-into producing new states, leaving the temperature con-
nentially growing density of states was first considered bytant. If the density of states grows superexponentially,
Hagedorn in the context of the hadron mass spectrum ithe process is similar, but the production of new states
bootstrap models [8,9]. SuppopéE) takes the form is so copious that an inflow of energy actually drives the
— pa bE temperature down.
p(E) = Efe™. ®) The density of topologies-The question now before
The sum (7) then converges only f6r> b. The Hage- us is how fast the density of topologip$v) in (6) grows
dorn temperatur& = 1/b is a maximum temperature: as as# increases. The full answer is not known, but some
T approaches/b, the expectation value of the energy di- recent mathematical results make it possible to show that
verges, as does the heat capacity. While this phenoméhe growth is superexponential.
non may be surprising, its physical explanation is fairly In particular, a lower bound can be found by consider-
simple. Energy added to a system can go either into ining hyperbolic metrics, which are, of course, automati-
creasing the energy of existing states or into creating newally Einstein metrics. [fM is a hyperbolic manifold
states. If the density of states rises rapidly enough, manwith normalized volumei, any n-fold covering of M is
more new states are available at higher energies; as tleehyperbolic manifold with volume#. Covering spaces
temperature approaches its critical value, added energyome from subgroups of the fundamental grotygM)—
goes entirely toward creating new states rather than hea& subgroup of index gives ann-fold cover—so if the
ing those already present. number of index: subgroups can be estimated, this will
If p(E) grows faster than exponentially, the partition give us partial information about the number of hyper-
function (7) has a vanishing radius of convergence, antolic manifolds.
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Lubotzky has recently demonstrated that for a largea microcanonical ensemble with fixed= #,,,x, and ask
class of hyperbolic manifoldsz; (M) has a finite-index about the expected behavior of smaller regions of a large
subgroup that maps homomorphically onto a non-Abeliaruniverse. In particular, the “microcanonical” cosmologi-
free groupF; [15]. Such a map allows us to construct cal constant will be
a subgroup ofr (M) for each subgroup of’;,. But the 9 alnp(@)\"!
number of index: subgroups ofF; is known to grow A= - 3 < - >
asymptotically agn!)*~! [16], so the number of index- 8mLp v
subgroups ofm (M) must grow at least as fast. There which becomes small a%,,x becomes large.
is a subtlety in the next step of the argument: while The rate of falloff of A depends on the exact form of
each subgroup ofr;(M) determines a covering space p(v). It is rather slow for the factorial growth of equa-
of M, different subgroups can sometimes give the sam#éon (11), but we know this expression underestimates the
covering space. For a particular class of four-manifoldgrue growth rate. As in Coleman’s wormhole model [3],
with nonarithmetic fundamental groups, however, thisit is plausible that this rate will exponentiate when we
overcounting can be controlled, and it may be showrtake into account, for example, connected sums of hyper-
that the number of distinct covering spaces of volune  bolic manifolds. If this is the case\ will be exponen-
grows at least factorially with [17,18]. The total number tially suppressed as,.x increases. The mechanism for
of hyperbolic manifolds thus grows at least factorially this suppression can be understood from the thermody-
with normalized volume, that is, namic analogy: rather than increasing the observed cos-
mological constant, an attempt to incredaé will merely
drive the production of more and more complicated
for some constants, andc; . spacetime foam.

This factorial bound probably seriously underestimates The missing element of this analysis, of course, is
the actual growth op (7). Indeed, our result comes from a detailed dynamical picture. An intrinsically four-
looking only at hyperbolic metrics—and a limited class dimensional formalism like the Euclidean path integral is
of hyperbolic metrics, at that—and most four-manifoldsill suited for describing the temporal evolution &f. To
do not admit such metrics. But the lower bound (11)some extent, this difficulty is inherent in quantum gravity:
is already strong enough to guarantee that the sum ovdiris never easy to describe dynamics in a theory with
topologies diverges, and is not even Borel summableo fixed background with which to measure the passage
unless higher loop terms introduce relative phases amongf time [22]. But it would be interesting to examine
topologies. the effect of the growth ofp(¥) in other settings, for

Moreover, our derivation makes it clear that short-instance, in the computation of transition amplitudes or
distance physics alone cannot cure this divergence. Irthe Hartle-Hawking wave function.
deed, the covering spaces we have considered look alike It would also be interesting to apply a similar “ther-
locally, and can be distinguished only by their long-modynamic” analysis to the case of a positive cosmologi-
distance properties. The divergence comes not from highal constant. It is evident from Eq. (4) that positideis
topological complexity in small regions, but rather from analogous to negative temperature. This is consistent with
the huge variety of possible identifications of distantthe behavior ofp(#) for A > 0: ¥ has a maximum value
points in large universes. Convergence of the sum (6)f 872/3, the normalized volume of a four-sphere, and
would thus require an infrared cutoff as well as (proba-the density of topologies increases i@aslecreases, much
bly) an ultraviolet cutoff. Actually, the existence of an as the density of states behaves in a system with a nega-
IR cutoff is not implausible: at one loop, the resummedtive spin temperature [23].
effective action contains nonlocal terms involving inverse | acknowledge help from a number of mathemati-
Laplacians [19], and the eigenvalues of Laplacians typicians, including Walter Carlip, Greg Kuperberg, Alex
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tal role for smooth geometries. In four dimensions, how- . . . )
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VUmax
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