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The effect of quenched impurities on systems undergoing first-order phase transitions is studied
within the framework of theg-state Potts model. For large a mapping to the random-field Ising
model explains the absence of any latent heat in 2D, and suggests thdt>fa2 such systems
exhibit a tricritical point with an exponent related to those of the random-field model by=
vre/(2 — arr — Brr). In 2D we analyze the model using finite-size scaling and conformal invariance,
and find a continuous transition with a rat@®/» which varies continuously witky, and a weakly
varying exponentr = 1. We find strong evidence for the multiscaling of the correlation functions.
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PACS numbers: 05.70.Jk, 64.60.Ak, 64.60.Fr

Although the effect on the critical behavior of adding K;; are quenched random variables, taking the vakies
quenched bond randomness to classical systems whogﬁdKz, each with probab|lltyl When(eXt — 1) (ek> —

pure version undergoes a continuous phase transition @ =gq this model IS on average, self- dua| and if the
well understood in terms of the Harris criterion [1], the transition is unique, is therefore at its critical point [11].
analogous situation when the pure transition is first ordeft is useful to parametrizeXs — 1 = wij = = g{/D+wy,
is less well studied. Following earlier work of Imry and where w;; = =w, andw > 0 measures the strength of
Wortis [2], Aizenman and Wehr [3] and Hui and Berker the randomness. The partition function of this model may
[4] argued that in 2D any amount of randomness shoulthe mapped onto that of the random cluster model [12], in
lead to a vanishing of the latent heat. The arguments leadvhich each bond of the lattice is either occupied, when
ing to this conclusion are analogous to those used by Imrit is counted with weights;;, or empty, in which case it
and Ma [5] for the absence of any spontaneous magnetis counted with weight 1. The partition sum is over all
zation in the randorfield Ising model (RFIM) ford = 2:  such configurations, in which each connected cluster of
the bond randomness couples to the local energy densitgites is weighted by a factey. Let us first consider the
which is different for the coexisting phases of the purepure model, withw = 0. In the limit ¢ — o, the sum
model, in the same manner that the random field couplegver configurations is dominated by only two: tempty
to the local magnetization of the RFIM. The vanishing oflattice, in which no bonds are occupied, which contributes
the latent heat should be accompanied by a divergent coe factorg”, whereN is the total number of sites, and the
relation length, and, if so, the question arises as to whicfull lattice, with a weight(./g)?", since the number of
universality class(es) the corresponding continuous trarbonds isO(2N). All other configurations are down by
sition belongs. A suitable model in which to study this powers ofg!/2. At the self-dual point, there are therefore
is the g-state Potts model, whose pure version in 2D uniwo coexisting states with identical bulk free energy and
dergoes a first-order transition for> 4, otherwise being different internal energy densities, indicating, as expected,
continuous. Chen, Ferrenberg, and Landau [6] undertoothat the transmon has a nonvanishing reduced latent heat
an extensive Monte Carlo investigation of the case 8.  per bond~— Ing. For the pure model, this analysis may
In addition to confirming the continuous nature of the tran-be extended to take into account higher order corrections
sition, these authors extracted numerical values of the critin ¢ ~!/2, with no essential change in the physical picture.
cal exponents which appear to be consistent with those dfiow consider arinterfacebetween these two phases. For
the pure 2D Ising model. Similar values have also beenlarge ¢, the lowest energy interface is parallel to a lattice
claimed for the cas@ = 4, when the pure transition is con- direction, say thex axis, and is such that all the bonds
tinuous [7]. This disagrees with the predictions of Ludwigwith y = some integer are occupied, and those above this
and Cardy [8], Ludwig [9], and Dotsenket al. [10], who  are empty (or vice versa). There will also be entropic
find a new random fixed point fay > 2, based on an ex- fluctuationsy = h(x) of this interface, described by the
pansion in powers of — 2. usual solid-on-solid interfacial Hamiltonian, proportional
As will become clear, many of our results generalize, buto the length of the interface. The interfacial tension for
let us for definiteness consider a Potts model on the squatargeq is o ~ In ¢, independent of the local shape of the
lattice with degrees of freedon} taking ¢ values, and interface. ThIS is to be compared with ~ 2J between
a reduced Hamiltonian- ', K;;8,,,, where the sum is theorderedphases of a low temperature Ising model with
over nearest neighbor pairs. The ferromagnetic couplingseeduced exchange couplidg
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Now consider the effect of adding bond randomness o
to the random cluster model. Each configuration of the w
interface will be weighted by an energy, > () X
w(x,y)Ing, where (x,y) labels bond positions. This
may be rewritten, up to a term independent/df), as
%ZX(ZKMX) =2 =nw)w(x,y)Ing. Compared with the
energy of an RFIM interface with spins(x,y) = *1 0 4, q,

coupled to a reduced random fiekdx, y) = =g, the é:IG 1. Schematic phase diagram in the critical surface for
interfacial models are identical with the correspondencd =5 g increases to the left, and is the disorder strength,

1 1 .. . .
J_ < zling, ?nthF < swling. In _adQItlon, the imposi-  with P, P, being the percolation limit. RG flows are indicated.
tion of a uniform reduced magnetic fieldon the RFIM,  The latent heat is nonvanishing within the shaded region, and
which distinguishes between the two coexisting phases, iglsewhere the transition is continuous, controlled by the line of
seen to be equivalent to a deviatiors (T — T.)/T, in  fixed pointsPyq;.
the temperaturevariable away from the critical self-dual

point. Since this couples to the energy density we find th&/hich controls the irrelevance @iy and the consequent
correspondenck — Lin q violation of hyperscaling [13]. In the same manner, it may
1 .

. . . . i — Brr
Of course, this is strictly valid only ag — . At finite be shown that the latent heat vanishegias — w)™ as

: : : the line Rq, is approached from below. Of course, these
g the g dependence of cluster configurations with morerelations have been established only closé te 2, but, if

complicated topologies is not simply accounted for by
the interfacial tension. For the same reason, the mappiq&?e topology of the RG flows does not change, they should

is not betweenbulk configurations of the two models. Ofbalsot'ﬁ t?re(j?andt#lgfrrer dlmetns;ons. b dth
However, it will be argued that certain universal properties ove the linékgy, the Tlows go 1o largey beyond the

are controlled by an a renormalization group (RG) fixed}'a”.dilti’ of '(1);|(3). tln additior:j, ttr?e renor_malibzetd intert—h
point at infinite ¢, and for these the mapping should be acial tension fiows to zero and the mapping between the

asymptotically exact. Although this has been describecﬁnOd.els breaks down as QO_m_ains of differ_ent topol_ogies
in terms of a 2D self-dual model, it should be clear thatprollferate. However, for infinitey the mapping remains

it is more general: lack of self-duality corresponds to aSxact and the flows go to infinite. This cannot happen

skewness in the distribution of the random fields, y), for finite ¢ since this is the percolation limk;/K> = 0,

. o i
which may be compensated by adding a suitable uniforrft whichw 1S reIevant[lé_l]. The_re must th_erefore X
field (corresponding to a shift in th&, of the Potts ist another line of stable fixed points emerging frém

‘ which control the universal continuous transition for large,

ms)dz::)éoaunn?bswglla:g, r?;?;}errglrlr;i?qsgr;s ml%/ be takerbut finite, values ofv andg. It is tempting to conjecture,
Y approp y rep yar as indicated by the dashed line in Fig. 1, that this con-

The RG properties of the interface in the RFIM near ¢ o that found b o ot
d = 2 have been well studied [13]. When translated intof €€tS Onto that found by €xpansion N powers;ot- ¢

the variables of the random-bond Potts model, the f|0V\[8]’ where g, is the po_int where the equne_rytlof the
equations have the form pure model changes sign [1]. Our analysis indicates that,

3 at least ford = 2, this is the case. In 2D (whepy = 2,

dw/dl = —=(d/2 = Dw + Aw” + ..., (1) 4, = 4), the shaded region collapses, and for any nonzero

d(ing)™"/dl = —(ng)"'[(d — 1) — Aw? + ..]], (2) w therenormalized interfacial tension, and thus the latent

heat, vanish. The flows should be towards the e,
di/dl = 1(1 + Aw® + .. ), (3)  with a crossover length which, from Eq. (1), has the form

whereA > 0 is a nonuniversal constant. Corrections toéx ~ ¢'/24"* and therefore may become very large for
these equations are supposed to be higher orderamd  weak randomness.
in ¢g~'/2. The RG flows ford > 2 and the consequent  We now turn to our numerical results fér= 2. These
phase diagram are shown in Fig. 1. In the pure modelsyill be described in detail elsewhere [15]. As shown
for ¢ > somegq,(d) (low T in the RFIM), there is phase by Blote and Nightingale [16] the transfer matrix for
coexistence with a nonvanishing latent heat (spontaneoubke pureg-state Potts model in a strip of width may
magnetization), controlled by a fixed point at infinile be constructed in a basis in which enters only as a
(T = 0). Ford > 2 this persists into the shaded region, continuous parameter. We have generalized this to the
bounded by a line of tricritical points where the latent heattase when the bond strengths are quenched random
vanishes. The universal behavior along this line is convariables, and the transfer matricEstherefore depend on
trolled by the fixed pointR at w = O((d — 2)'/?) and  the row labelsi. The size of the transfer matrices grows
infinite g. Using the correspondence— %h - Trr, we like 4%, independent of, making this a practicable method
conclude that the thermal eigenvalug! of the random- for largerg.
bond problem is related to the RG eigenvalues and expo- Starting with some suitable initial vecteg, the leading
nents of the RFIM by the scaling relations! = y, —  Lyapunov exponent is given by [17A) = lim,,—x X
0 = (2 — arr — Brr)/VrE, Where—0 is the eigenvalue %In ([T, T:)voll. Higher exponents are found by
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iterating a set of vector(w,-)j;o, where a giverv; is or-  pointed out that these are also very close to those expected

thogonalized to the seiv;)/_, after each multiplication at the percolation poing — . Izor then the replic/:ated
by the transfer matrix. The average free energy per site i§0del is thenPotts model with™ states, so that’ =
thenf, = —7AY. For a system exhibiting a first-order (8/an)crous(q")la—0 = (5v/3/4m)Ing ~ 0.689Ing; this

transition with a bulk correlation lengt§ we expect IS confirmed by our transfer matrix calculations [15].
[16] fr ~ f» + O(L~%e~L/€), so thatA(L) = In[ £, — These are also remarkably close to the pure values for

f2] + dInL ~ const— L/£. In Fig. 2 we show this for 9 = 4. We conclude that measurement of the effective
various values ofy and the randomness strengkh= central charge does not distinguish well between pure,
K»/K,. We see that the randomness changes the transitidtfrcolative, and nontrivial random behavior.

for ¢ = 8 into one with an apparently diverging correla- _ W€ therefore tumed to the magnetic exponent=

tion length. In such a case the amplitude of the finite-sizé3/ 7 Although this may be determined in principle by
correction has the form [18]; ~ f. — mc'/6L?, where adding a ghost site [16], it proved more efficient to exploit

¢’ is theeffectivecentral charge [sincg; is the quenched duality anq relate the spin-spin .correlation functiGtm)
free energy, in a replica formalism this is the derivative of0n the strip to the free energy in the presence of a seam
the central charge(n) with respect to the number of repli- Of frustrated bonds. Details of this relation and how to
cas atn = 0]. The value of¢’ was determined by making implement it in the transfer matrix will be given elsewhere
parabolic least squares gf versusl /L2 [19]. We found [15]. In pure systems, accordl_ng to conformal symmetry
the optimum trade-off between statistical errors and 421] G(m) decays along the strip as éxR.x;m/L), SO
reasonable computation time by taking strips of lengtiat the differencéf; in the free energy per site with and
m = 10° and averaging’;, over 100 independent realiza- ‘ithout the seam behaves 2&x,/L". However, in the
tions of the randomness far< L = 8, and3 realizations random system this difference typically has fluctuations
for 9 = L = 12. Data collection was made for each 200 Which are 0(”‘1_1/2)' This has the consequence that,
multiplications by7;, and the first 2000 iterations of each While Af. ~ ;7 InG is self-averagingG is not [22].
run were discarded in order to eliminate transients. Thén fact, as shown by Ludwig [9], the momen€(m)Y
parabolic fits were made by including the data points fo{where the overline denotes the quenched average) exhibit
Lo = L = 12, whereLy must be chosen large enough to multiscaling;that is, they scale with dimensiong which
justify the finite-size scaling form, and small enough toare not, in general, linear iN. Since conformal symmetry
minimize error bars. From the special cases of the Isingssumes translational invariance, it refers only to such
model and percolation it appeared tligt= 3 is optimal. ~ averaged quantities. In practice, we can avoid the lack
For the random-bond Ising modej & 2) with R =  of self-averaging by performing a cumulant expansion
2 we found ¢’ = 0.495 = 0.006, in agreement with the
result of de Queiroz [19]¢’ = 0.498 =+ 0.003 using the
spin basis, and with the expected vallie= % Forg =3
and R = 2, our resulte’ = 0.799 = 0.006 is unable to
distinguish between the pure value %)fand that ofc’ =
0.8025 obtained in Ref. [8] by an expansion i — 2.
For g = 4 the results’ = 1.003 = 0.006 for R = 2 and
¢" = 1.010 = 0.022 for R = 10 are consistent with each
other and the pure value= 1, but for largerg theR = 2
results appear to saturate while those Ror= 10 show a
gradual increase’ = 1.517 * 0.025 for ¢ = 8 andc¢’ =
3.003 = 0.031 for ¢ = 64. Similar values have recently
been reported by Picco [20].

INGNY = NInG + sN*InG — NG + ..., (4)

where the higher cumulants may be directly extracted from
the statistical fluctuations iAf;. For values ofy andR
which are not too large, this expansion appears to converge
well, keeping the first 3 or 4 cumulants. The fact that the
higher cumulants are nonzero implies multiscaling. Our
values forx; are shown in Fig. 3. Fo?2 < ¢ =3 and

R = 2 they are in perfect agreement with the predictions
of the (g — 2) expansion of Refs. [9,10], and fgr = 3
and4 they agree with recent Monte Carlo results of Picco
. [23]. For largerg the results appear to increase smoothly
However, it should beiw . with x,(q = 8) = 0.1415 = 0.0036. Thereafter
the cumulant expansion begins to break down.

AL

FIG. 2. Plots ofA(L), normalized toA(1) = 1, showing that
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Although the thermal exponemtshould be related in a
similar manner to the first gap; — A? in the Lyapunov
spectrum, for reasons we do not understand this yields
results which, if taken literally, appear to violate the bound
v =1 [24]. Instead we have measured directly by
finite-size scaling of the magnetic correlation length away
from T., using phenomenological RG methods [25]. For
g = 8, as shown in Fig. 4, we find clear evidence for fixed
points atR = 1, withv = % (xr = 0), and a random fixed
point with vg = 1.01 = 0.02. At ¢ = 3 our results are
consistent with the perturbative valug = 1.02, and for

bond randomness renders the phase transition second order. ¢ = 64 we findvg = 1.02 = 0.03.
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0.145 " : 1 ' ‘ : e and to which neither our arguments nor those of Refs. [3,4]
! i I directly apply.
0.140 1 ,’} - We have also given a mapping of the random-bond
2 4" problem to the RFIM which suggests that fibr> 2 such
NN A . L .
, 0.135 . — Fure model - systems should exhibit a tricritical point whose thermal ex-
z 4 - Dggef[ﬁg]‘)et al. ponent is related to those of the RFIM. This picture is quite
0.130 1 # Random model | [ generic, and, since there are many real 3D systems which
undergo first-order transitions, it would be interesting to
0.125 4 . . . . . - reexamine the effect of random impurities in such cases.
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