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The effect of quenched impurities on systems undergoing first-order phase transitions is studied
within the framework of theq-state Potts model. For largeq a mapping to the random-field Ising
model explains the absence of any latent heat in 2D, and suggests that ford . 2 such systems
exhibit a tricritical point with an exponentn related to those of the random-field model byn ­
nRFys2 2 aRF 2 bRFd. In 2D we analyze the model using finite-size scaling and conformal invariance,
and find a continuous transition with a ratiobyn which varies continuously withq, and a weakly
varying exponentn ø 1. We find strong evidence for the multiscaling of the correlation functions.
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Although the effect on the critical behavior of addin
quenched bond randomness to classical systems wh
pure version undergoes a continuous phase transition
well understood in terms of the Harris criterion [1], th
analogous situation when the pure transition is first ord
is less well studied. Following earlier work of Imry and
Wortis [2], Aizenman and Wehr [3] and Hui and Berke
[4] argued that in 2D any amount of randomness shou
lead to a vanishing of the latent heat. The arguments le
ing to this conclusion are analogous to those used by Im
and Ma [5] for the absence of any spontaneous magn
zation in the randomfield Ising model (RFIM) ford ­ 2:
the bond randomness couples to the local energy dens
which is different for the coexisting phases of the pu
model, in the same manner that the random field coup
to the local magnetization of the RFIM. The vanishing o
the latent heat should be accompanied by a divergent c
relation length, and, if so, the question arises as to wh
universality class(es) the corresponding continuous tra
sition belongs. A suitable model in which to study thi
is theq-state Potts model, whose pure version in 2D u
dergoes a first-order transition forq . 4, otherwise being
continuous. Chen, Ferrenberg, and Landau [6] underto
an extensive Monte Carlo investigation of the caseq ­ 8.
In addition to confirming the continuous nature of the tra
sition, these authors extracted numerical values of the cr
cal exponents which appear to be consistent with those
the pure 2D Ising model. Similar values have also bee
claimed for the caseq ­ 4, when the pure transition is con-
tinuous [7]. This disagrees with the predictions of Ludwi
and Cardy [8], Ludwig [9], and Dotsenkoet al. [10], who
find a new random fixed point forq . 2, based on an ex-
pansion in powers ofq 2 2.

As will become clear, many of our results generalize, b
let us for definiteness consider a Potts model on the squ
lattice with degrees of freedomsi taking q values, and
a reduced Hamiltonian2

P
ij Kijdsisj , where the sum is

over nearest neighbor pairs. The ferromagnetic couplin
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Kij are quenched random variables, taking the valuesK1

andK2, each with probability1
2 . WhenseK1 2 1d seK2 2

1d ­ q this model is, on average, self-dual, and, if th
transition is unique, is therefore at its critical point [11
It is useful to parametrizeeKij 2 1 ­ uij ­ qs1y2d1wij ,
where wij ­ 6w, and w . 0 measures the strength o
the randomness. The partition function of this model m
be mapped onto that of the random cluster model [12],
which each bond of the lattice is either occupied, wh
it is counted with weightuij , or empty, in which case it
is counted with weight 1. The partition sum is over a
such configurations, in which each connected cluster
sites is weighted by a factorq. Let us first consider the
pure model, withw ­ 0. In the limit q ! `, the sum
over configurations is dominated by only two: theempty
lattice, in which no bonds are occupied, which contribut
a factorqN , whereN is the total number of sites, and th
full lattice, with a weightspq d2N , since the number of
bonds isOs2Nd. All other configurations are down by
powers ofq1y2. At the self-dual point, there are therefor
two coexisting states with identical bulk free energy a
different internal energy densities, indicating, as expect
that the transition has a nonvanishing reduced latent h
per bond, 1

2 ln q. For the pure model, this analysis ma
be extended to take into account higher order correcti
in q21y2, with no essential change in the physical pictur
Now consider aninterfacebetween these two phases. F
largeq, the lowest energy interface is parallel to a lattic
direction, say thex axis, and is such that all the bond
with y # some integer are occupied, and those above
are empty (or vice versa). There will also be entrop
fluctuationsy ­ hsxd of this interface, described by the
usual solid-on-solid interfacial Hamiltonian, proportion
to the length of the interface. The interfacial tension f
largeq is s , 1

4 ln q, independent of the local shape of th
interface. This is to be compared withs , 2J between
theorderedphases of a low temperature Ising model wi
reduced exchange couplingJ.
© 1997 The American Physical Society 4063
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Now consider the effect of adding bond randomne
to the random cluster model. Each configuration of t
interface will be weighted by an energy

P
x

P
y,hsxd 3

wsx, yd ln q, where sx, yd labels bond positions. This
may be rewritten, up to a term independent ofhsxd, as
1
2

P
xs

P
y,hsxd 2

P
y.hsxddwsx, yd ln q. Compared with the

energy of an RFIM interface with spinsssx, yd ­ 61
coupled to a reduced random fieldhsx, yd ­ 6hRF , the
interfacial models are identical with the corresponden
J $

1
8 ln q, andhRF $

1
2 w ln q. In addition, the imposi-

tion of a uniform reduced magnetic fieldh on the RFIM,
which distinguishes between the two coexisting phases
seen to be equivalent to a deviationt ; sT 2 TcdyTc in
the temperaturevariable away from the critical self-dua
point. Since this couples to the energy density we find t
correspondenceh $

1
4 t ln q.

Of course, this is strictly valid only asq ! `. At finite
q the q dependence of cluster configurations with mo
complicated topologies is not simply accounted for b
the interfacial tension. For the same reason, the mapp
is not betweenbulk configurations of the two models
However, it will be argued that certain universal properti
are controlled by an a renormalization group (RG) fixe
point at infiniteq, and for these the mapping should b
asymptotically exact. Although this has been describ
in terms of a 2D self-dual model, it should be clear th
it is more general: lack of self-duality corresponds to
skewness in the distribution of the random fieldshsx, yd,
which may be compensated by adding a suitable unifo
field (corresponding to a shift in theTc of the Potts
model), and, similarly, higher dimensions may be tak
into account by appropriately replacing

p
q by q1yd .

The RG properties of the interface in the RFIM ne
d ­ 2 have been well studied [13]. When translated in
the variables of the random-bond Potts model, the flo
equations have the form

dwydl ­ 2sdy2 2 1dw 1 Aw3 1 . . . , (1)

dsln qd21ydl ­ 2sln qd21fsd 2 1d 2 Aw2 1 . . .g , (2)

dtydl ­ ts1 1 Aw2 1 . . .d , (3)

whereA . 0 is a nonuniversal constant. Corrections
these equations are supposed to be higher order inw and
in q21y2. The RG flows ford . 2 and the consequen
phase diagram are shown in Fig. 1. In the pure mode
for q . someq2sdd (low T in the RFIM), there is phase
coexistence with a nonvanishing latent heat (spontane
magnetization), controlled by a fixed point at infiniteq
(T ­ 0). For d . 2 this persists into the shaded region
bounded by a line of tricritical points where the latent he
vanishes. The universal behavior along this line is co
trolled by the fixed pointR at w ­ Ossssd 2 2d1y2ddd and
infinite q. Using the correspondencet $

1
2 h ? TRF , we

conclude that the thermal eigenvaluen21 of the random-
bond problem is related to the RG eigenvalues and ex
nents of the RFIM by the scaling relationsn21 ­ yh 2

u ­ s2 2 aRF 2 bRF dynRF , where2u is the eigenvalue
4064
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FIG. 1. Schematic phase diagram in the critical surface
d . 2. q increases to the left, andw is the disorder strength,
with P1P2 being the percolation limit. RG flows are indicated
The latent heat is nonvanishing within the shaded region, a
elsewhere the transition is continuous, controlled by the line
fixed pointsP1q1.

which controls the irrelevance ofTRF and the consequen
violation of hyperscaling [13]. In the same manner, it ma
be shown that the latent heat vanishes asswc 2 wdbRF as
the lineRq2 is approached from below. Of course, thes
relations have been established only close tod ­ 2, but, if
the topology of the RG flows does not change, they sho
hold also in three and higher dimensions.

Above the lineRq2, the flows go to largew beyond the
validity of (1)–(3). In addition, the renormalized inter
facial tension flows to zero and the mapping between
models breaks down as domains of different topolog
proliferate. However, for infiniteq the mapping remains
exact and the flows go to infinitew. This cannot happen
for finite q since this is the percolation limitK1yK2 ­ 0,
at whichw21 is relevant[14]. There must therefore ex-
ist another line of stable fixed points emerging fromP1,
which control the universal continuous transition for larg
but finite, values ofw andq. It is tempting to conjecture,
as indicated by the dashed line in Fig. 1, that this co
nects onto that found by expansion in powers ofq 2 q1
[8], where q1 is the point where the exponenta of the
pure model changes sign [1]. Our analysis indicates th
at least ford ­ 2, this is the case. In 2D (whenq1 ­ 2,
q2 ­ 4), the shaded region collapses, and for any nonz
w the renormalized interfacial tension, and thus the late
heat, vanish. The flows should be towards the lineP1q1,
with a crossover length which, from Eq. (1), has the for
jX , e1y2Aw2

and therefore may become very large fo
weak randomness.

We now turn to our numerical results ford ­ 2. These
will be described in detail elsewhere [15]. As show
by Blöte and Nightingale [16] the transfer matrix fo
the pureq-state Potts model in a strip of widthL may
be constructed in a basis in whichq enters only as a
continuous parameter. We have generalized this to
case when the bond strengthsuij are quenched random
variables, and the transfer matricesTi therefore depend on
the row labelsi. The size of the transfer matrices grow
like 4L, independent ofq, making this a practicable method
for largerq.

Starting with some suitable initial vectorv0, the leading
Lyapunov exponent is given by [17]L0

L ­ limm!` 3
1
m ln ks

Qm
i­1 Tidv0k. Higher exponents are found by
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iterating a set of vectorssvidk
j­0, where a givenvj is or-

thogonalized to the setsvid
j21
i­0 after each multiplication

by the transfer matrix. The average free energy per site
then fL ­ 2

1
L L

0
L. For a system exhibiting a first-order

transition with a bulk correlation lengthj we expect
[16] fL , f` 1 OsL2de2Lyjd, so thatlsLd ; lnf fL 2

f`g 1 d ln L , const2 Lyj. In Fig. 2 we show this for
various values ofq and the randomness strengthR ;
K2yK1. We see that the randomness changes the transit
for q ­ 8 into one with an apparently diverging correla
tion length. In such a case the amplitude of the finite-si
correction has the form [18]fL , f` 2 pc0y6L2, where
c0 is theeffectivecentral charge [sincefL is the quenched
free energy, in a replica formalism this is the derivative o
the central chargecsnd with respect to the number of repli-
cas atn ­ 0]. The value ofc0 was determined by making
parabolic least squares offL versus1yL2 [19]. We found
the optimum trade-off between statistical errors and
reasonable computation time by taking strips of leng
m ­ 105 and averagingfL over 100 independent realiza-
tions of the randomness for1 # L # 8, and3 realizations
for 9 # L # 12. Data collection was made for each 20
multiplications byTi, and the first 2000 iterations of each
run were discarded in order to eliminate transients. T
parabolic fits were made by including the data points fo
L0 # L # 12, whereL0 must be chosen large enough to
justify the finite-size scaling form, and small enough t
minimize error bars. From the special cases of the Isi
model and percolation it appeared thatL0 ­ 3 is optimal.

For the random-bond Ising model (q ­ 2) with R ­
2 we found c0 ­ 0.495 6 0.006, in agreement with the
result of de Queiroz [19],c0 ­ 0.498 6 0.003 using the
spin basis, and with the expected valuec0 ­

1
2 . Forq ­ 3

and R ­ 2, our resultc0 ­ 0.799 6 0.006 is unable to
distinguish between the pure value of4

5 and that ofc0 ø
0.8025 obtained in Ref. [8] by an expansion inq 2 2.
For q ­ 4 the resultsc0 ­ 1.003 6 0.006 for R ­ 2 and
c0 ­ 1.010 6 0.022 for R ­ 10 are consistent with each
other and the pure valuec ­ 1, but for largerq theR ­ 2
results appear to saturate while those forR ­ 10 show a
gradual increase:c0 ­ 1.517 6 0.025 for q ­ 8 andc0 ­
3.003 6 0.031 for q ­ 64. Similar values have recently
been reported by Picco [20]. However, it should b

FIG. 2. Plots oflsLd, normalized tols1d ­ 1, showing that
bond randomness renders the phase transition second order
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pointed out that these are also very close to those expe
at the percolation pointR ! `. For then the replicated
model is the Potts model withqn states, so thatc0 ­
s≠y≠ndcPottssqndjn­0 ­ s5

p
3y4pd ln q ø 0.689 ln q; this

is confirmed by our transfer matrix calculations [15
These are also remarkably close to the pure values for2 #

q # 4. We conclude that measurement of the effecti
central charge does not distinguish well between pu
percolative, and nontrivial random behavior.

We therefore turned to the magnetic exponentx1 ­
byn. Although this may be determined in principle b
adding a ghost site [16], it proved more efficient to explo
duality and relate the spin-spin correlation functionGsmd
on the strip to the free energy in the presence of a se
of frustrated bonds. Details of this relation and how
implement it in the transfer matrix will be given elsewhe
[15]. In pure systems, according to conformal symme
[21] Gsmd decays along the strip as exps22px1myLd, so
that the differenceDfL in the free energy per site with an
without the seam behaves as2px1yL2. However, in the
random system this difference typically has fluctuatio
which are Osm21y2d. This has the consequence tha
while DfL , 1

mL ln G is self-averaging,G is not [22].
In fact, as shown by Ludwig [9], the momentsGsmdN

(where the overline denotes the quenched average) ex
multiscaling;that is, they scale with dimensionsxN which
are not, in general, linear inN . Since conformal symmetry
assumes translational invariance, it refers only to su
averaged quantities. In practice, we can avoid the la
of self-averaging by performing a cumulant expansion

ln GN ­ N ln G 1
1
2 N2sln G 2 ln Gd2 1 . . . , (4)

where the higher cumulants may be directly extracted fr
the statistical fluctuations inDfL. For values ofq andR
which are not too large, this expansion appears to conve
well, keeping the first 3 or 4 cumulants. The fact that t
higher cumulants are nonzero implies multiscaling. O
values forx1 are shown in Fig. 3. For2 , q # 3 and
R ­ 2 they are in perfect agreement with the predictio
of the sq 2 2d expansion of Refs. [9,10], and forq ­ 3
and4 they agree with recent Monte Carlo results of Pic
[23]. For largerq the results appear to increase smooth
with q, with x1sq ­ 8d ­ 0.1415 6 0.0036. Thereafter
the cumulant expansion begins to break down.

Although the thermal exponentn should be related in a
similar manner to the first gapL1

L 2 L
0
L in the Lyapunov

spectrum, for reasons we do not understand this yie
results which, if taken literally, appear to violate the bou
n $ 1 [24]. Instead we have measuredn directly by
finite-size scaling of the magnetic correlation length aw
from Tc, using phenomenological RG methods [25]. F
q ­ 8, as shown in Fig. 4, we find clear evidence for fixe
points atR ­ 1, with n ­

1
2 (xT ­ 0), and a random fixed

point with nR ­ 1.01 6 0.02. At q ­ 3 our results are
consistent with the perturbative valuenR ø 1.02, and for
q ­ 64 we findnR ­ 1.02 6 0.03.
4065
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FIG. 3. Magnetic exponent as a function ofq, with R ­ 2.

In summary, we have computed the exponents of t
2D random-bond Potts model and shown that while th
thermal exponentnR is consistent, within error bars, with
both the pure Ising value, and with the results of thesq 2

2d expansion, the magnetic exponent varies continuou
with q in a manner which agrees with this expansion i
the region it is expected to be valid, and with a value
q ­ 8 which is quite different from the Ising value of1

8 .
This is in sharp disagreement with the Monte Carlo resu
of Ref. [6]. One possible reason is that these authors us
nonstandard definition of the order parameter which, wh
it scales in the same way as the usual one in the pu
case, may not when multiscaling is present. Another
that our very long strips are able to accommodate lar
regions in which allq values of the order parameter are
realized, and this may not typically be the case in th
square geometries of Ref. [6]. Our results should also
compared with those of Ref. [26], in which it is shown
that the randomconnectivityof a Voronoi–Delauney lattice
does not modify the first-order nature of the transition
However, in this case it may be shown that the typic
random fluctuations in the energy of a region of sizeLd

areOsLsd21dy2d rather thanOsLdy2d as in our random-bond
model, so they are always smaller than the domain w
energy. Another study [27], in which the transition wa
observed to be softened, refers to a lattice with rando
curvaturewhich is fractal when embedded in the plane

FIG. 4. Values ofn extracted from phenomenological RG for
different strip widths andq ­ 8. There is a fixed point at
R ø 8 with n ø 1 (see inset). Error bars are less than th
symbol size.
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and to which neither our arguments nor those of Refs. [3
directly apply.

We have also given a mapping of the random-bo
problem to the RFIM which suggests that ford . 2 such
systems should exhibit a tricritical point whose thermal e
ponent is related to those of the RFIM. This picture is qu
generic, and, since there are many real 3D systems wh
undergo first-order transitions, it would be interesting
reexamine the effect of random impurities in such case
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