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Theoretical Study of the Damping of Collective Excitations in a Bose-Einstein Condensate
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We study the damping of low-lying collective excitations of condensates in a weakly interacting
Bose gas model within the framework of an imaginary time path integral. A general expression of the
damping rate has been obtained for both the very low temperature regime and the higher temperature
regime. For the latter, the result is new and applicable to recent experiments. Theoretical predictions
for the damping rate are compared with the experimental values. [S0031-9007(97)04625-5]

PACS numbers: 03.75.Fi, 11.10.Wx, 67.40.Db

The recent realization of Bose-Einstein condensatiofin deriving the damping rate since we are only interested
(BEC) in dilute atomic vapors [1,2] has opened the dootin finding the leading term for it. In the following, we
to experimentally study weakly interacting dilute quan-shall study a model of weakly interacting bosonic particles
tum gases for which microscopic theories have been welh an infinite free space using the imaginary time path
studied for decades. In particular, it has been shown thantegral method which allows us to take into account the
the frequencies of the low-lying collective excitations of excitation collision processes that are believed to be the
condensates [3,4] agree excellently with theoretical preeause of the damping.
dictions based on a mean-field theory [5]. The damping In the low momentum and low temperature limit, one
in such collective modes has been experimentally discowsually finds an effective field theory in which only slowly
ered by Jiret al. [3] and Meweset al. [4]. A very recent varying degrees of freedom appear explicitly with interac-
experiment [6] has extended the study of low-lying collec-tions that include the effects of fast varying fields that
tive excitations of condensates to include higher temperadiave first been integrated out [8]. One version of such an
tures in which the damping of these excitations exhibiteffective field theory has been established for a nonideal
dramatic temperature dependence. So far, there is rBose gas in the low temperature regime by Popov [9].
theoretical prediction for it in such a temperature regime.The theory treats the system effectively as that of quasi-

This paper aims to provide a simple way of calculatingparticles described by two slowly varying real scalar fields
the damping rate of collective excitations in the aboveg(x) and o(x). Here, theo(x) fields describe the den-
temperature regime. The experimental setup we consideity fluctuations, written as(x) = n(x) — no with ng the
is a dilute gas of atoms confined in a trap potentialdensity of the ground state. Thi(x) fields are the Gold-
Recently, Chou, Yang, and Yu [7] argued that the localstone field in this theory, appearing originally in the phase
density approximation can be applied into the presentf original particle fields. Notice that we have written
problem. In other words, the trap potential may be treatethe four-dimensional Euclidean space-timexas: (x, 7)
as a slowly varying external potential and enters into thevith = = it denoting the Euclidean “time.” According
theory only as a modification to the chemical potential.to Popov, the Euclidean action for such a system can be
To simplify the theory, let us assume that the trap is absentritten by (i = 1 henceforth)
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wherem is the particle mass ang is the pressure of the| is very small, the expression of the pressyréu,n)
system given as the function of the chemical potential can be well approximated by that af = 0. For a
and the particle density. Notice that¢(x) and o(x)  weakly (repulsively) interacting dilute gas, it is given
are periodic in timer with period B8 = 1/(kgT). If by [11] p = un — %zonz, where to = 4ma/m in the

v = (1/m)V¢ is identified with the phonon velocity field, hard-sphere approximation with the s-wave scattering
one can easily verify that the action (1) corresponds to gength. It follows thato?p/oudn = 1, dp/ou = no,
Hamiltonian that is one form of a Landau-Khalatnikov ¢92p/ou? = 0, ando’p/on*> = —t,.

hydrodynamic Hamiltonian [10]. In the low temperature For simplicity, we write ¢ and o fields into a real
regime such that the noncondensate fraction of particlescalar doublet asbt = (¢, o). The Green’s functions
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(or propagators) are defined by the matrix,
Glx — x) = (T{® )P (x)})

I, dp@)do ()P @)D T (x)eSé]
N L démdo()lesesd

ously, it can be treated as perturbation in the low momen-
tum limit.

The spectrum of collective excitations is given by
the poles of the exact Green’'s function [12](k) =
Go(k) + Go(k)I1(k)G(k), wherell(k) denotes the matrix
of the self-energy parts. It follows that the spectrum is

with T denoting a time-ordered product. The Fouriergetermined by

transform ofG(x) is defined through

1 3 i(k'x—w,T)

Ban) Zf d*kG(k)e . @
where the notatiot = (k,iw,) is understood and Mat-
subara frequenciew, = 27v/B (v =0,*1,*2,...).
The quadratic part of the actiof can be written into
the form ofSquap = —% [ d*xd*x'®(x)D (x, x")D(x")
and the free Green'’s functia® (k) is equal to the inverse
of the matrix”D. Thus, we find

G(x) =

noy 2
—k w,

Gy (k) = ( " & ) 3)
—wy, Iy + 4mny

It follows that
to+k2/(4mnyg) —w,

24+ e2(k w2+er(k

Go(k) = ( R ) @
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where the spectrume(k) = \/(2"—;)2 + c2k? with ¢ =

Jfong/m. The propagators;, are represented by Feyn-

detG (k) = defG, ' (k) — (k)] = 0. (5)

Now that we are working in the imaginary time for-
malism, let us make the analytical continuatibm, —

o + in (n =0%) after the Matsubara frequency sum
and writtew = Rew — iy(k) with v denoting the damp-
ing rate. Then, keeping only the terms up to one-loop
order [13], we find from Eqgs. (3) and (5) that

10 =0+ X
Y 2Rew 0 dmnyg

n0k2
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+ Imll,,(k,w + in)

— Relly,(k, 0 + in), (6)

with the understanding that all's are replaced witle (k)
after the analytical continuation. Up to one-loop order,
there are six diagrams (see Fig. 2) for the self-energy
matrix I1(k, w), but only the last five Figs. 2(b)—2(f)

man diagrams in Fig. 1. Further, the cubic term of the accontribute to the damping. After collecting contributions
tion (1) describes the interaction of three excitations thatrom all related diagrams, we have

are known as phonons in the low momentum region, giv-

ing rise to a vertex 06°(k; + ko + k3)8,, 41,4+ p0l(K; - (k) = 71(k) + 72 (k), (7)
k,)/m] represented by the last diagram of Fig. 1. Obvi-with
|
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the experiment of’Rb at JILA, the condensates are

k k k
G 0 thc(k)---. ";w(k) produced in a trap with frequencies of. = 129 Hz
. radially andy, = 365 Hz axially. For a typical conden-
i ks ? sate ofNggc = 4500 atoms, the density of a condensate
e T "'< vertex can be estimated as ~ 1.4 X 10'* cm™3 [16]. Fur-
ky thermore, the scattering length for*3Rb vapor may be
FIG. 1. Diagrams for propagators and vertex. taken roughly as: = 103 bohrs [17]. It turns out that
the typical interaction energyyto = 57 nK. Therefore,

the damping rate is expected to be given by Eq. (11) in-

stead of Eg. (12) in the temperature regig0, 300) nK,

where it was measured (see Figs. 1 and 3 of Ref. [6]). We

also checked that for the lowest excitation mdde= 2)

s both ck/(kpT) and ck/(ngty) are less tha.2 for any T

yr—o(k) = _ 3k above50 nK. Figure 3 shows theoretical predictions for
6407 mny the damping rate of collective excitations in comparison

which is the well-known Beliaev's result [14]. The prod- With the experimental data from Ref. [6]. The theoretical
uct noty characterizes the strength of particle interactionscurve (b) seems to fit the experiment well. Nevertheless,
ForT # 0 and smallk such thatk < kzT andck <  the damping rate is varying with the density of conden-
noto, we find that the damping rate to the lowest order insates, and how to determine a proper average demgity
k is determined by for a trapped Bose condensate shall not be discussed here.
Next, let us check whether the above experiment is in the

wheref(e) = 1/[exp(Be) — 1].
If T = 0, one can easily verify that, for small(ck <«

noto),

(10)

5
y(k) = ckky I("Ot()), (11) low temperature region. Fdf < 100 nK, we read off
16mmnokpT  \kgT from Fig. 1 of Ref. [6] that the correspondirily < 0.6
whereky = /mnot, and the function/ (x) is given by (whereT’ = T/T,), and the condensate fractidfgec /N
2 ® 282 3 is greater than or abow0%. Hence, the higher order
I(x) = 63 + f d¢ (1 + &2 + 21 + &) corrections to Eqg. (11) due to finite temperature effects
0 can only be estimated from the calculation of Feynman

_ 2 £2ert . diagrams less thafi — Nggc/N)? = 4%. On the other
(I + &2)2 | (exé — 1) hand, Ref. [6] shows that more thaf% of particles re-

If the limit kgT/noto — O is taken, Eq. (11) reduces to ;ide in noncondensates wh@h_> 0.8 and, correspondj
ingly, T > 175 nK roughly. This means that Eq. (11) is
invalid in that temperature regime. Instead, the damping

the familiar form

3m3k(kgT)*

y(k) = ——"——
40mngc

which was given by Hohenberg and Martin [15]. ;
though, we shall see in the following paragraph that j
Eq. (12) is invalid in the recent experimental temperature :'
regime. In fact, both expressions (10) and (12) were al- ;
ready derived by Popov in Ref. [9] from the effective ac-

(12)

200.0

Al-

150.0 -

tion (1). But, to the best of my knowledge, the general = 1000 |
expression (11) is first obtained here. It is valid as long ¥
as the system is in the low temperature region such that
the number of particles in the excited states is much less 50.0
than that in the condensate.

The damping of collective excitations in BEC has
been measured in the dilute atomic vapors of BBRb 00 ===
and sodium at JILA and MIT, respectively [3,4,6]. For

JILA Experiments
A m=0

@ m=2

150.0 200.0 250.0 300.0

T(nK)

100.0

FIG. 3. The damping rate of collective excitations it’&b

atomic gas. The three solid lines indicate theoretical predictions
from Eq. (11). For those, the excitation frequency is taken as
w/27 = 1.4v, = 180.6 Hz corresponding to the mode = 2,

and the condensate densities &g no = 1.0 X 10" cm™3,

(a) (b) (c)
. R (b) np =20 x 10" cm™3, and (¢) nyg = 3.0 X 10" cm™3.
O- ’ N The dashed line is the prediction of Eq. (12) with the
@ o P same excitation frequency and, = 1.0 X 10" cm™. Two
discrete curves are replotted from the data of Ref.[6]. (The

experimental data are the courtesy of M. R. Matthews.)

FIG. 2. One-loop diagrams for the self-energy mafrik).
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10.0

derstanding it requires a complete analysis to take into
account the contribution of the trap and the inhomogene-
] ity of the system.
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FIG. 4. The damping rate of collective excitations in a sodium
atomic gas. All solid lines are plotted according to Eq. (11).
The excitation frequency 30 Hz and the condensate densities

are(a) np = 1.0 X 10" cm3, (b) no = 2.0 X 10" cm3, (¢) . . .
no = 3.0 X 10 cm3, and(d) ny = 4.0 X 10" cm3. *Electronic address: liu@physics.utexas.edu
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