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Theoretical Study of the Damping of Collective Excitations in a Bose-Einstein Condensate
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We study the damping of low-lying collective excitations of condensates in a weakly interacting
Bose gas model within the framework of an imaginary time path integral. A general expression of the
damping rate has been obtained for both the very low temperature regime and the higher temperature
regime. For the latter, the result is new and applicable to recent experiments. Theoretical predictions
for the damping rate are compared with the experimental values. [S0031-9007(97)04625-5]
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The recent realization of Bose-Einstein condensati
(BEC) in dilute atomic vapors [1,2] has opened the do
to experimentally study weakly interacting dilute quan
tum gases for which microscopic theories have been w
studied for decades. In particular, it has been shown t
the frequencies of the low-lying collective excitations o
condensates [3,4] agree excellently with theoretical p
dictions based on a mean-field theory [5]. The dampi
in such collective modes has been experimentally disco
ered by Jinet al. [3] and Meweset al. [4]. A very recent
experiment [6] has extended the study of low-lying colle
tive excitations of condensates to include higher tempe
tures in which the damping of these excitations exhib
dramatic temperature dependence. So far, there is
theoretical prediction for it in such a temperature regime

This paper aims to provide a simple way of calculatin
the damping rate of collective excitations in the abov
temperature regime. The experimental setup we consi
is a dilute gas of atoms confined in a trap potentia
Recently, Chou, Yang, and Yu [7] argued that the loc
density approximation can be applied into the prese
problem. In other words, the trap potential may be treat
as a slowly varying external potential and enters into t
theory only as a modification to the chemical potentia
To simplify the theory, let us assume that the trap is abs
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in deriving the damping rate since we are only interest
in finding the leading term for it. In the following, we
shall study a model of weakly interacting bosonic particle
in an infinite free space using the imaginary time pa
integral method which allows us to take into account th
excitation collision processes that are believed to be t
cause of the damping.

In the low momentum and low temperature limit, on
usually finds an effective field theory in which only slowly
varying degrees of freedom appear explicitly with intera
tions that include the effects of fast varying fields tha
have first been integrated out [8]. One version of such
effective field theory has been established for a nonide
Bose gas in the low temperature regime by Popov [9
The theory treats the system effectively as that of qua
particles described by two slowly varying real scalar field
fsxd and ssxd. Here, thessxd fields describe the den-
sity fluctuations, written asssxd ­ nsxd 2 n0 with n0 the
density of the ground state. Thefsxd fields are the Gold-
stone field in this theory, appearing originally in the pha
of original particle fields. Notice that we have written
the four-dimensional Euclidean space-time asx ­ sx, td
with t ­ it denoting the Euclidean “time.” According
to Popov, the Euclidean action for such a system can
written by (h̄ ; 1 henceforth)
Sff, sg ­
Z b

0
dt

Z `

2`

d3x

(
i

≠2p
≠m≠n

s≠tfsxd 2
1

2m
≠p
≠m

f=fsxdg2 2
1
2

≠2p
≠m2

f≠tfsxdg2

1
1
2

≠2p
≠n2

s2sxd 2
f=ssxdg2

8mn0
2

ssxdf=fsxdg2

2m

)
, (1)
wherem is the particle mass andp is the pressure of the
system given as the function of the chemical potentialm

and the particle densityn. Notice thatfsxd and ssxd
are periodic in timet with period b ­ 1yskBTd. If
v ­ s1ymd=f is identified with the phonon velocity field
one can easily verify that the action (1) corresponds t
Hamiltonian that is one form of a Landau-Khalatniko
hydrodynamic Hamiltonian [10]. In the low temperatu
regime such that the noncondensate fraction of partic
,
o a
v

re
les

is very small, the expression of the pressurepsm, nd
can be well approximated by that ofT ­ 0. For a
weakly (repulsively) interacting dilute gas, it is given
by [11] p ­ mn 2

1
2 t0n2, where t0 ­ 4paym in the

hard-sphere approximation witha the s-wave scattering
length. It follows that≠2py≠m≠n ­ 1, ≠py≠m ­ n0,
≠2py≠m2 ­ 0, and≠2py≠n2 ­ 2t0.

For simplicity, we writef and s fields into a real
scalar doublet asFy ­ sf, sd. The Green’s functions
© 1997 The American Physical Society
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(or propagators) are defined by the matrix,

Gsx 2 x0d ­ kT hFsxdFysx0djl

­

R
f
Q

x dfsxddssxdgFsxdFysx0deSff,sgR
f
Q

x dfsxddssxdgeSff,sg ,

with T denoting a time-ordered product. The Fourie
transform ofGsxd is defined through

Gsxd ­
1

bs2pd3

X
n

Z
d3kGskdeisk?x2vntd, (2)

where the notationk ; sk, ivnd is understood and Mat-
subara frequenciesvn ­ 2pnyb sn ­ 0, 61, 62, . . .d.
The quadratic part of the actionS can be written into
the form ofSQUAD ­ 2

1
2

R
d4xd4x0FysxdD sx, x0dFsx0d

and the free Green’s functionG0skd is equal to the inverse
of the matrixD . Thus, we find

G21
0 skd ­

√ n0

m k2 vn

2vn t0 1
k2

4mn0

!
. (3)

It follows that

G0skd ­

√ t01k2ys4mn0d
v2

n1e2skd
2vn

v2
n1e2skd

vn

v2
n1e2skd

sn0ymdk2

v2
n1e2skd

!
, (4)

where the spectrumeskd ­
q

s k2

2m d2 1 c2k2 with c ;p
t0n0ym. The propagatorsG0 are represented by Feyn

man diagrams in Fig. 1. Further, the cubic term of the a
tion (1) describes the interaction of three excitations th
are known as phonons in the low momentum region, g
ing rise to a vertex ofd3sk1 1 k2 1 k3ddn11n21n3,0fsk1 ?

k2dymg represented by the last diagram of Fig. 1. Obv
r

-
c-
at

iv-

i-

ously, it can be treated as perturbation in the low momen
tum limit.

The spectrum of collective excitations is given by
the poles of the exact Green’s function [12]Gskd ­
G0skd 1 G0skdPskdGskd, wherePskd denotes the matrix
of the self-energy parts. It follows that the spectrum is
determined by

detG21skd ­ detfG21
0 skd 2 Pskdg ­ 0 . (5)

Now that we are working in the imaginary time for-
malism, let us make the analytical continuationivn !

v 1 ih sh ; 01d after the Matsubara frequency sum
and writev ­ Rev 2 igskd with g denoting the damp-
ing rate. Then, keeping only the terms up to one-loo
order [13], we find from Eqs. (3) and (5) that

gskd ­
1

2Rev

"√
t0 1

k2

4mn0

!
ImPffsk, v 1 ihd

1
n0k2

m
ImPsssk, v 1 ihd

#
2 RePfssk, v 1 ihd , (6)

with the understanding that allv’s are replaced witheskd
after the analytical continuation. Up to one-loop order
there are six diagrams (see Fig. 2) for the self-energ
matrix Psk, vd, but only the last five Figs. 2(b)–2(f)
contribute to the damping. After collecting contributions
from all related diagrams, we have

gskd ­ g1skd 1 g2skd , (7)

with
g1skd ­
1

32p2

Z
d3k0dssseskd 2 esk0d 2 esk 2 k0dddd f fsssesk0dddd 2 fsss 2 esk 2 k0ddddg

3

(
sk 2 k0d2sk ? k0d2esk0deskd

2mn0k2k02esk 2 k0d
1

sk ? k0dfk ? sk 2 k0dgeskd
2mn0k2

1
k2fk0 ? sk 2 k0dg2esk0desk 2 k0d

4mn0k02sk 2 k0d2eskd

1
fk0 ? sk 2 k0dgsk ? k0desk0d

mn0k02

)
(8)

and

g2skd ­
1

32p2

Z
d3k0dssseskd 1 esk0d 2 esk 1 k0dddd f fsssesk0dddd 2 fsssesk 1 k0ddddg

3

(
eskd
2mn0

"
k02fk ? sk 1 k0dg2esk 1 k0d

k2sk 1 k0d2esk0d
1

sk 1 k0d2sk ? k0d2esk0d
k2k02esk 1 k0d

#

1
sk ? k0dfk ? sk 1 k0dgeskd

mn0k2 1
k2fk0 ? sk 1 k0dg2esk0desk 1 k0d

2mn0k02sk 1 k0d2eskd
1

fk0 ? sk 1 k0dg
mn0

3

"
sk ? k0desk0d

k02
1

fk ? sk 1 k0dgesk 1 k0d
sk 1 k0d2

#)
, (9)
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FIG. 1. Diagrams for propagators and vertex.

wherefsed ­ 1yfexpsbed 2 1g.
If T ­ 0, one can easily verify that, for smallk sck ø

n0t0d,

gT­0skd ­
3k5

640pmn0
(10)

which is the well-known Beliaev’s result [14]. The prod
uct n0t0 characterizes the strength of particle interaction

For T fi 0 and smallk such thatck ø kBT andck ø

n0t0, we find that the damping rate to the lowest order
k is determined by

gskd ­
ckk5

0

16pmn0kBT
I

µ
n0t0

kBT

∂
, (11)

wherek0 ;
p

mn0t0 and the functionI sxd is given by

I sxd ­
p2

6x3
1

Z `

0
dj

"
2j2

s1 1 j2d3y2
1

3
2s1 1 j2d

2
2

s1 1 j2d2

#
j2exj

sexj 2 1d2
.

If the limit kBTyn0t0 ! 0 is taken, Eq. (11) reduces t
the familiar form

gskd ­
3p3kskBT d4

40mn0c4
(12)

which was given by Hohenberg and Martin [15]. A
though, we shall see in the following paragraph th
Eq. (12) is invalid in the recent experimental temperatu
regime. In fact, both expressions (10) and (12) were
ready derived by Popov in Ref. [9] from the effective a
tion (1). But, to the best of my knowledge, the gene
expression (11) is first obtained here. It is valid as lo
as the system is in the low temperature region such
the number of particles in the excited states is much l
than that in the condensate.

The damping of collective excitations in BEC ha
been measured in the dilute atomic vapors of both87Rb
and sodium at JILA and MIT, respectively [3,4,6]. Fo

FIG. 2. One-loop diagrams for the self-energy matrixPskd.
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the experiment of87Rb at JILA, the condensates are
produced in a trap with frequencies ofnr ­ 129 Hz
radially andnz ­ 365 Hz axially. For a typical conden-
sate ofNBEC ­ 4500 atoms, the density of a condensate
can be estimated asn0 ø 1.4 3 1014 cm23 [16]. Fur-
thermore, the scattering length for a87Rb vapor may be
taken roughly asa ­ 103 bohrs [17]. It turns out that
the typical interaction energyn0t0 ø 57 nK. Therefore,
the damping rate is expected to be given by Eq. (11) in
stead of Eq. (12) in the temperature regions30, 300d nK,
where it was measured (see Figs. 1 and 3 of Ref. [6]). W
also checked that for the lowest excitation modesm ­ 2d
both ckyskBTd andckysn0t0d are less than0.2 for any T
above50 nK. Figure 3 shows theoretical predictions for
the damping rate of collective excitations in comparison
with the experimental data from Ref. [6]. The theoretica
curvesbd seems to fit the experiment well. Nevertheless
the damping rate is varying with the density of conden
sates, and how to determine a proper average densityn0

for a trapped Bose condensate shall not be discussed he
Next, let us check whether the above experiment is in th
low temperature region. ForT , 100 nK, we read off
from Fig. 1 of Ref. [6] that the correspondingT 0 , 0.6
(whereT 0 ; TyTc), and the condensate fractionNBECyN
is greater than or about80%. Hence, the higher order
corrections to Eq. (11) due to finite temperature effect
can only be estimated from the calculation of Feynman
diagrams less thans1 2 NBECyNd2 ­ 4%. On the other
hand, Ref. [6] shows that more than50% of particles re-
side in noncondensates whenT 0 . 0.8 and, correspond-
ingly, T . 175 nK roughly. This means that Eq. (11) is
invalid in that temperature regime. Instead, the dampin

FIG. 3. The damping rate of collective excitations in a87Rb
atomic gas. The three solid lines indicate theoretical prediction
from Eq. (11). For those, the excitation frequency is taken a
vy2p ­ 1.4nr ­ 180.6 Hz corresponding to the modem ­ 2,
and the condensate densities aresad n0 ­ 1.0 3 1014 cm23,
sbd n0 ­ 2.0 3 1014 cm23, and scd n0 ­ 3.0 3 1014 cm23.
The dashed line is the prediction of Eq. (12) with the
same excitation frequency andn0 ­ 1.0 3 1014 cm23. Two
discrete curves are replotted from the data of Ref. [6]. (The
experimental data are the courtesy of M. R. Matthews.)
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FIG. 4. The damping rate of collective excitations in a sodiu
atomic gas. All solid lines are plotted according to Eq. (11
The excitation frequency is30 Hz and the condensate densitie
are sad n0 ­ 1.0 3 1014 cm23, sbd n0 ­ 2.0 3 1014 cm23, scd
n0 ­ 3.0 3 1014 cm23, andsdd n0 ­ 4.0 3 1014 cm23.

rate was found to be linear inT for higher temperature
(belowTc) in the theory of Szepfalusy and Kondor [18].

In Fig. 4, we plot the damping rate of the collectiv
excitation of frequency30 Hz for the sodium gas system
of Mewes et al. [4] using the s-wave scattering length
a ­ 65 bohrs [19]. The decay time of250s40d ms was
found experimentally when a nearly pure condensate w
formed at the temperatureT ø 0.5Tc [20]. The Bose-
Einstein transition temperature is determined theoretica
according toTc ­ sh̄v̄ykBd sNy1.202d1y3 [19,21] with v̄

the geometric mean of the harmonic trap frequenc
v̄ ­ svxvyvzd1y3. For the trap used in Ref. [4] is of
frequencies of250 Hz radially and19 Hz axially, and
typically holds a total numberN ø 5 3 106 of atoms
when the decay time is measured, we haveTc . 800 nK.
For a typical condensate densityn0 ­ 3 3 1014 cm23

[19], we can read off from the curvescd of Fig. 4 thatg .
4.4 s21 for temperatureT ­ 400 nK. This damping rate
corresponds to a decay time of about230 ms that agrees
very well with the experimental value. Also, since a
such a temperature the condensate fraction of atom
around90%, higher order corrections tog due to the finite
temperature effect alone are quite smalls,1%d. Also,
we checked that bothckyskBT d and ckysn0t0d are less
than 1%. That is to say, the system is well in the lo
momentum region.

In conclusion, this paper calculates the damping rate
collective excitations for a dilute Bose gas model in a tem
perature regime where theoretical predictions did not ex
previously. Although the model has ignored the contrib
tion of the trap and has required that the condensate
homogeneous, it produces results for the damping of c
lective excitations that are in good agreement with the e
periments. Our study also reveals that the damping is d
mainly to the process that one excitation absorbs a pho
transferring into another at finite temperature. Fully u
m
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derstanding it requires a complete analysis to take in
account the contribution of the trap and the inhomogen
ity of the system.
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