PHYSICAL REVIEW
LETTERS

VOLUME 79 24 NOVEMBER 1997 NMBER 21

Multisoliton Solutions of the Complex Ginzburg-Landau Equation
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We present novel stable solutions which are soliton pairs and trains of the 1D complex Ginzburg-
Landau equation (CGLE), and analyze them. We propose that the distance between the pulses and the
phase difference between them is defined by energy and momentum balance equations. We present
a two-dimensional phase plane (“interaction plane”) for analyzing the stability properties and general
dynamics of two-soliton solutions of the CGLE. [S0031-9007(97)04655-3]

PACS numbers: 03.40.Kf, 42.65.Tg, 47.20.Ky

The emergence of stable spatiotemporal patterns in fllow this tradition, and also call them “solitons” or “soli-
variety of physical situations may be modeled through théon solutions.”
well-known complex Ginzburg-Landau equation (CGLE). For the nonlinear Schrédinger equation, two solitons
The CGLE is the basic model which describes nonlineahave zero binding energy. Hence, any nonlinear super-
phenomena far from equilibrium [1]. It describes, for position of two solitons is neutrally stable, and can be
example, open flow motions [2], traveling waves in binarymade unstable with a very small perturbation. On the
fluid mixtures [3], and spatially extended nonequilibrium other hand, for the NLSE, there is no stationary solu-
systems [4,5]. In optics, it is useful in analyzing opticaltion in the form of two solitons with equal amplitudes
transmission lines [6,7], passively mode-locked fiberand velocities and with a fixed separation. Frequently,
lasers [8,9], and spatial optical solitons [10]. In eachreal systems are not described by integrable equations
case, the problem of the interaction of two, individually (e.g., the NLSE), but by Hamiltonian generalizations of
stable, juxtaposed elementary coherent structures (i.ehe NLSE. For these systems, the interaction between the
solitons) is crucial for understanding the general behaviopulses becomes inelastic, so that two-soliton solutions of
of the system [11,12]. the perturbed NLSE (when they exist) are unstable due to

Stable pulse-like solutions of the quintic CGLE havethe energy exchange between the pulses [17]. The situ-
been found by Thual and Fauve [13]. Minimal require-ation changes completely for nonconservative systems.
ments for their stability have been obtained in [14]. InEach soliton then has its own internal balance of energy
the conservative limit, these solutions can be consideredhich maintains its constant amplitude. Fixing the ampli-
as perturbations of the nonlinear Schrédinger equatiotudes effectively reduces the number of degrees of free-
(NLSE) solitons [15]. The continuous transition of thesedom in the system of two solitons and can make it stable.
solutions from the conservative limit to the gradient limit Bound states of two solitons in these systems were first
in the parameter space of the CGLE has been studiegnalyzed by Malomed [18]. Using standard perturbation
in Ref. [16]. Although the dynamical properties of theseanalysis for soliton interaction, he showed that station-
pulselike solutions, their collisions and interactions are dif-ary solutions in the form of bound states of two solitons,
ferent from those of solitons of integrable systems, thewhich are in-phase or out-of-phase, may exist. We also
have been called “solitons” in a number of works. Weconfirm that they do exist. However, careful numerical
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analysis shows that these types of soliton bound states areThe CGLE has no known conserved quantities. In-
unstable [19]. stead, the energy associated with solutiohsis Q =

In this work we report the discovery of quintic CGLE [~ |¢|*>dr, and its rate of change with respect
stabletwo and more soliton solutions with &/2 phase s [17]
difference between them. We propose using a 2D space d
(using distance and phase difference) to analyze the — Q = F[y], (2)
dynamics of the two-soliton system, and we show that d¢
this space describes the system adequately. This methQghere the functionaF[] is given by
allows us to find the bound states, analyze their stability,

and investigate their global dynamics. The quintic CGLE gy, 1 — fo slul? + 4 4 6 _ 214
describes situations where there is a single transverse (or[lp] 700[ vl €lyl ulvl BlislTldr.

temporal) coordinate (see, e.g., [5,17]): 3)
D . . N _ 00 *
e + = — (1= 2y + Similarly, the momentum i3/ = Im(/”_, ¢ ¢ d7), and
W < 2 l'8>¢ ( i) lyly its rate of change is defined by
v —iwlylty = isy, d
— M = J[y], 4
” e M =) (4)

wherer is the retarded time is the propagation distance, where the real functional[] is given by

8, B, €, u, and v are real constants) is a complex %

field, and one can always sbt= =1. We useD = +1 Jpl=2 Im[ [(6 + elyl* + ulg|Hy + Bi.,]
(i.e., anomalous dispersion, or self-focusing regime of the e

corresponding NLS equation). X rdr. 5)

Bright-soliton solutions of the CGLE form a discrete - ) ) ) ) ,
set [5,22], so that, if the values of the parameters of th&Y definition, this functional is the force acting on a soliton
glong ther axis. There are only two rate equations,

equation are specified, then the amplitude and width of" i A
the soliton are fixed. There may be many solutions foZ (2) and (4), which can be derived for the CGLE.
each parameter set [4,21], but each solution has a fixedigher order functionals do not exist.
amplitude and phase profile. Thus CGLE solitons differ W€ Seek stationary solutions so the energy and momen-
qualitatively from those of Hamiltonian systems, where alltum do not change, and the corresponding solutions must
bright soliton solutions are always members of a family ofSatisfy the set of two equations
solutions with variable amplitude. There are exceptions Fly] = o, J]l = 0. (6)
when there is a certain relation between the parameters
and new symmetries appear [22], and for dark-soliton-The first identity indicates the necessary balance that
type solutions of the cubic CGLE [5,23], but these aremust exist between losses and gain for any stationary
very special cases. The physical reason for the abow&olution, while the second guarantees a balance between
fact is that, in contrast to the NLSE and its Hamiltonianthe transverse forces acting on solitons. Trivially)] =
generalizations, solitons of the CGLE arise as a resuR for any symmetric () = =¢(—7)] solution, but
of a balance between the nonlinearity and dispersion o#l##] may also be zero for other solutions (which can have
the one hand, and between the gain and loss on thH@onzero velocity).
other hand. Either of these, independently, would define Given the equation coefficients, we call the correspond-
a family of solutions, but imposing both simultaneouslying “plain” soliton solutiony(7). The bound solution of
usually gives a fixed solution. two plain solitons is well approximated by

The fact that the soliton parameters are fixed implies _ _ .
that, during the interaction of two solitons, basically only W(T) = tholr = p/2) + Jolr + p/DeXRli¢),  (7)
two parameters may change: their separajoand the where the values op and ¢ are those which satisfy
phase difference between them. Thus the phase spaceEgs. (6). For very rough estimates, these calculations can
here is truly 2D, and we may analyze the bound statebe done using simple trial functions fg(7). However,
formed of two solitons, their stability and their global since we have exact numerical soliton solutions, we use
dynamics in this 2D space, which we call the “interactionthem to find the zeros of andJ numerically.
plane.” The possibility of this reduction in the number The zeros of these functionals, in the interded <
of degrees of freedom is a unique feature of systemg < 4, are presented on the interaction plane in Fig. 1
with gain and loss. It does not apply for nonintegrablefor the parameters written in the figure. The separation
Hamiltonian systems, where the amplitudes of the solitong must be of the same order as, but larger than, the
can also change, and therefore more sources of instabilityidth of a single soliton (indicated by a dashed circle
of the bound states appear [17]. in the figure). Smallerp correspond to merging of
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of the solution is necessarily asymmetric, due to this
phase difference. Fos = 0.4 only two singular points
are predictedS;, at ¢ = = and0, respectively.

The above predictions have been numerically confirmed
by solving the propagation equation. The general dynam-
ics of the interaction of two solitons can be described us-
ing just the interaction plane. An initial condition (7), in
the form of two stable solitons with arbitrary separation
(p) and phase differencep(), will result in a trajectory
on this plane. Bound states are the singular points of this
plane, with the type of singular point defining the stability
of the state. Figure 2 gives two examples of these nu-
merical simulations, corresponding to Fig. 1. Figure 2(a)
indicates that, for the given parameters, there are five sin-
gular points. Within the accuracy of the method, these

p sin(¢)

pcos(9)

FIG. 1. Zeros ofF (solid lines) andJ (dotted lines) on the
interaction plane for (a)e = 1.8 and (b) e = 0.4. Other
parameters are the same for both planes and are shown in part
(a) of the figure. The points of intersection of the solid curves
with the dotted ones correspond to bound states of two solitons.
They are shown as bold points. The radius of the dashed circle
indicates the full width at half maximum of a single soliton.

the solitons and at larges the interaction between the
solitons is too weak. The solid lines in Fig. 1 show
the locus of points wherd[¢] = 0, while the dotted
lines show those wheré[] = 0. It can be seen from
this figure that the functiona¥[/] has two zeros in the
interval —7 /2 < ¢ < /2, but only one in the interval
T/2 < ¢ <37/2.

J[¢] is zero on the horizontal axis of the interaction
plane, so every intersection of a solid curve with the

psin(¢)

pcos(9)

horizontal axis corresponds to a two-soliton bound Stat?FlG. 2. Trajectories showing the evolution of two-soliton
There are three examples of this type of bound state igolutions on the interaction plane for the same parameters as
Fig. 1(a), viz.S;,i = 1,2,3. For these, the component those in Fig. 1. The five singular points in (a) correspond to
solitons are in or out of phasel[] also has zeros along the five bound states depicted in Fig. 1(a). Only two of them
two almost circular arcs. The intersections of the outefft and F») are stable. The two singular points in (b (

circle with the solid curve (pointg; and F,) correspond

and S,) are unstable. The central part of the figure, where
is less than a single soliton width, does not describe a valid

to the new bound states where the phase differencgound state. Trajectories converging to the center describe the

between the solitons is close t6/2. The phase profile merging of two solitons.
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£ equation parameters are the same as those in Fig. 3.

FIG. 3. Oscillations of the functionals (& and (b)J in
the process of convergence of the initial condition (7) withsoliton solution can be clearly seen in Fig. 3. Bdtand
e 1.8 a”dt¢ = 77/2_'“}08 a g@”_%%tf‘te of_t\(/)vc5> solitons. iz pscillate with exponentially decaying amplitudes before
_Oeosp{ggyveirz are =18, 6 =-001, =05 p= converging to zero. This indicates that the bound state
o has been achieved. During this transition, the changes of
energyQ are less than.03%. Note that, in principle, the
coincide with the solutions which are found above usingh@ture of the fixed points could be investigated analytically
the balance equation. Three of these singular pofits ( USiNg certain trial functions for single solitons in the
S,, andss) are saddles, with the phase difference betweeR@al- However, unavoidable inaccuracies with this type
the solitons being zero ar. Clearly, these are unstable of approximation may cause serious errors in the stability
bound states of two solitons. In addition, there are tw@nalysis (see an example in [24]). _
symmetrically located stable focF( and F,), and these =~ AS @ consequence of the existence of two-soliton
correspond to stable bound states of two solitons ifolutions, three- and more soliton solutions also exist. An
quadrature, i.e., their phase differencesis/2. These are €Xample of a multisoliton solution is shown in Fig. 4. As
the bound states with asymmetric phase profiles predicted result of the above-mentioned asymmetry, multisoliton
above. The spectra are also asymmetric due to theolutions are also asymmetric and move with the same
phase asymmetry, as expected for this type of solutiofonstant velocity along the axis. Periodic solutions
[20]. A consequence of this asymmetry is that a two-Of the CGLE can clearly be constructed this way, and
soliton solution moves with a constant velocity. We then the whole train will move with a constant velocity.
should note that asymmetric bound states are not alway3chopf and Kramer [25] were the first to discuss periodic
stable. Changing the parameters in Eq. (1) may convegolutions of the CGLE, and in fact their numerical results
stable foci into centers (or elliptic points) and further into ShOW that the periodic train has a small transverse velocity
unstable foci. They can even disappear, as evidencdd€® Fig. 2(a) of [25]]. Note that the approximate analytic
in Fig. 2(b), where only two singular points (which are Solution obtained in that work has zero velocity and does

saddles) exist, in full agreement with the predictions of0t describe the numerics in Fig. 2(a).
the balance equations [see Fig. 1(b)]. The work of J.M.S.C. was supported by the Comu-

We can see now that, physically, the existence of thélidad de Madrid under Contract No. 08J039/96 and by
two-soliton solutions is the result, firstly, of the balance bethe CICYT under Contract No. TIC95-0563-03. N.A. and
tween gain and loss and, secondly, of the balance betwedh A- aré part of the Australian Photonics Co-operative
forces along the axis, which act on the soliton pair. The Research Centre (APCRC).
interplay between the two gives the actual distance and
phase difference between the solitons in the bound state.

We should stress that the profile of each single soliton
is hardly modified at all by the interaction. The field )
amplitude and phase of a two-soliton solution and the 2] :?ng?és\,glps%ir’a’\rlngYTorkétti?f )'J Fluid. Meat8. 529
initial condition which consists of two solitons which are (1'971)_ o T ' ’

7 /2 out of phase and which have a separatiop of 1.8 [3] P. Kolodner, D. Bensimon, and C.M. Surko, Phys. Rev.
are hardly distinguishable, although they are not identical. | ett. 60, 1723 (1988).

It takes a while for the solution to evolve to the bound state, [4] W. van Saarloos and P. C. Hohenberg, Phys. Rev. Bét.
and the process of convergence to the final state of a two- 749 (1990).
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