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We present novel stable solutions which are soliton pairs and trains of the 1D complex Ginzb
Landau equation (CGLE), and analyze them. We propose that the distance between the pulses a
phase difference between them is defined by energy and momentum balance equations. We p
a two-dimensional phase plane (“interaction plane”) for analyzing the stability properties and gen
dynamics of two-soliton solutions of the CGLE. [S0031-9007(97)04655-3]
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The emergence of stable spatiotemporal patterns in
variety of physical situations may be modeled through th
well-known complex Ginzburg-Landau equation (CGLE
The CGLE is the basic model which describes nonline
phenomena far from equilibrium [1]. It describes, fo
example, open flow motions [2], traveling waves in binar
fluid mixtures [3], and spatially extended nonequilibrium
systems [4,5]. In optics, it is useful in analyzing optica
transmission lines [6,7], passively mode-locked fibe
lasers [8,9], and spatial optical solitons [10]. In eac
case, the problem of the interaction of two, individuall
stable, juxtaposed elementary coherent structures (i
solitons) is crucial for understanding the general behavi
of the system [11,12].

Stable pulse-like solutions of the quintic CGLE hav
been found by Thual and Fauve [13]. Minimal require
ments for their stability have been obtained in [14]. I
the conservative limit, these solutions can be consider
as perturbations of the nonlinear Schrödinger equati
(NLSE) solitons [15]. The continuous transition of thes
solutions from the conservative limit to the gradient limi
in the parameter space of the CGLE has been stud
in Ref. [16]. Although the dynamical properties of thes
pulselike solutions, their collisions and interactions are d
ferent from those of solitons of integrable systems, the
have been called “solitons” in a number of works. W
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follow this tradition, and also call them “solitons” or “soli-
ton solutions.”

For the nonlinear Schrödinger equation, two soliton
have zero binding energy. Hence, any nonlinear supe
position of two solitons is neutrally stable, and can b
made unstable with a very small perturbation. On th
other hand, for the NLSE, there is no stationary solu
tion in the form of two solitons with equal amplitudes
and velocities and with a fixed separation. Frequentl
real systems are not described by integrable equatio
(e.g., the NLSE), but by Hamiltonian generalizations o
the NLSE. For these systems, the interaction between
pulses becomes inelastic, so that two-soliton solutions
the perturbed NLSE (when they exist) are unstable due
the energy exchange between the pulses [17]. The si
ation changes completely for nonconservative system
Each soliton then has its own internal balance of ener
which maintains its constant amplitude. Fixing the ampl
tudes effectively reduces the number of degrees of fre
dom in the system of two solitons and can make it stabl
Bound states of two solitons in these systems were fi
analyzed by Malomed [18]. Using standard perturbatio
analysis for soliton interaction, he showed that station
ary solutions in the form of bound states of two solitons
which are in-phase or out-of-phase, may exist. We al
confirm that they do exist. However, careful numerica
© 1997 The American Physical Society 4047
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analysis shows that these types of soliton bound states
unstable [19].

In this work we report the discovery of quintic CGLE
stable two and more soliton solutions with apy2 phase
difference between them. We propose using a 2D spa
(using distance and phase difference) to analyze
dynamics of the two-soliton system, and we show th
this space describes the system adequately. This met
allows us to find the bound states, analyze their stabili
and investigate their global dynamics. The quintic CGL
describes situations where there is a single transverse
temporal) coordinate (see, e.g., [5,17]):

icj 1

µ
D
2

2 ib

∂
ctt 1 s1 2 ied jcj2c 1

sn 2 imd jcj4c  idc ,

(1)

wheret is the retarded time,j is the propagation distance
d, b, e, m, and n are real constants,c is a complex
field, and one can always setD  61. We useD  11
(i.e., anomalous dispersion, or self-focusing regime of t
corresponding NLS equation).

Bright-soliton solutions of the CGLE form a discrete
set [5,22], so that, if the values of the parameters of t
equation are specified, then the amplitude and width
the soliton are fixed. There may be many solutions f
each parameter set [4,21], but each solution has a fix
amplitude and phase profile. Thus CGLE solitons diff
qualitatively from those of Hamiltonian systems, where a
bright soliton solutions are always members of a family
solutions with variable amplitude. There are exceptio
when there is a certain relation between the paramet
and new symmetries appear [22], and for dark-solito
type solutions of the cubic CGLE [5,23], but these a
very special cases. The physical reason for the abo
fact is that, in contrast to the NLSE and its Hamiltonia
generalizations, solitons of the CGLE arise as a res
of a balance between the nonlinearity and dispersion
the one hand, and between the gain and loss on
other hand. Either of these, independently, would defi
a family of solutions, but imposing both simultaneous
usually gives a fixed solution.

The fact that the soliton parameters are fixed impli
that, during the interaction of two solitons, basically onl
two parameters may change: their separationr and the
phase differencef between them. Thus the phase spa
here is truly 2D, and we may analyze the bound sta
formed of two solitons, their stability and their globa
dynamics in this 2D space, which we call the “interactio
plane.” The possibility of this reduction in the numbe
of degrees of freedom is a unique feature of system
with gain and loss. It does not apply for nonintegrab
Hamiltonian systems, where the amplitudes of the solito
can also change, and therefore more sources of instab
of the bound states appear [17].
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The CGLE has no known conserved quantities. In
stead, the energy associated with solutionsc is Q R`

2` jcj2 dt, and its rate of change with respect toj

is [17]

d
dj

Q  Ffcg , (2)

where the functionalFfcg is given by

Ffcg  2
Z `

2`

fdjcj2 1 ejc j4 1 mjcj6 2 bjctj2g dt .

(3)

Similarly, the momentum isM  Ims
R`

2` cp
t c dtd, and

its rate of change is defined by

d
dj

M  Jfcg , (4)

where the real functionalJfcg is given by

Jfcg  2 Im
Z `

2`
fsd 1 ejc j2 1 mjcj4dc 1 bcttg

3 cp
t dt . (5)

By definition, this functional is the force acting on a soliton
along the t axis. There are only two rate equations
viz. (2) and (4), which can be derived for the CGLE
Higher order functionals do not exist.

We seek stationary solutions so the energy and mome
tum do not change, and the corresponding solutions mu
satisfy the set of two equations

Ffcg  0, Jfcg  0 . (6)

The first identity indicates the necessary balance th
must exist between losses and gain for any stationa
solution, while the second guarantees a balance betwe
the transverse forces acting on solitons. Trivially,Jfcg 
0 for any symmetric [cstd  6cs2td] solution, but
Jfcg may also be zero for other solutions (which can hav
nonzero velocity).

Given the equation coefficients, we call the correspon
ing “plain” soliton solutionc0std. The bound solution of
two plain solitons is well approximated by

cstd  c0st 2 ry2d 1 c0st 1 ry2d expsifd , (7)

where the values ofr and f are those which satisfy
Eqs. (6). For very rough estimates, these calculations c
be done using simple trial functions forc0std. However,
since we have exact numerical soliton solutions, we u
them to find the zeros ofF andJ numerically.

The zeros of these functionals, in the interval0.4 ,

r , 4, are presented on the interaction plane in Fig.
for the parameters written in the figure. The separatio
r must be of the same order as, but larger than, t
width of a single soliton (indicated by a dashed circl
in the figure). Smallerr correspond to merging of



VOLUME 79, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 24 NOVEMBER 1997

s

d
-
-

is

-
)
n-
e

as
o

id
he
FIG. 1. Zeros ofF (solid lines) andJ (dotted lines) on the
interaction plane for (a)e  1.8 and (b) e  0.4. Other
parameters are the same for both planes and are shown in
(a) of the figure. The points of intersection of the solid curve
with the dotted ones correspond to bound states of two solito
They are shown as bold points. The radius of the dashed cir
indicates the full width at half maximum of a single soliton.

the solitons and at largerr the interaction between the
solitons is too weak. The solid lines in Fig. 1 show
the locus of points whereFfcg  0, while the dotted
lines show those whereJfcg  0. It can be seen from
this figure that the functionalFfcg has two zeros in the
interval 2py2 , f , py2, but only one in the interval
py2 , f , 3py2.

Jfcg is zero on the horizontal axis of the interaction
plane, so every intersection of a solid curve with th
horizontal axis corresponds to a two-soliton bound sta
There are three examples of this type of bound state
Fig. 1(a), viz.Si , i  1, 2, 3. For these, the component
solitons are in or out of phase.Jfcg also has zeros along
two almost circular arcs. The intersections of the out
circle with the solid curve (pointsF1 andF2) correspond
to the new bound states where the phase differen
between the solitons is close topy2. The phase profile
part
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of the solution is necessarily asymmetric, due to thi
phase difference. Fore  0.4 only two singular points
are predicted:S1,2 at f  p and0, respectively.

The above predictions have been numerically confirme
by solving the propagation equation. The general dynam
ics of the interaction of two solitons can be described us
ing just the interaction plane. An initial condition (7), in
the form of two stable solitons with arbitrary separation
(r) and phase difference (f), will result in a trajectory
on this plane. Bound states are the singular points of th
plane, with the type of singular point defining the stability
of the state. Figure 2 gives two examples of these nu
merical simulations, corresponding to Fig. 1. Figure 2(a
indicates that, for the given parameters, there are five si
gular points. Within the accuracy of the method, thes

FIG. 2. Trajectories showing the evolution of two-soliton
solutions on the interaction plane for the same parameters
those in Fig. 1. The five singular points in (a) correspond t
the five bound states depicted in Fig. 1(a). Only two of them
(F1 and F2) are stable. The two singular points in (b) (S1
and S2) are unstable. The central part of the figure, wherer
is less than a single soliton width, does not describe a val
bound state. Trajectories converging to the center describe t
merging of two solitons.
4049
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FIG. 3. Oscillations of the functionals (a)F and (b) J in
the process of convergence of the initial condition (7) wit
r  1.8 and f  py2 into a bound state of two solitons.
The parameters aree  1.8, d  20.01, b  0.5, m 
20.05, andn  0

coincide with the solutions which are found above usin
the balance equation. Three of these singular points (S1,
S2, andS3) are saddles, with the phase difference betwe
the solitons being zero orp . Clearly, these are unstable
bound states of two solitons. In addition, there are tw
symmetrically located stable foci (F1 and F2), and these
correspond to stable bound states of two solitons
quadrature, i.e., their phase difference is6py2. These are
the bound states with asymmetric phase profiles predic
above. The spectra are also asymmetric due to
phase asymmetry, as expected for this type of soluti
[20]. A consequence of this asymmetry is that a tw
soliton solution moves with a constant velocity. W
should note that asymmetric bound states are not alw
stable. Changing the parameters in Eq. (1) may conv
stable foci into centers (or elliptic points) and further int
unstable foci. They can even disappear, as evidenc
in Fig. 2(b), where only two singular points (which ar
saddles) exist, in full agreement with the predictions
the balance equations [see Fig. 1(b)].

We can see now that, physically, the existence of t
two-soliton solutions is the result, firstly, of the balance b
tween gain and loss and, secondly, of the balance betw
forces along thet axis, which act on the soliton pair. The
interplay between the two gives the actual distance a
phase difference between the solitons in the bound stat

We should stress that the profile of each single solit
is hardly modified at all by the interaction. The field
amplitude and phase of a two-soliton solution and th
initial condition which consists of two solitons which are
py2 out of phase and which have a separation ofr  1.8
are hardly distinguishable, although they are not identic
It takes a while for the solution to evolve to the bound sta
and the process of convergence to the final state of a tw
4050
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FIG. 4. Stable propagation of a four-soliton bound state. T
equation parameters are the same as those in Fig. 3.

soliton solution can be clearly seen in Fig. 3. BothJ and
F oscillate with exponentially decaying amplitudes befo
converging to zero. This indicates that the bound sta
has been achieved. During this transition, the changes
energyQ are less than0.03%. Note that, in principle, the
nature of the fixed points could be investigated analytica
using certain trial functions for single solitons in th
pair. However, unavoidable inaccuracies with this typ
of approximation may cause serious errors in the stabi
analysis (see an example in [24]).

As a consequence of the existence of two-solit
solutions, three- and more soliton solutions also exist.
example of a multisoliton solution is shown in Fig. 4. A
a result of the above-mentioned asymmetry, multisolit
solutions are also asymmetric and move with the sa
constant velocity along thet axis. Periodic solutions
of the CGLE can clearly be constructed this way, an
then the whole train will move with a constant velocity
Schöpf and Kramer [25] were the first to discuss period
solutions of the CGLE, and in fact their numerical resul
show that the periodic train has a small transverse veloc
[see Fig. 2(a) of [25] ]. Note that the approximate analyt
solution obtained in that work has zero velocity and do
not describe the numerics in Fig. 2(a).
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