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Anomalous Transport in Random Fracture Networks
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We show that dominant aspects of contaminant (particle) transport in random fracture networks
non-Gaussian propagation—result from subtle features of the steady flow-field distribution through
network. This is an outcome of a new theory, based on a continuous time random walk formalis
structured to retain the key space-time correlations of contaminants as they are advected across
fracture segment. Particle tracking simulations on these networks exhibit the same non-Gaus
profiles, demonstrating quantitative agreement with the theory. [S0031-9007(97)04494-3]
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The nature of chemical transport in the geological env
ronment of the Earth’s subsurface is often observed to
anomalous. A well studied example is the dispersion
a pulse injection of a tracer in the flow field of a water
saturated heterogeneous porous sediment or fractured h
rock [1,2]. The movement of the tracer plume is anom
lous if the transport coefficients are either space or tim
scale dependent. The spatial dependence is readily
plained as due to permeability fields with coherent lengt
varying over many scales [3]. The purpose of this Lett
is to demonstrate persistent time-dependent anomalies (
non-Gaussian propagation) in a model fracture system—
well connected network with elements of randomly vary
ing lengths, apertures, and orientations (cf. Fig. 1)—
which the spatial scale of observation is much greater th
any element size.

Flow and contaminant transport in fractured geologic
formations is of considerable practical importance, in term
of exploitation and preservation of fractured aquifers. Pa
ticular emphasis has been placed on evaluating proper
of hard rock formations as potential underground repo
tory sites for the storage of radioactive and toxic industri
wastes [4]. While major efforts have been devoted to d
velop realistic theoretical models of these processes, p
dictive capabilities related to real fractured media rema
severely limited [5]. In part, this is due to the very na
ture of fracture networks in the subsurface which preclud
complete and detailed mapping of fractures, and thus st
ies must rely on extrapolation of exposed features to ge
erate a statistical characterization of fracture systems [
which we denote symbolically asVs fd. The challenge to
further development of the theoretical models is the be
use ofVs fd.

The important finding of this work is that dominan
aspects of the tracer transport—non-Gaussian propa
tion—depend on subtle features of the random flow
field distributionFsvd, determined from steady-state flow
through a network generated with even a simpleVs fd;
v is the velocity in a fracture segment, e.g., as shown
Fig. 1. Our finding is the outcome of a new approach
this transport problem based on the use of a continuo
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time random walk (CTRW) formalism [6]. In this initial
application there is a strong interplay between the analy
formalism and extensive simulations of steady flow in n
merical discrete fracture models such as in Fig. 1. We m
the simulation results ontocss, td, the probability per time
for a transition between fracture intersections separated
s with a difference of arrival times oft. In this mapping we
retain the key space-time correlations of particles as th
are advected across each segment and dispersed by the
dom velocity field of the network. This approach make
tractable the determination of the full evolution of the co
taminant density (plume),Pss, td, in large systems, in both
two and three dimensions. ThePss, td, in this Letter, is
compared with many realizations of particle tracking sim
lations (PTS) on the same networks used to obtainFsvd.

The formalism of CTRW is well documented in the lit
erature [6,7]. It should suffice to simply state the form
solution for Pss, td and stress the new developments w
have made in the CTRW in order to apply it to a sy
tem where the fractures are randomly distributed in leng
aperture, and orientation. We have incorporated: (1
css, td that can describe transitions between quasicontin
ous displacementss as well as at continuoust, and (2) the
method of analytic continuation to enable us to derive
very stable form for the numerical evaluation of the inver
Laplace transform (LT) (which is, generally, notoriousl
difficult) to obtain Pss, td. The method depends on th
analytic properties ofLsk, ud, the Fourier transform and

FIG. 1. A 2D fracture network showing only the hydraulicall
conducting portion or “backbone.”
© 1997 The American Physical Society
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LT of css, td, in the complexu plane (in our case analytic
in this plane cut along the negative real axis). Althoug
the css, td, herein, has been determined explicitly by th
flow properties of the random networks, the developmen
are quite general and can be used for other applicatio
The solution is

Pss, td ­ N2d
X

k

expsik ? sdgsk, td , (1)

wheregs0, td ­ 1 and fork fi 0

gsk, td ­
Z `

0

du e2ut

2piu

X
6

s6d
1 2 Ls0, ue6ipd
1 2 Lsk, ue6ip d

, (2)

Lsk, ud ­
X

s
exps2ik ? sd

Z `

0
exps2utdcss, td dt ,

(3)

and css, td must be normalized soLs0, 0d ­ 1; N is the
length of the lattice (spatial domain), andd is the spatial
dimension.

The numerical fracture model employed in this study [8
generates 2D discrete fracture networks and solves for
flow field. In this initial study, the midpoint and orienta
tion of each fracture are uniformly random, and the lengt
and apertures are selected from an exponential and logn
mal distribution, respectively (cf. Fig. 1). While numer
ous studies have examined flow and contaminant transp
in similar fracture networks, emphasis has been placed
effective hydraulic conductivity and dispersivity [9]; thes
analyses have not characterized certain key controlling f
tors which have been clarified in defining a suitablecss, td.
After careful examination of a range of correlations, w
identified these factors to be the distributions of segme
length,

pssd ~ s1y2 exps2sysod , (4)

and fluid velocity (leaving fracture intersections) as a fun
tion of fracture angle [u, with respect to the pressure grad
ent (negative), along thex axis],Fsvd. The coefficientso

sets the length scale. In Fig. 2(a) we show a rather unus
“Viking hat” Fsvd. Orthogonal to the direction of the pres
sure gradient,F is skewed sharply towards small value
of y (the two “horns”). More significant is the observa
tion that the distribution falls off exponentially at largey,
expf2yyy0sudg with a coefficienty0 that is stronglyu de-
pendent, while the dropoff at smally is “soft” (algebraic).
We can characterize this behavior by

Fsvd ~ y11bf exps2yyy0 cos2 u

2 d
1 w exps2yyy0 sin2 udg , (5)

whereb, w, y0, andy0 are parameters of the fit as show
in Fig. 2(b). The second term is needed to fit the horns

We now put the CTRW and the simulation data togethe
We can envision all the sites (Fig. 1) with a branch veloci
v . At each site we can evaluate the fractionfsyd of the
particles entering the branch using a simple mixing ru
h
e
ts
ns.
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FIG. 2. The fracture-segment velocity distributionFsvd.
(a) A compilation of data from 20 fracture network genera
tions. F (arbitrary units) vsy and u (cf. text). The blank
space is the intersection with they ­ 0 plane. (b) The
functional fit with Eq. (5).

[10]. We multiply this term by the probability to encounter
the velocityv and a displacements. Hence

css, td ­ CnFsvdpssdfsyd , (6)

where Cn is a normalization constant,pssd is given in
(4), Fsvd in (5), and the time is determined byt ­ syy.
Because of the aperture distribution it can be shown th
fsyd is a slowly varying function ofy, and we will not
consider it further in this paper [11]. The long time be
havior of css, td in (6) is determined by the power ofy

in Fsvd in (5), css, td ! t212b , t ! `. The asymptotic
form at large time ofcss, td determines [7] the time de-
pendence of the mean position,̄std and standard deviation
(root mean squared displacement)s̄std of Pss, td.

In the presence of a bias, and for0 , b , 1,

,̄std ~ tb , s̄std ~ tb . (7)

The unusual time dependence of,̄std, s̄std is the hallmark
of the highly non-Gaussian propagation ofPss, td. This so-
called anomalous transport has been very well document
in a large literature of electronic transport measuremen
in low mobility, disordered semiconductors [12]. The
careful determination ofb, therefore, is an important and
subtle feature of the random velocity distribution that ha
been overlooked in fracture networks. The probabilit
4039
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to encounter a low velocity on the time scale set by th
overall transit time of the plume plays a crucial role i
determining the nature of the transport. It is challenging
obtain a very narrow range ofb values with our simulation
data. However,b , 0.7 is determined to fit the data well.
Equation (7) will be the basis of our quantitative agreeme
with PTS.

As a first step in the calculation ofPss, td, we evaluate
LThcss, tdj of (6). The contribution of the horns (Fig. 2)
has been found to be small, so only the first term of (
for Fsvd is included in (6). There is a simplification
[13] if we use b ­ 1y2; the contaminant plumes are
qualitatively very similar to those usingb , 0.7, and the
main difference is in̄,std, s̄std which we account for using
(7). We obtain

Lsk, ud ­
2

15
p

p

Z `

o
ds s

Z p

2p
du e2ik?ss1y2e2s cosu

2

3 s exps2
p

8suy cosu

2 d , (8)

where nondimensional variablessouy2yo ! u, andk ;
kso , syso ! s are introduced. We replace the lattice sum
in (3) by an integral which is exact in the limitN ! `, and
Ls0, 0d ­ 1. An analytic expression forLs0, ud (details
will be given elsewhere) is

Ls0, ud ­ p1euK1sud 1 p2euK0sud 2
p

2p
16
5 u1y2,

(9)

whereKisxd is the modified Bessel function [14] of orderi,
p1 ; su 2

52
15 u2 2

16
15 u3d andp2 ; s7u 1 4u2 1

16
15 u3d.

In the limit u ! 0,

Ls0, ud . 1 2
p

2p
16
5 u1y2 2 7usln ud 1 O sud . (10)

The appearance ofu1y2 as leading term in the smallu
behavior ofLs0, ud derives fromcss, td , t23y2 for t !

`. The logarithmic term derives from the specific valu
of 2 for the power in the exponent in (5).

We evaluate thes integral in (10) fork fi 0,

Dsk, ud ­ 96
Z p

2p
du cosu

2 s1 1 ik ? ŝd27y2ez2

i6 erfcszd ,

z ;
p

2uyfcosu

2 s1 1 ik ? ŝd1y2g , (11)

whereŝ is the unit vectorscosu, sinud andin erfcszd is the
nth repeated integral of the complementary error functio
[14]. It can be shown thatLsk, ud has the same analytic
properties asLs0, ud a branch point atu ­ 0 and analytic
in the u plane with a branch cut along the negative realu
axis. Using the analytic continuation properties of theK-
Bessel functions [14], we can evaluategsk, td numerically
in (2) and finally, the inverse Fourier transform in (1) i
computed with the use of standard fast Fourier transfo
routines.

Figure 3(a) shows a sequence of the average (in thy
direction)Psx, td vs x. The progression of the normalized
4040
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FIG. 3. The average (along they axis) of Pss, td, defined
as Psx, td vs x (units of length areso and time soy2yo).
(a) Equation (1) fort ­ 800, 2000, 8000, and 30 000,b ­
1y2; (b) Simulation results averaged over 50 realizations f
t ­ 20 sdd and 50 s1d, b , 0.8. The vertical scale is
arbitrary. The large difference in time scales is due to t
difference inb.

plume,Psx, td, is highly non-Gaussian. The peak of th
distribution remains close to the injection point, whil
a finite fraction of relatively fast particles continually
stretches out the concentration profile. The shapes
very similar to the field observations in Fig. 7 of [1]; th
t dependence is also similar (the peak drops by a fac
of ,2.5 in an order of magnitude of time). The shape
are also similar to propagating packets of electric char
measured directly in amorphous chalcogenides [15].

Contaminant transport by PTS is modeled with a sta
dard routine [8]. Particles move in discrete steps betwe
fracture intersections, plug flow is assumed within ea
fracture segment, and effects of adsorption, diffusion, a
mechanical dispersion within the fractures are ignore
Complete mixing of contaminants is assumed at fractu
intersections, and particles leaving an intersection are d
tributed randomly among outflowing fracture segments
proportion to their volume flow [10]. For each fractur
network generation̄,std, s̄std, and Psx, td are averaged
over a number of initial sites of injection of 5000 par
ticles. In Fig. 3(b) we show twoPsx, td, at different
times, averaged over 50 realizations. Despite some no
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FIG. 4. The mean̄,std sdd and standard deviation̄sstd ssd of
Psx, td vs t (units of length areso and timesoy2yo). (a) The
average over initial sites of one network generation with the
of (7), with b , 0.5 (—) and b , 0.7 s– – – –d, respectively.
(b) The average of 50 realizations with the fit of (7) with
b , 0.9 (—) andb , 0.8 s– – – –d, respectively. There is an
overlap in the error widths ofb for ,̄, s̄.

the plumes clearly exhibit the same qualitative shapes
highly non-Gaussian behavior as the theoretical ones
Fig. 3(a) even thoughb . 0.5. In Fig. 4(a) we show̄,std,
s̄std for one network generation with the best fit to (7
for b , 0.5 andb , 0.7, respectively. Every generation
has exhibited the same agreement (with sublineart depen-
dence), however, with a different value ofb with 0.5 ,

b , 0.9. An average of all these realizations is show
in Fig. 4(b) withb for ,̄std & 0.9 and fors̄std, b * 0.8.
Representative error bars for these averages are shown
the clear deviation of̄,stdys̄std from the Gaussian depen-
dence of

p
t is a signature of anomalous transport. Th

scant statistics of determiningb from Fsvd for each gen-
eration does not allow a one-to-one theoretical compa
son; however, the valueb , 0.7 obtained for an averaged
Fsvd, Fig. 2, is within the error limits of agreement with
theb of s̄std in Fig. 4(b). It is remarkable that each gen
eration exhibits anomalous transport.

The PTS data are a satisfactory measure of the behav
of particles, governed by simple flow conditions, travers
ing a complicated random structure. We have shown
this Letter that this behavior can be accounted for with
theory utilizing a probability density,css, td (of transitions
from each fracture intersection) determined directly from
two distributionspssd, Fsvd, characterizing simple aspects
fit
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of the geometry and steady-flow properties of the rando
network. As more complex flow conditions are incorpo
rated into each fracture element of networks generated w
a Vs fd derived from field measurements, the anomalou
features of the transport will increase. Similar behavio
can be expected from highly heterogeneous porous se
ments. Therefore we argue that properly modeling th
time-scale dependence as well as the spatial scaling is n
essary for the explanation of a number of important fiel
observations [1,2]. We are generalizing our approach
deal with this application.
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