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Anomalous Transport in Random Fracture Networks
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We show that dominant aspects of contaminant (particle) transport in random fracture networks—
non-Gaussian propagation—result from subtle features of the steady flow-field distribution through the
network. This is an outcome of a new theory, based on a continuous time random walk formalism,
structured to retain the key space-time correlations of contaminants as they are advected across each
fracture segment. Particle tracking simulations on these networks exhibit the same non-Gaussian
profiles, demonstrating quantitative agreement with the theory. [S0031-9007(97)04494-3]

PACS numbers: 91.60.—x, 47.55.Mh, 92.40.-t

The nature of chemical transport in the geological envitime random walk (CTRW) formalism [6]. In this initial
ronment of the Earth’s subsurface is often observed to bapplication there is a strong interplay between the analytic
anomalous. A well studied example is the dispersion oformalism and extensive simulations of steady flow in nu-

a pulse injection of a tracer in the flow field of a water- merical discrete fracture models such asin Fig. 1. We map
saturated heterogeneous porous sediment or fractured hate simulation results ontg (s, 7), the probability per time
rock [1,2]. The movement of the tracer plume is anomafor a transition between fracture intersections separated by
lous if the transport coefficients are either space or tima with a difference of arrival times af In this mapping we
scale dependent. The spatial dependence is readily eretain the key space-time correlations of particles as they
plained as due to permeability fields with coherent lengthsire advected across each segment and dispersed by the ran-
varying over many scales [3]. The purpose of this Letterdom velocity field of the network. This approach makes
is to demonstrate persistent time-dependent anomalies (i.@ractable the determination of the full evolution of the con-
non-Gaussian propagation) in a model fracture system—taminant density (plumeR s, 1), in large systems, in both
well connected network with elements of randomly vary-two and three dimensions. Th&s, 1), in this Letter, is

ing lengths, apertures, and orientations (cf. Fig. 1)—incompared with many realizations of particle tracking simu-
which the spatial scale of observation is much greater thatations (PTS) on the same networks used to obdam).

any element size. The formalism of CTRW is well documented in the lit-

Flow and contaminant transport in fractured geologicalerature [6,7]. It should suffice to simply state the formal
formations is of considerable practical importance, in termsolution for P(s, r) and stress the new developments we
of exploitation and preservation of fractured aquifers. Parhave made in the CTRW in order to apply it to a sys-
ticular emphasis has been placed on evaluating propertieem where the fractures are randomly distributed in length,
of hard rock formations as potential underground reposiaperture, and orientation. We have incorporated: (1) a
tory sites for the storage of radioactive and toxic industrial/(s, r) that can describe transitions between quasicontinu-
wastes [4]. While major efforts have been devoted to deeus displacementsas well as at continuous and (2) the
velop realistic theoretical models of these processes, prenethod of analytic continuation to enable us to derive a
dictive capabilities related to real fractured media remairvery stable form for the numerical evaluation of the inverse
severely limited [5]. In part, this is due to the very na- Laplace transform (LT) (which is, generally, notoriously
ture of fracture networks in the subsurface which precludesdlifficult) to obtain P(s,7). The method depends on the
complete and detailed mapping of fractures, and thus stugnalytic properties oA (k, u), the Fourier transform and
ies must rely on extrapolation of exposed features to gen-
erate a statistical characterization of fracture systems [2],
which we denote symbolically &3 ( f). The challenge to
further development of the theoretical models is the best
use of Q( f).

The important finding of this work is that dominant
aspects of the tracer transport—non-Gaussian propaga-
tion—depend on subtle features of the random flow-
field distribution®(v), determined from steady-state flow
through a network generated with even a sim@lef); d
v is the velocity in a fracture segment, e.g., as shown in 0

Fig. 1. Our finding is the outcome of a new approach tor|G. 1. A 2D fracture network showing only the hydraulically
this transport problem based on the use of a continuousonducting portion or “backbone.”
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LT of #(s, 1), in the complex: plane (in our case analytic a
in this plane cut along the negative real axis). Although
the (s, 1), herein, has been determined explicitly by the
flow properties of the random networks, the developments
are quite general and can be used for other applications.
The solution is
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and ¢ (s, r) must be normalized sa(0,0) = 1; N is the
length of the lattice (spatial domain), addis the spatial
dimension.

The numerical fracture model employed in this study [8]
generates 2D discrete fracture networks and solves for the
flow field. In this initial study, the midpoint and orienta-
tion of each fracture are uniformly random, and the lengths
and apertures are selected from an exponential and lognor- N D
mal distr_ibution, respegtively (cf. Fig. 1). While NUMEr f15 2 The fracture-segment velocity distributio® (v).
ous studies have examined flow and contaminant transpog) A compilation of data from 20 fracture network genera-
in similar fracture networks, emphasis has been placed olibns. ® (arbitrary units) vsv and @ (cf. text). The blank
effective hydraulic conductivity and dispersivity [9]; these space is the intersection with the = 0 plane. (b) The
analyses have not characterized certain key controlling fadunctional fit with Eq. (5).
tors which have been clarified in defining a suitabls, 7).

After careful examination of a range of correlations, we[10]. We multiply this term by the probability to encounter
identified these factors to be the distributions of segmenthe velocityv and a displacement Hence

| h,
engt P(s, 1) = C,®(WV)p(s)f(v), (6)

pls) = s> exp(—s/s,). 4) : o o

where C, is a normalization constanf(s) is given in

and fluid velocity (leaving fracture intersections) as a func4), ®(v) in (5), and the time is determined by= s/v.

tion of fracture angled, with respect to the pressure gradi- Because of the aperture distribution it can be shown that

ent (negative), along theaxis], ®(v). The coefficient,  f(v) is a slowly varying function ofy, and we will not

sets the length scale. In Fig. 2(a) we show a rather unusugbnsider it further in this paper [11]. The long time be-

“Viking hat” ®(v). Orthogonal to the direction of the pres- havior of (s, 7) in (6) is determined by the power af

sure gradient® is skewed sharply towards small valuesin & (v) in (5), (s, ) — t ' %, t — ». The asymptotic

of v (the two “horns”). More significant is the observa- form at large time ofy (s, r) determines [7] the time de-

tion that the distribution falls off exponentially at large  pendence of the mean positiéfr) and standard deviation

exd —v/vo(#)] with a coefficienty, that is stronglyy de-  (root mean squared displacemedty) of P(s, 7).
pendent, while the dropoff at smallis “soft” (algebraic). In the presence of a bias, and fox< B < 1,

We can characterize this behavior by

®(v) o v Pl exp(—v/vocos 3) )
_ ! The unusual time dependenceff), & (¢) is the hallmark
+ wexp(—v/v'sit §)]. ©) of the highly non-Gaussian propagationRds, r). This so-
whereg, w, vy, andv’ are parameters of the fit as shown called anomalous transport has been very well documented
in Fig. 2(b). The second term is needed to fit the horns. in a large literature of electronic transport measurements
We now put the CTRW and the simulation data togetherin low mobility, disordered semiconductors [12]. The
We can envision all the sites (Fig. 1) with a branch velocitycareful determination o8, therefore, is an important and
v. At each site we can evaluate the fractipfv) of the  subtle feature of the random velocity distribution that has
particles entering the branch using a simple mixing rulebeen overlooked in fracture networks. The probability
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to encounter a low velocity on the time scale set by the
overall transit time of the plume plays a crucial role in
determining the nature of the transport. Itis challenging to
obtain a very narrow range @f values with our simulation
data. Howeverp ~ 0.7 is determined to fit the data well.
Equation (7) will be the basis of our quantitative agreement
with PTS.

As a first step in the calculation df(s, r), we evaluate
LT{ (s, 1)} of (6). The contribution of the horns (Fig. 2)
has been found to be small, so only the first term of (5)
for ®(v) is included in (6). There is a simplification
[13] if we use B8 = 1/2; the contaminant plumes are
qualitatively very similar to those using ~ 0.7, and the
main difference is iff(z), & (r) which we account for using
(7). We obtain 3 (b)

2 * m i _ 0
Ak, u) = —f dssf do e x551/2¢ *cosy
15\/77 0 -7
X s exp(—+8su/ cos%), (8)

P(x, t)
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where nondimensional variablesu/2v, — u, andk = Foey
ks,, s/s, — s are introduced. We replace the lattice sum
in (3) by an integral which is exact in the limit — o, and
A(0,0) = 1. An analytic expression foA (0, #) (details
will be given elsewhere) is

0 T 0 105 140
A, u) = pre"Ki(u) + pre"Ko(w) — V2m Fu'’?, X
9) FIG. 3. The average (along the axis) of P(s,t), defined
) N ) as P(x,t) vs x (units of length ares, and time s,/2v,).
wherek;(x) is the modified Bessel function [14] of ordgr  (a) Equation (1) forr = 800, 2000, 8000, and 300003 =
= (u — %uz _ %us) andp, = (Tu + 4u® + %Lﬁ). 1/3; (b) Simulation results averaged over 50 realizations for
In the limit « — 0 t =20 (@) and 50 (+), B ~ 08. The vertical scale is
’ arbitrary. The large difference in time scales is due to the

AO,u) = 1 — 27 242 = 7u(inu) + Ow). (10) difference ing.

The appearance of'/? as leading term in the small  plume, P(x, 1), is highly non-Gaussian. The peak of the
behavior of A(0, u) derives fromy(s,#) ~ 1~ for t —  istribution remains close to the injection point, while
. The logarithmic term derives from the specific valuey finite fraction of relatively fast particles continually
of 2 for the power in the exponent in (5). stretches out the concentration profile. The shapes are
We evaluate the integral in (10) forx # 0, very similar to the field observations in Fig. 7 of [1]; the
- t dependence is also similar (the peak drops by a factor
A(re,u) = 96[ do cos%(l + ik - §)—7/2612,'6 erfo(z), Of ~2.5 in an order of magnitude of time). The shapes
- are also similar to propagating packets of electric charge
7 = x/ﬂ/[cosg(l +iK - §)V], (11) measured directly in amorphous chalcogenides [15].
Contaminant transport by PTS is modeled with a stan-
wheres is the unit vectofcosé, sind) andi” erfc(z) isthe  dard routine [8]. Particles move in discrete steps between
nth repeated integral of the complementary error functiorfracture intersections, plug flow is assumed within each
[14]. It can be shown thah(k, u) has the same analytic fracture segment, and effects of adsorption, diffusion, and
properties as\(0, #) a branch point ak = 0 and analytic mechanical dispersion within the fractures are ignored.
in the u plane with a branch cut along the negative real Complete mixing of contaminants is assumed at fracture
axis. Using the analytic continuation properties of #fie  intersections, and particles leaving an intersection are dis-
Bessel functions [14], we can evaluaték, t) numerically  tributed randomly among outflowing fracture segments in
in (2) and finally, the inverse Fourier transform in (1) is proportion to their volume flow [10]. For each fracture
computed with the use of standard fast Fourier transfornmetwork generatior{(r), &(r), and P(x,t) are averaged
routines. over a number of initial sites of injection of 5000 par-
Figure 3(a) shows a sequence of the average (irythe ticles. In Fig. 3(b) we show twaP(x,r), at different
direction)P(x, r) vsx. The progression of the normalized times, averaged over 50 realizations. Despite some noise,
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of the geometry and steady-flow properties of the random
network. As more complex flow conditions are incorpo-
rated into each fracture element of networks generated with
a Q(f) derived from field measurements, the anomalous
features of the transport will increase. Similar behavior
can be expected from highly heterogeneous porous sedi-
] ments. Therefore we argue that properly modeling the

o7 time-scale dependence as well as the spatial scaling is nec-
essary for the explanation of a number of important field
observations [1,2]. We are generalizing our approach to
] deal with this application.
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