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In this paper we use properties of quantum mixed states to find bounds on various measures of
their distinguishability. These bounds are used for analyzing stjoimg attacks against quantum
key distribution which use quantum probes, quantum memories, and quantum gates taliattztik
the final key. We present a wide class of joint attacks, and we prove security against them.
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Various types of measures of information which can be The objective of quantum cryptography is to provide
obtained from quantum states (which are also measurgsotocols that are secure against an adversary equipped
of distinguishability of the quantum states) are useful forwith any technology allowed by the rules of quantum
the analysis of the security of quantum cryptographymechanics. It is rather clear that the known schemes are
In many cases upper bounds on the information sufficesecure against restricted attacks where only a portion of the
Moreover, when the exact calculation is unknown, therebits are attacked, and against restricted attacks in which all
are no alternatives. In this paper we present new typesits are attacked, but each bit is attacked on line [2].
of bounds on such measures and we use these boundsThe security of the known schemes against sophisti-
to prove security against a large class of attacks owatedjoint attacks, which use quantum probes, quantum
quantum key distribution. These bounds are very simplenemories, quantum gates, and delayed measurements to
and general, and they can be found useful for other taskattack directly the final key, was not analyzed in early
in quantum information and computation. works. Recently, the security against joint attacks was

Quantum cryptography [1] suggests amformation analyzed using several different approaches. It is estab-
secure key distribution. It is based on the fact that lished only for a particular case [3,4], or under restricting
nonorthogonal quantum states cannot be cloned, and ampnditions such as error-free channel [5] or perfect de-
attempt to obtain information regarding these states necrices [6]. Recently, the approach of [5] was used to claim
essarily disturbs them and induces noise. For instancégr proving the ultimate security [7], but there is as yet no
in the four-state scheme [1] the sender (Alice) and theyeneral consensus in the scientific community regarding
receiver (Bob) use two conjugate bases and, in each b#ie correctness of this proof.
sis two orthogonal states represent “0” and “1”; if the An important hint that privacy amplification might still
eavesdropper (Eve) measures a particle in one basis she effective against attacks on the final key (in a realistic
randomizes its state if it was prepared in the other. Irscenario) was provided by Bennett, Mor, and Smolin
principle, the legitimate users of a quantum key distri-(BMS) [3]: Suppose that Eve obtains a binary string
bution scheme should quit the protocol if they notice aof n bits where each bit is presented by nonorthogonal
noise. However, in real protocols, the channels and depolarization statesy = (5ra) or ¢ = (%), with
vices are not perfect, and some errors are inevitable. Asmall angle2« between them (which iga when using
long as the rate of errogs, is small, the errors must be ac- “spin” notations as we do in the following). The work
cepted and corrected by the legitimate users. As a resuldf [3] calculates the optimal information on parity bits
Eve can obtain some information on the transmitted datagbtained by unrestricted measurements. It shows that the
if she induces less errors than allowed (e.g., by eave®ptimal coherent measurement (which is much better than
dropping on a small portion of the transmitted particles)the optimal individual measurement) yieldg (n, o) =
Furthermore, she can obtain more information using the(zk")aZk (with n =2k and ¢ =1 for even n, and
error-correction data transmitted via a classical channekh = 2k — 1 andc = 1/In2 for odd n), which is (still)

To overcome these problems, privacy amplification techexponentially small with the length of the string [3]. This
niques [2], which reduce Eve’s information on the finalresult (henceforth, the BMS result) suggests that privacy
key, were suggested. The simplest privacy amplificatioramplification is effective also when Eve uses coherent
technique uses the parity bit of a long string as the secregheasurements.

bit (where the parity is zero if the string contains an even In real protocols, Eve does not obtain one of two states
number ofl’s or else it is one). Privacy amplification and with a small angle between them, but she can probe
error correction are required even in the ideal case of athe states sent from Alice to Bob using any technique
error-free channel (e.g., Eve could eavesdrop on one bghe likes. Biham and Mor [4] presented a restricted
and be left unnoticed). class of joint attacks, calledollective attacks,which
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can use the BMS method and result: (a) Eve attaches state scheme [9], and any attack on the four-state scheme

separate, uncorrelategrobe to each transmitted particle [1], leave Eve’s probes in mixed states.

using a translucent attack; (b) Eve keeps the probes in a The first goal of this Letter is to present new types of

quantum memory till receiving all classical data includingbounds on information which can be obtained from two

error-correction code and privacy amplification data; (c)quantum states. This is done based on the observation

Eve performs the optimal measurement on her probethat mixing cannot improve distinguishability of quantum

in order to learn the optimal information on the final states. The second goal of this Letter is to apply these

key. The italicized constraints on the probes distinguistbounds, together with Eq. (1) as the upper bound, to the

the collective attacks from more general joint attackscase where Eve’s probes are in mixed states of certain

and enable analyzing the attacks in terms of the densittypes (restricting Eve to do only symmetric collective

matrices which Eve obtains. attacks and to use two-dimensional probes). The main
The term translucent attack [8] stands for choosing achievement of using these new bounds is an upper

probe in a known pure state and applying a known unitaryoound on Eve’s information when attacking the four-state

transformation to the transmitted particle and the probecheme using theptimal attackof that type.

together. For two mixed statep, in any dimension suppose that
Let us define qubit-symmetriccollective attacks in we can choose a stajg,, and two states, such that

which the same translucent attack is applied to each

transmitted particle, anstate-symmetricollective attacks po=mPg + (I = m)x,, o

in which the attack is symmetric to any of the allowed pr=md; + (1 —my,.

quantum states of each particle. In the current paper . .. .

we concentrate on attacks which fulfill both symmetries.Definition—Let I(state 1; state 2) be some (positive)

Such attacks induce the same probability of error to eacH'€asure for the optimal distinguishability of two states,

transmitted bit. They must be weak, or else they would®© thatany operation done on thersannot lead to a

induce a nonacceptable error rate. Thus, the possibféStinguishability better (larger) thain
states of Eve’s probe cannot differ much. From the above definition it is clear that any such

In an explicit example of such an attack [4] Alice and measurel(state 1; state 2) for optimal distinguishability

Bob use the two-state scheme of Bennett [9] (with puré@nnot be improved when the states are mixed with
spin states with anglé9 between them). Eve uses, in the anot_he_r (known) state. Thu's, from the construction of
first step of the collective attack, the (weak) translucen{2); it iS clear that the two mixed statgg are not more
attack without entanglement [8], which leaves each probdistinguishable than the two (possibly pure) statgs

in one of two pure statesj, or #;, with small angle Theorem—1(®o; 1) = 1(po: p1)-

4a between them. After an error-estimation step, Alice_ Proof—sSuppose the contraf(®o; ®1) < I(po; p1).
and Bob have am-bit string. Alice and Bob choose the €N, when one receiveb,, he can mix them with some
parity bit of that (full n-bit) string to be their secret bit, X» @nd derive a better distinguishability tha(Po; ®1),
and Alice sends to Bob some parities of substrings as th contradiction to the definition of(®o; ®y).

error-correction data. In [4] we calculated Eve's density /€ can choose any measure of an optimal information
matrices for the parity bit (for this particular attack) while carried by these systems to describe the distinguishability.

taking into account the error-correction data she has [10)€7Y complicated types of information can be extracted

Then, we found Eve's best strategy for measuring thd’om such systems, as for example, the optimal information

probes and her optimal mutual information on the parity®" the parity of am-bit string of encoded using quantum
bit (for short codes). For Hamming codel, (of any states [3,4]. In the case [4] where parities of substrings

length), it was shown based on a conjecture [see Eq. (5)'€ 9iven, a solution exists only for pure states with small

in [4]] that ngles (1) and we can now use it as an upper bound.
i 1))2 Any state (density matrix) in two-dimensional Hilbert
I(n,a) = C(n) 2a) ; (D) space can be written as — L2 so that
with C(n) = #\/(n + 1). Recently we improved the 1(1+2z x—iy
results of [4], verifying the conjecture numerically for p= 3<x +iy 1 -z >

n = 31 bits in case of Hamming codes. Furthermore,

we proved a slightly modified version of the conjecturewith r = (x,y, z) being a vector irR3, ¢ = (&, &y, 6)

which provides a similar bound with an additional factorthe Pauli matrices, andl the unit matrix. In this spin

of 1.39. We are still working on proving Eq. (1) without notation, each state is represented by the corresponding

the undesired modification, but even if this factor remainsyector r. For pure states®) the radius is|r| = 1, and

it does not affect the value of our results. for mixed statedr| < 1. Suppose thay and ¢ are two
Unfortunately, Eq. (1) applies only to collective attacksdensity matrices, represented by and r;, respectively.

in which the translucent attack leaves Eve’s probes in purét is possible to construct the density matpx= m{ +

states, while most possible translucent attacks on the twqd — m)y from the two matrices (wher® = m = 1),
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and the geometric representation of such a density matrix cosd | 1
I+r, 6 . *sinfc i"c

p=——1isr, =mry; + (1 — mr,. - DO vy = — LY, @

Let uS concentrate én mixed states with equal determi- Yy L sinfsy ) V2| 1"y @
nants which can always be written as 0 0

respectively. Bob’s reduced density matrices (RDM’s)
pp = l( 1: z Ex ) are calculated fronfi¥) (¥| by tracing out Eve’s patrticle.
2\ *x 1 -z This operation is usually denoted py = Trg[|¥) (¥]],

where the plus sign is fop = 0 and the minus for where the full formula is given by Eg. (5.19) in [11]
p= 1. Let pems be the completely mixed staf@ms =  (0wm = 20 PrvmuOur = 2, p,,ﬂ,mﬂ). Wf) denote this
51. Also let p, be the pure state of spin down in the operation byps = Trg[(IV)(¥|)/], where! is the two-
z direction. Two cases of Eq. (2) are useful for ourdimensional unit matrix5,,. From Bob’s matrices we
purpose: (ap, = m®, + (1 — m)pcms, Where the pure find the error rate, that is, the probability, that he
states®, have the same angle as [see Fig. 1(a)]; (b) receives a wrong bit value. Calculating Eve’'s density
pp = m®, + (1 — m)p,, where®, (which are uniquely matrix is sometimes trickier as we see later on.
determined) are shown in Fig. 1(b). The first type of In the case of the four-state scheme Bob measures his
bound is useful ifp, have a small anglda between particle in one of the bases(corresponding taz = 0,2)
them (which satisfies talw = x/z), so that the angle ory (m = 1,3). Suppose that Alice and Bob use the
48 between the pure states satisfi@s= «, hence is basis; Bob's RDM's are
also small. The second type of bound is useful when the L4 L2 +1e
“distance” 2x between the two possible mixed states is PB = (2 +12 7 i) 2>,
small (whilea might be large). In this caseis small and taey 3730y
z positive; hence the resulting angl® between the two leading to an error rate, = sir’(y/2) which is the
pure states is small (following tgh = tan2§ = 7 =<  probability that he identifiefp,) when|¢o) is sent. Eve
x). Thus, in both cases the angle between the two purbas the same knowledge of the basis; hence her RDM's
states is small so thdin, 8) [Eq. (1) with an angled] are
provides an upper bound on Eve’s information on the % + %(Cy)2 J_r%sy
final key. PE = Sl 1 l(c 2 )

For example, let Eve’s probe be in an initial stéfg. _22 4 2
She performs a unitary transformatiof(}) |¢) (with |¢) SO thatt =s,,z=(c,)", and the relevant angles &1 =

Alice’s state), where 2a = (tan)~'(sy/c3) (using the first type of bounds). For
1 0 0 0 a small angley we getp, =y2/4+ 0(y*), B=vy/2+
0 c. —s. 0 O(y?), and thus p, = B>+ 0(B*). The information
U=1y SZ ny ol () is thus bounded by (n, p.) < C(n)(@p,)"*V/* to be
0 0 0 1 exponentially small [using Eq. (1)].

We shall now prove security against any collective

with ¢, = cosy ands, = siny. Note that, withy = . . )
/2, this transformation swaps the particle and thesymmetrlc attack against the four-state scheme as long

robe. Eve chooses a small angleso that the attack as Eve uses two-dimensional probes in the first step
P ' S . o of the collective attack. We recently noticed that the
is a weak swap Let Alice’'s possible initial states be

o cosd \ T ~ one-particle mutual informatiofi,q = 1 + ¢.l0g, g, +
|?P>l_ (?Sinﬁ) in the twg—state scheme, aridh,,) = (1 — g.)log,(1 — g.) (Whereq, = 1/2 — s,/2is Eve’s
75 (i) (with m = 0,..., 3) in the four-state scheme. The grror probability), which Eve obtains using our gate, is
corresponding final states are equal to the information obtained by the optimal one-
particle attack found in [12]. Thus, our attack maximizes
Eve’s information on a single particle for a given error

@) D D (b) D O rate p.. As a result our gate also provides the maximal
poz" 0l 2B/ distance on the Poincaré sphere and ibis= 2s,. Any
oo /i other gate, and in particular thenknown gatevhich pro-
\ vides the optimal collective symmetric attack, leads to a
\ Xn distanced = 2s,. Now, the second type of bounds as-

sures us that the anglé of any attack is smaller than (or
equal to) tan' s, (obtained when the distaneeis drawn
Xn on the x axis). Finally, 8 =tan!s,, and for small

3 ~ 2 4
FIG. 1. Two ways of constructing the two density matricesangley we getg =y + O(y"), pe =~ p°/4 + O(B"),

pp from two pure statesP, and a third statey, common to and the optimal possible information obtained using two-
both density matrices. (a), = pems, the completely mixed dimensional probes and the symmetric collective attack is

state. (b)y, = l., the “downz” pure spin state. bounded by (n, p.) < C(n) (16p,)" /4,

N
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In the case of the two-state scheme Bob’s RDM's are method, and generalizations of it might enable proving
(o + (s0)%(s,)2  *cpspcy secgrity'against many such cases, and we are currently in-
= +cgspCy (s9)2(cy)? ) vestigating these |d¢as. ' o o
A more crucial issue is the possibility of finding

Bob chooses one of two possible measurements witbtronger joint attacks which are not collective. The ar-
equal probability. In one case Bob measures the receivegument which is the basis for approaching the security
state to distinguishp, from its orthogonal statehy and  problem through the collective attack is as follows: by
finds a conclusive result 1 whenever he géi§ (In  the time Eve holds the transmitted particles she has no
the other case, the conclusive result O is obtained b¥nowledge of the error correction and privacy amplifica-
replacing0 and 1 in the above.) The error rate is the tion techniques to be used by Alice and Bob. Also, she
probability of identifying ¢, when ¢, is sent, and it is does not know which particles will be discarded in the er-
Pe = (s0)*(c)’[1 — ¢, * + (s0)*(s,)% ror estimation stage, and the basis used for the relevant

To obtain Eve’'s density matrices in the two-statebits. Thus, we conjecture that she cannot gain informa-
scheme one must take into account all the informationion by searching or by creating correlations between the
she possibly has. If one ignores the classical informatransmitted particles; she better keep one separate probe
tion and calculates the standard RDM's (as in [13]),for each particle, and perform the measurements after ob-
then the result is of significant importance to quan-taining the missing information as is done in the collective
tum information, while it is less relevant to quantum attacks. It seems that any attempt of searching for such
cryptography. Recall that Bob keeps only particlescoherent correlations at the first step of the attack induces
identified conclusively (as eithef, or ¢1); Bob informs  error, while it cannot improve much Eve'’s information.
Alice—and thus Eve—which they are, and, as a resultlt could improve her information much if she could guess
Eve knows that Bob received eithes) or ¢; in his correctly the required correlations and the bases for the
measurement, and nat, or ¢,. This fact influences relevant bits, but the probability of a successful guess is
her density matrices, and these are not given anymorexponentially small.

by the simple tracing formulgpy = Trp[(|W)(¥])I]. Unfortunately, proving this intuitive argument is yet an
In general,information dependenRDM’s are obtained open problem.
by replacing/ by any other positive operatot (as the It is a pleasure for us to thank Asher Peres, William

operators which appear in generalized measurements)Vootters, and Gilles Brassard for helpful discussions.
pe = Trp[(|¥)(¥])A], up to normalization. In our case The gate we use here was also considered by them.

pr = Trs[(1W) (W) (510) (] + 5161} (biD)], where

the halves result from the probability that Bob chooses

one measurement or the other. This tracing technique
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