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In this paper we use properties of quantum mixed states to find bounds on various measures
their distinguishability. These bounds are used for analyzing strongjoint attacks against quantum
key distribution which use quantum probes, quantum memories, and quantum gates to attackdirectly
the final key. We present a wide class of joint attacks, and we prove security against the
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Various types of measures of information which can b
obtained from quantum states (which are also measu
of distinguishability of the quantum states) are useful fo
the analysis of the security of quantum cryptograph
In many cases upper bounds on the information suffic
Moreover, when the exact calculation is unknown, the
are no alternatives. In this paper we present new typ
of bounds on such measures and we use these bou
to prove security against a large class of attacks o
quantum key distribution. These bounds are very simp
and general, and they can be found useful for other tas
in quantum information and computation.

Quantum cryptography [1] suggests aninformation
secure key distribution. It is based on the fact tha
nonorthogonal quantum states cannot be cloned, and a
attempt to obtain information regarding these states ne
essarily disturbs them and induces noise. For instan
in the four-state scheme [1] the sender (Alice) and th
receiver (Bob) use two conjugate bases and, in each b
sis two orthogonal states represent “0” and “1”; if the
eavesdropper (Eve) measures a particle in one basis
randomizes its state if it was prepared in the other.
principle, the legitimate users of a quantum key distr
bution scheme should quit the protocol if they notice
noise. However, in real protocols, the channels and d
vices are not perfect, and some errors are inevitable.
long as the rate of errorspe is small, the errors must be ac-
cepted and corrected by the legitimate users. As a res
Eve can obtain some information on the transmitted da
if she induces less errors than allowed (e.g., by eave
dropping on a small portion of the transmitted particles
Furthermore, she can obtain more information using th
error-correction data transmitted via a classical chann
To overcome these problems, privacy amplification tec
niques [2], which reduce Eve’s information on the fina
key, were suggested. The simplest privacy amplificatio
technique uses the parity bit of a long string as the sec
bit (where the parity is zero if the string contains an eve
number of1’s or else it is one). Privacy amplification and
error correction are required even in the ideal case of
error-free channel (e.g., Eve could eavesdrop on one
and be left unnoticed).
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The objective of quantum cryptography is to provid
protocols that are secure against an adversary equip
with any technology allowed by the rules of quantum
mechanics. It is rather clear that the known schemes
secure against restricted attacks where only a portion of
bits are attacked, and against restricted attacks in which
bits are attacked, but each bit is attacked on line [2].

The security of the known schemes against sophis
catedjoint attacks, which use quantum probes, quantu
memories, quantum gates, and delayed measurement
attack directly the final key, was not analyzed in early
works. Recently, the security against joint attacks w
analyzed using several different approaches. It is est
lished only for a particular case [3,4], or under restrictin
conditions such as error-free channel [5] or perfect d
vices [6]. Recently, the approach of [5] was used to clai
for proving the ultimate security [7], but there is as yet n
general consensus in the scientific community regardi
the correctness of this proof.

An important hint that privacy amplification might still
be effective against attacks on the final key (in a realis
scenario) was provided by Bennett, Mor, and Smol
(BMS) [3]: Suppose that Eve obtains a binary strin
of n bits where each bit is presented by nonorthogon
polarization states,c0  s cosa

sina d or c1  s cosa
2 sina d, with

small angle2a between them (which is4a when using
“spin” notations as we do in the following). The work
of [3] calculates the optimal information on parity bits
obtained by unrestricted measurements. It shows that
optimal coherent measurement (which is much better th
the optimal individual measurement) yieldsIMsn, ad ø
cs 2k

k da2k (with n  2k and c  1 for even n, and
n  2k 2 1 and c  1y ln 2 for odd n), which is (still)
exponentially small with the length of the string [3]. Thi
result (henceforth, the BMS result) suggests that priva
amplification is effective also when Eve uses cohere
measurements.

In real protocols, Eve does not obtain one of two stat
with a small angle between them, but she can pro
the states sent from Alice to Bob using any techniqu
she likes. Biham and Mor [4] presented a restricte
class of joint attacks, calledcollective attacks,which
© 1997 The American Physical Society



VOLUME 79, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 17 NOVEMBER 1997

me

of
o

tion

se
the
ain
e
ain
per
te

t

)
s,

h
y
ith
of

on
ity.
d

on

gs
all

t

ing
can use the BMS method and result: (a) Eve attache
separate, uncorrelatedprobe to each transmitted particle
using a translucent attack; (b) Eve keeps the probes i
quantum memory till receiving all classical data includin
error-correction code and privacy amplification data; (
Eve performs the optimal measurement on her prob
in order to learn the optimal information on the fina
key. The italicized constraints on the probes distingui
the collective attacks from more general joint attack
and enable analyzing the attacks in terms of the dens
matrices which Eve obtains.

The term translucent attack [8] stands for choosing
probe in a known pure state and applying a known unita
transformation to the transmitted particle and the pro
together.

Let us define qubit-symmetriccollective attacks in
which the same translucent attack is applied to ea
transmitted particle, andstate-symmetriccollective attacks
in which the attack is symmetric to any of the allowe
quantum states of each particle. In the current pap
we concentrate on attacks which fulfill both symmetrie
Such attacks induce the same probability of error to ea
transmitted bit. They must be weak, or else they wou
induce a nonacceptable error rate. Thus, the possi
states of Eve’s probe cannot differ much.

In an explicit example of such an attack [4] Alice an
Bob use the two-state scheme of Bennett [9] (with pu
spin states with angle4u between them). Eve uses, in th
first step of the collective attack, the (weak) transluce
attack without entanglement [8], which leaves each pro
in one of two pure states,c0 or c1, with small angle
4a between them. After an error-estimation step, Alic
and Bob have ann-bit string. Alice and Bob choose the
parity bit of that (full n-bit) string to be their secret bit,
and Alice sends to Bob some parities of substrings as
error-correction data. In [4] we calculated Eve’s densi
matrices for the parity bit (for this particular attack) while
taking into account the error-correction data she has [1
Then, we found Eve’s best strategy for measuring t
probes and her optimal mutual information on the pari
bit (for short codes). For Hamming codes,Hr (of any
length), it was shown based on a conjecture [see Eq.
in [4] ] that

Isn, ad # Csnd s2adsn11dy2, (1)

with Csnd 
2

ln 2
p

p

p
sn 1 1d. Recently we improved the

results of [4], verifying the conjecture numerically fo
n # 31 bits in case of Hamming codes. Furthermor
we proved a slightly modified version of the conjectur
which provides a similar bound with an additional facto
of 1.39. We are still working on proving Eq. (1) without
the undesired modification, but even if this factor remain
it does not affect the value of our results.

Unfortunately, Eq. (1) applies only to collective attack
in which the translucent attack leaves Eve’s probes in pu
states, while most possible translucent attacks on the tw
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state scheme [9], and any attack on the four-state sche
[1], leave Eve’s probes in mixed states.

The first goal of this Letter is to present new types
bounds on information which can be obtained from tw
quantum states. This is done based on the observa
that mixing cannot improve distinguishability of quantum
states. The second goal of this Letter is to apply the
bounds, together with Eq. (1) as the upper bound, to
case where Eve’s probes are in mixed states of cert
types (restricting Eve to do only symmetric collectiv
attacks and to use two-dimensional probes). The m
achievement of using these new bounds is an up
bound on Eve’s information when attacking the four-sta
scheme using theoptimal attackof that type.

For two mixed statesrp in any dimension suppose tha
we can choose a statexn, and two statesFp such that

r0  mF0 1 s1 2 mdxn ,

r1  mF1 1 s1 2 mdxn .
(2)

Definition.—Let I(state 1; state 2) be some (positive
measure for the optimal distinguishability of two state
so that any operation done on themcannot lead to a
distinguishability better (larger) thanI .

From the above definition it is clear that any suc
measureI(state 1; state 2) for optimal distinguishabilit
cannot be improved when the states are mixed w
another (known) state. Thus, from the construction
(2), it is clear that the two mixed statesrp are not more
distinguishable than the two (possibly pure) statesFp .

Theorem.—IsF0; F1d $ Isr0; r1d.
Proof.—Suppose the contraryIsF0; F1d , Isr0; r1d.

Then, when one receivesFp he can mix them with some
xn and derive a better distinguishability thanIsF0; F1d,
in contradiction to the definition ofIsF0; F1d.

We can choose any measure of an optimal informati
carried by these systems to describe the distinguishabil
Very complicated types of information can be extracte
from such systems, as for example, the optimal informati
on the parity of ann-bit string of encoded using quantum
states [3,4]. In the case [4] where parities of substrin
are given, a solution exists only for pure states with sm
angles (1) and we can now use it as an upper bound.

Any state (density matrix) in two-dimensional Hilber

space can be written asr 
Î1r?ŝ

2 so that

r 
1
2

µ
1 1 z x 2 iy
x 1 iy 1 2 z

∂
,

with r  sx, y, zd being a vector inR3, ŝ  sŝx, ŝy , ŝzd
the Pauli matrices, and̂I the unit matrix. In this spin
notation, each state is represented by the correspond
vector r. For pure states (F) the radius isjr j  1, and
for mixed statesjr j , 1. Suppose thatx and z are two
density matrices, represented byrx and rz , respectively.
It is possible to construct the density matrixr  mz 1

s1 2 mdx from the two matrices (where0 # m # 1),
4035
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and the geometric representation of such a density mat

r 
Î1rr?ŝ

2 is rr  mrz 1 s1 2 mdrx .
Let us concentrate on mixed states with equal determ

nants which can always be written as

rp 
1
2

µ
1 1 z 6x

6x 1 2 z

∂
,

where the plus sign is forp  0 and the minus for
p  1. Let rcms be the completely mixed statercms 
1
2 Î. Also let r# be the pure state of spin down in the
z direction. Two cases of Eq. (2) are useful for ou
purpose: (a)rp  mFp 1 s1 2 mdrcms, where the pure
statesFp have the same angle asrp [see Fig. 1(a)]; (b)
rp  mFp 1 s1 2 mdr#, whereFp (which are uniquely
determined) are shown in Fig. 1(b). The first type o
bound is useful ifrp have a small angle4a between
them (which satisfies tan2a  xyz), so that the angle
4b between the pure states satisfiesb  a, hence is
also small. The second type of bound is useful when t
“distance” 2x between the two possible mixed states
small (whilea might be large). In this casex is small and
z positive; hence the resulting angle4b between the two
pure states is small (following tanb  tan2d 

x
z11 #

x). Thus, in both cases the angle between the two pu
states is small so thatIsn, bd [Eq. (1) with an angleb]
provides an upper bound on Eve’s information on th
final key.

For example, let Eve’s probe be in an initial state
°

1
0

¢
.

She performs a unitary transformationU
°

1
0

¢
jfl (with jfl

Alice’s state), where

U 

0BBB@
1 0 0 0
0 cg 2sg 0
0 sg cg 0
0 0 0 1

1CCCA , (3)

with cg  cosg and sg  sing. Note that, withg 
py2, this transformation swaps the particle and th
probe. Eve chooses a small angleg so that the attack
is a weak swap. Let Alice’s possible initial states be
jfpl  s cosu

6 sinu d in the two-state scheme, andjfml 
1

p
2

°
1
im

¢
(with m  0, . . . , 3) in the four-state scheme. The

corresponding final states are

FIG. 1. Two ways of constructing the two density matrice
rp from two pure statesFp and a third statexn common to
both density matrices. (a)xn  rcms, the completely mixed
state. (b)xn  #z , the “downz” pure spin state.
4036
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jCpl 

0BBB@
cosu

6 sinucg

6 sinusg

0

1CCCA; jCml 
1

p
2

0BBB@
1

imcg

imsg

0

1CCCA , (4)

respectively. Bob’s reduced density matrices (RDM’s
are calculated fromjCl kCj by tracing out Eve’s particle.
This operation is usually denoted byrB  TrEfjCl kCjg,
where the full formula is given by Eq. (5.19) in [11]
(rnm 

P
mn rnn,mmdmn 

P
m rnm,mm). We denote this

operation byrB  TrEfsjCl kCjdÎg, whereÎ is the two-
dimensional unit matrixdmn. From Bob’s matrices we
find the error rate, that is, the probabilitype that he
receives a wrong bit value. Calculating Eve’s densit
matrix is sometimes trickier as we see later on.

In the case of the four-state scheme Bob measures
particle in one of the basesx (corresponding tom  0, 2)
or y (m  1, 3). Suppose that Alice and Bob use thex
basis; Bob’s RDM’s are

rB 

√
1
2 1

1
2 ssgd2 6

1
2 cg

6
1
2 cg

1
2 2

1
2 ssgd2

!
,

leading to an error ratepe  sin2sgy2d which is the
probability that he identifiesjf2l when jf0l is sent. Eve
has the same knowledge of the basis; hence her RDM
are

rE 

√
1
2 1

1
2 scgd2 6

1
2 sg

6
1
2 sg

1
2 2

1
2 scgd2

!
,

so thatx  sg , z  scgd2, and the relevant angles are2b 
2a  stand21ssgyc2

gd (using the first type of bounds). For
a small angleg we getpe ø g2y4 1 Osg4d, b ø gy2 1

Osg3d, and thus pe ø b2 1 Osb4d. The information
is thus bounded byIsn, ped , Csnd s4pedsn11dy4 to be
exponentially small [using Eq. (1)].

We shall now prove security against any collective
symmetric attack against the four-state scheme as lo
as Eve uses two-dimensional probes in the first ste
of the collective attack. We recently noticed that th
one-particle mutual informationIind  1 1 qe log2 qe 1

s1 2 qed log2s1 2 qed (whereqe  1y2 2 sgy2 is Eve’s
error probability), which Eve obtains using our gate, i
equal to the information obtained by the optimal one
particle attack found in [12]. Thus, our attack maximize
Eve’s information on a single particle for a given erro
rate pe. As a result our gate also provides the maxima
distance on the Poincaré sphere and it is2x  2sg. Any
other gate, and in particular theunknown gatewhich pro-
vides the optimal collective symmetric attack, leads to
distanced # 2sg . Now, the second type of bounds as
sures us that the angle2d of any attack is smaller than (or
equal to) tan21 sg (obtained when the distanced is drawn
on the x axis). Finally, b # tan21 sg , and for small
angleg we getb # g 1 Osg3d, pe ø b2y4 1 Osb4d,
and the optimal possible information obtained using two
dimensional probes and the symmetric collective attack
bounded byIsn, ped , Csnd s16pedsn11dy4.
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In the case of the two-state scheme Bob’s RDM’s are

rB 

√
scud2 1 ssud2ssgd2 6cusucg

6cusucg ssud2scgd2

!
.

Bob chooses one of two possible measurements w
equal probability. In one case Bob measures the receiv
state to distinguishf0 from its orthogonal statef0

0 and
finds a conclusive result 1 whenever he getsf

0
0. (In

the other case, the conclusive result 0 is obtained
replacing 0 and 1 in the above.) The error rate is the
probability of identifyingf0

p when fp is sent, and it is
pe  ssud2scud2f1 2 cgg2 1 ssud4ssgd2.

To obtain Eve’s density matrices in the two-stat
scheme one must take into account all the informatio
she possibly has. If one ignores the classical inform
tion and calculates the standard RDM’s (as in [13]
then the result is of significant importance to quan
tum information, while it is less relevant to quantum
cryptography. Recall that Bob keeps only particle
identified conclusively (as eitherf0

0 or f
0
1); Bob informs

Alice—and thus Eve—which they are, and, as a resu
Eve knows that Bob received eitherf

0
0 or f

0
1 in his

measurement, and notf0 or f1. This fact influences
her density matrices, and these are not given anymo
by the simple tracing formularE  TrBfsjCl kCjdÎg.
In general, information dependentRDM’s are obtained
by replacingÎ by any other positive operator̂A (as the
operators which appear in generalized measuremen
rE  TrBfsjCl kCjdÂg, up to normalization. In our case
rE  TrBfsjCl kCjd s 1

2 jf
0
0l kf0

0j 1
1
2 jf

0
1l kf0

1jdg, where
the halves result from the probability that Bob choose
one measurement or the other. This tracing techniq
leads to

rE 

µ
ssud2scud2 1 ssud2scud2scgd2 6cussud3sg

6cussud3sg ssud4ssgd2

∂
.

After normalization we getx  2sgcussud3yTrrE and
z 

11z
2 2

12z
2  hscud2ssud2f1 1 scgd2g 2 ssud4ssgd2jy

TrrE . The relevant angles are2b  2a  tan21sxyzd.
For small angleg we getpe ø s4

ug2 1 Osg4d, 2b ø ssuy
cudg 1 Osg3d. Finally we get pe ø ssud2scud2s2bd2 1

Osb4d from which we find Ispe, nd # Csnd 3

ssspeyssucudddd sn11dy4.
Once the optimal gate for individual attack shall b

used, the same approach, as previously used for
four-state scheme, can also be used to bound Ev
information obtained on the two-state scheme (using a
two-dimensional probes, symmetric collective attack).

In this Letter we presented a new type of bounds an
use these bounds to obtain certain security proofs f
quantum key distribution. Such bounds (or their gene
alizations) can have other uses in quantum informatio
theory, whenever mixed states are used.

More general collective attacks can use nonsymmet
translucent attacks and/or can use probes in higher
mensions, in the first step of the collective attack. Ou
ith
ed
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method, and generalizations of it might enable provin
security against many such cases, and we are currently
vestigating these ideas.

A more crucial issue is the possibility of finding
stronger joint attacks which are not collective. The ar
gument which is the basis for approaching the securi
problem through the collective attack is as follows: by
the time Eve holds the transmitted particles she has
knowledge of the error correction and privacy amplifica
tion techniques to be used by Alice and Bob. Also, sh
does not know which particles will be discarded in the er
ror estimation stage, and the basis used for the releva
bits. Thus, we conjecture that she cannot gain inform
tion by searching or by creating correlations between th
transmitted particles; she better keep one separate pro
for each particle, and perform the measurements after o
taining the missing information as is done in the collectiv
attacks. It seems that any attempt of searching for su
coherent correlations at the first step of the attack induc
error, while it cannot improve much Eve’s information.
It could improve her information much if she could gues
correctly the required correlations and the bases for th
relevant bits, but the probability of a successful guess
exponentially small.

Unfortunately, proving this intuitive argument is yet an
open problem.

It is a pleasure for us to thank Asher Peres, William
Wootters, and Gilles Brassard for helpful discussion
The gate we use here was also considered by them.
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