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Two-Frequency Motion to Chaos with Fractal Dimensiond > 3
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A direct transition from two-frequency motion to chaos with a fractal dimensiord of 3 is
illustrated. While frequency locking between the two frequencies is a characteristic onset feature
when the chaos involved has a lower dimensio 6f 3, no such feature is found in the present case.
[S0031-9007(97)03597-7]

PACS numbers: 05.45.+b

One of the well-known routes to chaos is the route to As a natural extension, one may attempt to consider
chaos from a two-frequency quasiperiodic motion [1—-5].an iterated 3D mapping, simulating the Poincaré map of
Evidence of this particular route to chaos was first knowra continuous 4D flow. An existing study [16] of such a
in late 1970s [1,2]. Still, our understanding of the transi-model has shown that a torus can also lose its stability
tion appears quite limited. through a cascade of period doublings, and that a torus,

A common method of displaying the dynamics isafter a few times of period doubling, is more likely to
through a Poincaré section, which is simply a slice oflose its stability by developing the folding around itself
a complicated trajectory across, for example, the centgereceded by a frequency locking, as predicted in the 2D
of the trajectorial motion. On the Poincaré section, amodels. In general, the dynamics of a 3D map itself are
circular ring refers to a torus representing a two-frequencylready very complicated, so setting up an informative 3D
quasiperiodic motion in the continuous flow. Often, onemapping model turns out by no means to be a simple
studies an iterated two-dimensional (2D) mapping as anatter. As an alternative, one might first consider a
model of the Poincaré section of a continuous 3D flow.continuous 4D flow, and then attempt to construct the
The characteristic onset feature to chaos found in such eorresponding 3D Poincaré maps directly from the flow,
study [1] is the development of wrinkles or corrugationshoping for general information on the transition. Here,
on the ring, preceded by frequency locking, signaling thatve take the latter approach and consider the following
the folding [6] on the torus is taking place, leading directly phenomenological model of a 4D continuous flow [17],
to a strange attractor [7]. The theoretical ground of our
understanding for the existence of frequency locking atthe a; = ea; + (i — €) (la)|*a; + ajlax|* + 1aia3),
onset was thus primarily geometrical. The same manner . 2/ .
of the transition was identified in the continuous 3D flows 92 — €42 — ¢°(i + €)ay + (13 — € (1
described by the forced Van der Pol's equations [8]. A X (ajas + 2lailar + 3lazl’a),
more formal mathematical approach for this transition has
been made in terms of the mapping of a circle onto itselfvhered, a, denote, respectively, the time derivative of the
[8—-11]. complex variables (1), ax(t), € is a smallness parameter

We note, however, that information based on 2D maps i¢elated to energy input and dissipation rate set at 0.05, and
meant to be applicable to the chaos with a low dimension of is a control parameter. The flow possesses a periodic
d < 3. Afurther clarification of this type of transition in solution with frequencys = 1
the case of higher dimensional chaos is needed. In this re- _ it

. . . ; a(t) = e". 2
gard, we notice that while some experimental observations
[2,12] show the characteristic onset features as predicted slight perturbation to this periodic solution as
by the 2D models, certain experiments find a direct thick- at = 0) = 1. w(t = 0) = 6, 5<1, (3)
ening, or dispersion, of a torus without any evidence of fre-
quency locking [12,13]. It was then speculated that suctat ¢ = 0.98, leads to a two-frequency motion with two
a chaotic regime might correspond to a strange attractdrrational frequencies [Fig. 1(a)]. For a slightly lower
with a dimension of greater than three [14]. This conjec-g = 0.97, this two-frequency motion turns itself directly to
ture remains unsettled. Along with this conjecture exists &haos characterized by a broadband spectrum [Fig. 1(b)].
rather intriguing question; namely, whether the chaos with To see the characteristic feature of this chaotic flow, we
a higher dimension of > 3 has indeed a threshok}, di- measured the maxima of the time sigidl) = |a(7)|.
rectly from the two-frequency motiorl (= 2), or through  Denoting theith maximum ofb(¢) as M;, we also mea-

a thresholdR; of quasiperiodicity with three frequencies sured the period-; between successive maxind; and
(d = 3) [7,15] which could be very close to, or even right M;+,. Plotting r;+; as a function ofr; for all i =
at, R, [3-5]. Here, we address this issue. 1,2,3,..., we obtain a noninvertible one-dimensional map
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FIG. 1. Power spectrum of (a) the two-frequency motiog at 0.98; w,, w, are the two independent frequencies, and the others
are the linear sums of these two, and (b) the chaotic motign(at 0.97) < 0.98.

[Fig. 2], which indicates that the flow is now in a strangeFigure 3(a) shows these three unstable fixed points, de-
attractor. noted by, B, andBg, together with the complete struc-
To understand the detailed manner of the transition betures of their stable and unstable manifolds. Among the
tween the two flows, we need to investigate their geomethree,« at the center corresponds to the original periodic
tries. Since the trajectory travels in the 4D state spacstatea;(r) = e’ that was perturbed. Once the locations
spanned byX = Rda;], W = Im[a;], Y = Rda,], and of the three unstable fixed points are identified, it is then
Z = Im[a,], we may take the trajectory’s 3D Poincaré straightforward to analyze the local flows around each of
map as follows. Whenever the trajectory passes througthem numerically.
the planeW = 0 with a directionW > 0, we mark the Results of the linear stability analysis around each fixed
other three coordinateX(Y, Z) of the piercing point. The point show thaix has three positive real eigenvalues. The
nth point (X,,, ¥,,, Z,) is then uniquely mapped into the next first one is greater than 1 (1 being the stability criterion),
point (X,+1,Y,+1,Z,+1) under such a procedure, which corresponding to the unstable manifolds denotedsby
defines a 3D Poincaré map of the trajectory. The markednds,, while the other two are less than 1, corresponding
points now form a discrete trajectory in the 3DZ space, to the stable planar manifold denoted Ay The results
where we can now visualize the trajectorial motion. also show thatg, and Bg, on the other hand, have a
The results are displayed in Fig. 3, where the two-complex conjugate pair with an amplitude greater than 1,
frequency state forms a ring, i.e., a torus [Fig. 3(a)], whilecorresponding to the spirally outgoing separatricesind
the chaotic state gives a more complicated structure, thes along the unstable planar manifol#s and Bk, and
strange attractor [Fig. 3(b)]. have another eigenvalue, which is positive real but less
A detailed analysis of the data obtained from a set othan 1, defining stable manifolds indicated by the arrows
initial conditions scattered over the geometric structureslirected toward the plands, andBy.
leads to the conclusion that the ring is in fact formed by From local information around each fixed point and from
an interplay of three neighboring unstable fixed pointsthe continuity as well as the uniqueness of a trajectory,
we can construct the global geometry of the stable and
unstable manifolds of the three unstable fixed points. The
complete geometry for the ring presented in Fig. 3(a) has
been constructed in this way. The ring is stable betwgen
and the heteroclinic orbit; and between/, andsg, while
s«, s, are asymptotically approaching the torus. Under
this geometry, we can see that the entire space becomes
Tieq ; the basin of attraction for the torus: All the trajectories in
\ the space except those exactly on the heteroclinic arpits
\ or s}; are eventually attracted to the torus by being guided
/ by so Or sl,.
. S It turns out that this global geometry for the torus
4.40 45 in fact gives all the answers to the questions raised at
440 730 the beginning. Notice that the geometry of the strange
Ti attractor displayed in Fig. 3(b) is nothing but the unstable

) ; : .
FIG. 2. A noninvertible 1D map produced by the chaotic flow manifolds s, and s, of a. A detailed comparison of
of Fig. 1(b). This provides evidence that the motion is in aFigs. 3(a2) and 3(b) indicates that the merging of the
strange attractor. manifolds, with the heteroclinic orbik}g and the merging
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FIG. 3. lllustration of the global geometries in the 3D Poincaré map. (a) Upper plot: The torus of the two-frequency motion.
Lower plot: The global geometry of the torus. The torus is formed by an interplay of three unstable fixedagoBys and

Br. sa, s, are the unstable manifolds of, and the planel is the stable manifold o&. The planesB, and By are the unstable
manifolds of, respectivelyB; and Bz. sz andsy are the heteroclinic orbits connectirgy and Bz to a. (b) Upper plot: The
strange attractor. Lower plot: Notice that the strange attractor is nothing but the unstable maniteldg bé merging ofs, and

s’ with the heteroclinic orbits; andsg, respectively, causes destruction of the torus.

of s/, with sz finally lead to the “destruction” of the betweend = 2, the dimension of a surface, amd= 3,
torus. As it is, the torus collapses completely while thethe dimension of a volume.
continuous unstable manifolds af appear. Apparently, One may notice that the geometry here is almost identi-
there are no such features of wrinklings or corrugations o€al to that of the well-known Lorenz attractor [18], which
the torus preceded by frequency locking, characteristic ofias a fractal dimension @f< d < 3. A clear difference,
the torus breakup in the 2D models [1,8]. The unstabldowever, is that while the Lorenz attractor lives in continu-
manifolds are largely retracing the previous torus siteous 3D space, the current structure exists in a 3D Poincaré
again and again, making it thickened or dispersed. Imap. In a Poincaré map, a ring & 1) represents a
addition, it is clear that the transition is not effected bytorus ¢ = 2) living in a continuous flow. Likewise, a
the form of a third frequency. Consequently, the detailedstrange attractor with a fractal dimension2ok d < 3 in
global geometries illustrated here provide a geometricah Poincaré map represents a strange attractor with a frac-
explanation for thelirect transition from a torusd = 2)  tal dimension of3 < d < 4 in a continuous flow. Thus,
to a strange attractor with a higher fractal dimension ofwe are led to the conclusion that the two-frequency mo-
d > 3 (to be argued next). tion (d = 2) shown in Fig. 1(a) was destroyed directly to
Since the only passage tois already occupied by the chaos with a fractal dimension 8f< d < 4, not in the
heteroclinic orbitsz ands’s, the outgoing manifolds of  form of a third frequencyd = 3).
cannot close themselvesa@t The broadband spectrumin  Presently, not many details of the geometrical structures
Fig. 1(b) is an indication that the unstable manifoldeof of strange attractors in four dimensions are known in
does not close itself. Another piece of evidence is, ofcomparison to those in three dimensions. This may be due
course, the more technical 1D noninvertible return mapn part to the serious visualization problem encountered
of Fig. 2. If the unstable manifold is not closed, then itin four dimensions. The structure we found here is like
has to make a set of an infinite number of closely locateé&dding the dimension by one to each building block of the
circular orbits that do not touch one another, thanks td.orenz attractor; namely, the three unstable fixed points in
the uniqueness of a trajectory. We may then view eaclhe Lorenz attractor are replaced by three unstable periodic
circular orbit as lying on a separate surface. Thus, therbits.
unstable manifold is effectively defining a set of infinitely  Finally, how might it have looked if the present transi-
many and arbitrarily closely locateffactal planes, as tion had been measured experimentally where the Poincaré
indicated by the icon in Fig. 3(b). This set of an infinite map might have been projected on a plane? Figure 4
number of fractal planes has a noninteger dimension ishows a schematic drawing of a 2D Poincaré section (an
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