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We perform energy spectroscopy of Andreev reflection processes occurring at two supercond
electrodes connected in series via a ballistic two dimensional channel, by measuring the vo
dependence of that part of the conductance modulated by the macroscopic phase difference
amplitude of the modulation oscillates as a function of energy and the phase exhibits an abrup
close top at the energy for which the amplitude is minimum. A microscopic theoretical descript
ascribes the phenomenon to the precursor of a bound state formed between the two supercond
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The supercurrent flowing through a variety of supe
conducting junctions is closely related to the existence
(Andreev) bound states [1] confined in the region betwe
the superconducting electrodes by Andreev reflection
(AR) processes. Each bound state carries a finite amo
of current and the total supercurrent flowing through
junction is the sum of the contributions from all the boun
states. Consequently the energy spectrum, which is
function of the macroscopic phase differencef between
the superconductorssSd, determines all the properties (i.e.
critical current, its temperature dependence, current ph
relation, etc.) of the junction.

The existence of bound states between a supercond
ing pair potential and a potential barrier has been pr
dicted theoretically and verified experimentally long ag
by means of tunneling spectroscopy [3]. However, in sp
of their importance, the existence of discrete Andreev le
els created by superconducting confinement on either s
of a normal conductor has never been directly experime
tally investigated.

As an alternative to tunneling spectroscopy, whose a
plication to this problem is not straightforward, Andree
levels can be studied experimentally by means of a sup
conducting analog of resonant tunneling [4]. The centr
idea is to inject electrons in a phase coherent ballistic co
ductor containing two superconducting barriers connect
in series. Andreev (quasi)bound states, formed betwe
these barriers, manifest themselves via resonantdipsof the
AR probability as a function of electron energy and supe
conducting phase difference.

In this paper we address the above problem experim
tally by investigating phase coherent transport through
ballistic normal channel to which two superconductin
electrodes are connected in series (Fig. 1) via high tra
parency interfaces. As we will demonstrate, in spite of th
weak confinement provided by one of the superconduct
and of the large number of quantum modes (ø40) in the
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channel, the precursor of an Andreev level can be reveal
using the conductance oscillations modulated by the supe
conducting phase as a very sensitive experimental tool.

Figure 1 is a schematic top view of the samples. All th
samples have been realized using as a normal conducto
channel etched in the two dimensional electron gas (2DEG
present in the InAs layer of a InAsyAlSb heterostructure
(electron densityN ­ 1.75 1016 m22; elastic mean free
path le ­ 1.9 mm). The dark shaded region represent
the ballistic channel, where the InAs is still covered by th
top layer, connected to contacts A and B. Superconductin
Nb electrodes make electrical contact to the InAs layer a
the two sides (S1) and at the end of the channel (S2) (in
Fig. 1 the regions defined by the black rectangles). The
electrodes are part of a superconducting ring to which tw
more contacts for electrical measurements (not shown) a
attached in C. Coupling superconductorS1 only to the side
of the 2DEG channel is presently the best technologic
solution to study ballistic transport in a sample in which

FIG. 1. Left: Schematic top view of the sample showing the
2DEG channel and the Nb ring. SuperconductorS1 makes
electrical contact with InAs only in the regions defined by
the black rectangles. Right: Phase dependence of the Andre
energy levels for a 1D quantum channel between two supe
conductors with perfect interfaces. The picture is idealized i
that the linear energy phase relation holds only forE ø D;
Es is the Andreev level spacing. AtE . D the dashed line
indicates the absence of true bound states.
© 1997 The American Physical Society
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AR’s occur in series. A high transparency Nb conta
all across the 2DEG channel would damage the transp
properties underneath the contact itself [5].

The relevant sample dimensions, as obtained from sc
ning electron microscope micrographs, are (see Fig.
L . 1.1 mm, W . 390 nm, d . 250 nm, and La .
1.0 mm. The samples are realized by means of thr
step electron beam lithography in combination wi
chemical wet etching, Nb electron-beam evaporation a
lift-off techniques. Details of the technology and of th
material properties have been reported elsewhere [6
Here we emphasize only that (1) transport between
two superconducting contacts is ballistic (L , le) and
(2) the angular distribution of the holes reflected by th
superconductors is essentially isotropic [7].

The experiments consist in measuring the (differenti
resistance of the channel as a function of the dc volta
[8] and of the magnetic field. Current is sent from conta
A to C and, at the same time, the voltage across B a
C is measured. The differential resistance of one of o
samples measured at 1.6 K as a function of the magn
field B is shown in Fig. 2, for different values of the applie
dc voltage. The magnetic field used in the experimen
is so small (B , 10 G) that the magnetic flux piercing
the 2D channel between the superconductors is neglig
compared to a flux quantum. Hence the magnetic field h
the only effect of tuning the macroscopic phase differen
f between the two superconducting electrodes, via the fl
F induced through the Nb ring (f ­ 2pFyF0).

The change of the macroscopic phase difference indu
oscillations in the resistance due to quantum interferen
of electrons and holes Andreev reflected by the two sup
conductors. Upon increasing the electron energy (i.e.,
dc voltage) we observe that two related phenomena occ
The oscillation amplitude first decreases with increasingE
from 0 [trace (a) in Fig. 2] to.0.4 meV [trace (b)]. How-
ever, a further increase of the electron energy results in
increase of the amplitude, which reaches a maximum
E ø 0.7 meV [trace (c)], before eventually decaying and
vanishing at energies above the superconducting ene
gapD [trace (d); D . 1.2 meV is determined from the on-
set of the rapid increase of AR probability observed in t

FIG. 2. Resistance oscillations at 0 mV (a), 0.4 mV (b
0.7 mV (c), 1.3 mV (d) dc voltage (curves offset for clarity).
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measurements ofdVydIsVdcd]. This behavior has been
observed in all three samples investigated. The detaile
energy dependence of the oscillation magnitude measure
in a second sample is shown in Fig. 3(a).

The data of Fig. 2 also clearly show a second phenom
enon observed in all the samples, namely, that the mini
mum in the amplitude of the oscillations is accompanied
by a shift in their phase. The phase shift occurs rathe
abruptly atE . 0.4 meV and its magnitude is close but
not equal top (.0.8p). This characteristic behavior is
illustrated in Fig. 3(b). At a given dc voltage, the cor-
responding phase has been inferred by fitting the differ-
ential resistance oscillations with a cosine function. The
amplitude and phase of the conductance oscillations a
energyE , D are described bydRh,esE, fd, the phase
dependent part of the total AR probability [9]. In or-
der to highlight the relevant microscopic processes giving
a relevant contribution todRh,esE, fd, we introduce a
semiclassical model (lF , 21 nm, is much smaller than the
sample dimensions) which provides us with a parametriza
tion of the energy dependence of the oscillation amplitude
and phase [10].

We first note that in a semiclassical description we can
separate the trajectories of an electron propagating ba
listically in the 2DEG channel towards the superconduct-
ing electrodes into two groups, depending on whether the
electron hits electrodeS1 or S2 first. Only after hitting
one of the electrodes, due to the disorder present at th
2DEGyS interface, the electron is reflected into (either
electron or hole) partial waves propagating in all possible
directions that eventually interfere quantum mechanically.
This makes it convenient to evaluate quantum interferenc
at the position where an electron experiences the first col
lision with one of the superconductors [12]. It also fol-
lows that we can consider the interference of trajectories

FIG. 3. (a) Energy dependence (normalized at theE ­ 0
value) of the conductance oscillation amplitude: the data
(squares) are compared with theory (continuous line) in the cas
c, d ­ 0, bya . 0.5 (for the casec, d fi 0 we obtain a fit of
the same quality forbya . 0.8). (b) Energy dependence of the
oscillation phase: experimental data (circles) are compared with
theoretical prediction forc, d ­ 0 (bya . 0.5, dotted line) and
c, d fi 0 (bya . 0.8, continuous line).
4011
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in which an electron hitsS1 first separately from those in
which the electron hitsS2 first [13].

Since superconductorS1 is coupled only to the sides
of the 2DEG channel, the largest contribution todRh,e is
due to electron-hole trajectories hittingS1 the least number
of times. These are the trajectories represented in Fig
which describe the following processes: (1) An incomin
electron is directly transformed into an outgoing parti
hole wave; (2) normal reflection atS1 generates an electron
partial wave that is Andreev reflected atS2 into a hole,
which, after a second normal reflection atS1, produces an
outgoing hole wave; (3) AR of the incoming electron a
S1 generates a hole partial wave, which, after undergoi
two more AR’s atS2 andS1, produces an outgoing hole
Processes 4–6 are analogous to 1–3 apart from the
that the incoming electron hitsS2 first.

Note that in Fig. 4 we have drawn only those process
in which the electron-hole partial waves propagate fro
one superconducting electrode to the other and back alo
phase conjugated trajectories (i.e., trajectories along wh
electron and hole trace back each others paths), since
expect these trajectories to give the largest contributi
to phase modulated quantum interference [7]. Note a
that, in order to calculate the total quantum amplitude
processes 2 and 3 (and also 5 and 6), one has to sum
amplitudes of all possible phase conjugated trajectories

We illustrate the estimate of the energy and phase dep
dence of the quantum amplitudes of the above proces
by briefly discussing the evaluation of the amplitudeA2 of
process 2. The amplitudeA2 can be factorized in terms
of the amplitudes of the basic processes undergone by
electron and the hole during their motion along the traje
tory represented in graph (2) of Fig. 4:

A2 ­
X

i

r s1d
e,eP

sed
i r

s2d
h,eP

shd
i r

s1d
h,h , (1)
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FIG. 4. The most relevant processes contributing to t
conductance oscillations. Electrons (holes) are represented
continuous (dashed) lines; the arrows indicate the propaga
direction (see description in the text).

where r
s1d
e,e, r

s1d
h,h, and r

s2d
h,e are the amplitudes for norma

reflection (respectively, electron into electron and hole in
hole) atS1 and AR atS2; P

sed
i ­ eikesEdxi (P

shd
i ­ eikhsEdxi )

is the dynamical phase that an electron (hole) acquires
propagating fromS1 to S2 (from S2 to S1) along trajectory
i, of lengthxi . The

P
i is a sum over all phase conjugate

trajectories connectingS1 to S2.
In order to proceed in the evaluation of Eq. (1) a

energyE , D [14] we approximate the sum over the phas
conjugated trajectories as an integral over the possi
lengths (

P
i ø

RLmax

Lmin
dxi with Lmin and Lmax minimum

and maximum length of the relevant phase conjuga
trajectories). In this approximation we obtain theE and
f dependence ofA2 (and analogously the amplitude o
all the other processes shown in Fig. 4). By taking t
squared modulus of the sum of the amplitudes of t
processes represented in Fig. 4 we arrive at the follow
parametrization ofdRh,esE, fd:
dRh,esE, fd ­ GsEd ha cossf 1 kFLavEyEF d 1 b coss2f 1 kFLavEyEFd

1 c cosf2f 1 kFLavEyEF 2 2 arccossEyDdg 1 d cosff 1 kFLav EyEF 2 2 arccossEyDdgj .
(2)
)
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HerekF andEF are the Fermi wave vector and energy
respectively, and Lav ­ sLmin 1 Lmaxdy2. GsEd ­
sinskFDLEyEFdyskFDLEyEFd, where DL ­ sLmax 2

Lmindy2 is the spreading in the length of the relevant pha
conjugated trajectories, describes the decay of the osci
tion amplitude at finite energy due to the breaking of pha
conjugation. 2 arccossEyDd is the energy dependent par
of the phase picked up in the AR process [14].

a, b, c, and d are energy and phase independent re
constants that define the relative strength of the four term
in Eq. (2). With reference to Fig. 4, the terms proportiona
to a and c come from the interference of trajectories (1
with (2) and (1) with (3), respectively (electrons that h
S1 first), whereas the terms proportional tob and d are
,
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produced by the interference of trajectories (4) with (5
and of (4) with (6) (electrons that hitS2 first) [15].

After convoluting with the Fermi-Dirac distribution
to account for the finite temperature [9] we obtai
from Eq. (2) the energy dependence of the oscillatio
amplitude and phase. In order to decrease the num
of parameters we initially neglect trajectories involvin
three AR’s [(3) and (6) in Fig. 4] by settingc ­ d ­ 0
and we normalize the oscillation amplitude to theE ­ 0
value, so that the theoretical curve depends only on
ratio bya. Lav and DL are also varied to optimize
the comparison between model and experiments. T
continuous line in Fig. 3(a) is a best fit of the oscillatio
amplitude energy dependence under the conditions j
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discussed, withbya . 0.5. It is obtained for Lav .
1.3 mm andDL . 0.5 mm. These values, which canno
be varied significantly without decreasing the quality
the fit between theory and experiment, are only sligh
larger than those inferred from the samples geomet
This indicates that trajectories connectingS1 to S2 and
bouncing once or twice off the channel sides give
relevant contribution. As for theE dependence of the
phase, Eq. (2) withc, d ­ 0 reproduces the energy a
which the jump occurs, but not its shape and magnitu
[Fig. 3(b)]. For the shape the situation is improved if on
takes into account nonzero values forc and d. In this
case one has the best fit of both amplitude and ph
for bya ø 0.8 and cya, dya in the range0 to ø0.3
(for Lav and DL same values as above). However th
magnitude of the jump is still not exactly reproduced, fo
which a more elaborate theoretical description is need
Note also that, in spite of the high transparency of t
Nby2DEG interfaces, processes involving three AR’s a
not the most relevant.

Finally, our parametrization ofdRh,esE, fd predicts
that the oscillation amplitude measured at 1.6 K is a
proximately 3 times larger than at 4.2 K (atVdc ­ 0) not
far from the experimental value, 2.6.

We now discuss the significance of the experimental
sults in relation to the problem of Andreev levels. We
defined bound states can be formed betweenS1 and S2,
only if the confinement due toS1 is strong enough. In that
case the levels induce resonances [16] in the AR proba
ity as a function ofE and f. However, if the confine-
ment due toS1 is not strong enough, multiple reflection
responsible for the full formation of the bound states hav
low probability to occur and the resonances are broade
into an oscillatory dependence of the AR probability o
E andf, which is accounted for by the lowest order pro
cesses only. These are the processes responsible fo
behavior of our samples: that is why Eq. (2), valid in th
regime of low coupling toS1, reproduces the experimenta
observations.

In conclusion we like to demonstrate that, in spi
of the number of modes (ø40) present in the channel,
we can interpret qualitatively our results in terms of th
idealized 1D level diagram of Fig. 1 [the energy scale
the diagram is determined byEs, the Andreev level energy
spacing, which for the idealized (linear)Esfd relation, is
Es ­ 2pEFykFL . 1.5 mV]. As we sweep the phase
f at fixed electron energyE, an energy levelEsfd
decreases the conductance most effectively whenEsfd ­
E (recall that Andreev levels produce conductance dip
For every value ofE two main contributions to the
conductance oscillations are therefore present [Esfd ­ E
has two solutions] whose relative phase is0 at E ­ 0 (for
E ­ 0 the solutions coincide atf ­ p), and increases
with E. At Esy4 . 0.38 mV the two contributions are
p out of phase, and the oscillation magnitude show
the observed minimum [Fig. 3(a)]. AtEsy2 . 0.75 meV
t
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the relative phase is2p, i.e., the two contributions are
again in phase: this produces the local maximum in th
amplitude observed at.0.7 mV. One expects to see a
second minimum at3Esy4 . 1.1 mV but the oscillation
amplitude keeps on decreasing at higher energy, becau
E . D and the particles are no longer efficiently reflected
by the gap.
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