VOLUME 79, NUMBER 20 PHYSICAL REVIEW LETTERS 17 NVEMBER 1997

Energy Spectroscopy of Andreev Levels between Two Superconductors
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We perform energy spectroscopy of Andreev reflection processes occurring at two superconducting
electrodes connected in series via a ballistic two dimensional channel, by measuring the voltage
dependence of that part of the conductance modulated by the macroscopic phase difference. The
amplitude of the modulation oscillates as a function of energy and the phase exhibits an abrupt shift
close tor at the energy for which the amplitude is minimum. A microscopic theoretical description
ascribes the phenomenon to the precursor of a bound state formed between the two superconductors.
[S0031-9007(97)04525-0]

PACS numbers: 74.50.+r, 74.80.Fp

The supercurrent flowing through a variety of super-channel, the precursor of an Andreev level can be revealed
conducting junctions is closely related to the existence ofising the conductance oscillations modulated by the super-
(Andreev) bound states [1] confined in the region betweelonducting phase as a very sensitive experimental tool.
the superconducting electrodes by Andreev reflection [2] Figure 1is a schematic top view of the samples. All the
(AR) processes. Each bound state carries a finite amousamples have been realized using as a normal conductor a
of current and the total supercurrent flowing through achannel etched in the two dimensional electron gas (2DEG)
junction is the sum of the contributions from all the boundpresent in the InAs layer of a In4&ISb heterostructure
states. Consequently the energy spectrum, which is electron densityN = 1.7510'® m~2; elastic mean free
function of the macroscopic phase differensebetween pathl, = 1.9 um). The dark shaded region represents
the superconductoks), determines all the properties (i.e., the ballistic channel, where the InAs is still covered by the
critical current, its temperature dependence, current phasep layer, connected to contacts A and B. Superconducting
relation, etc.) of the junction. Nb electrodes make electrical contact to the InAs layer at

The existence of bound states between a supercondudhe two sides{1) and at the end of the channel2) (in
ing pair potential and a potential barrier has been preFig. 1 the regions defined by the black rectangles). These
dicted theoretically and verified experimentally long agoelectrodes are part of a superconducting ring to which two
by means of tunneling spectroscopy [3]. However, in spitamore contacts for electrical measurements (not shown) are
of their importance, the existence of discrete Andreev levattached in C. Coupling superconducfdronly to the side
els created by superconducting confinement on either sidef the 2DEG channel is presently the best technological
of a normal conductor has never been directly experimensolution to study ballistic transport in a sample in which
tally investigated.

As an alternative to tunneling spectroscopy, whose ap- C
plication to this problem is not straightforward, Andreev I% E
levels can be studied experimentally by means of a super- = "
conducting analog of resonant tunneling [4]. The central L A PN
idea is to inject electrons in a phase coherent ballistic con- * SEs/4
ductor containing two superconducting barriers connected — <« La
in series Andreev (quasi)bound states, formed between w i Es/4
these barriers, manifest themselves via resodigsiof the A B
AR probability as a function of electron energy and super- 0 T2 ¢
conducting phase difference. FIG. 1. Left: Schematic top view of the sample showing the

In this paper we address the above problem experimer»peG channel and the Nb ring. Superconducsdr makes
tally by investigating phase coherent transport through @lectrical contact with InAs only in the regions defined by
ballistic normal channel to which two superconductingthe black rectangles. Right: Phase dependence of the Andreev
electrodes are connected in series (Fig. 1) via high tran&nergy levels for a 1D quantum channel between two super-

. . . A conductors with perfect interfaces. The picture is idealized in
parency |n.terfaces. As.we will demonstrate, in spite of the,, ot the linear energy phase relation holds only for< A:
weak confinement provided by one of the superconductorg, is the Andreev level spacing. AE > A the dashed line

and of the large number of quantum modes!() in the indicates the absence of true bound states.
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AR’s occur in series. A high transparency Nb contactmeasurements afV /dI(Vy4.)]. This behavior has been
all across the 2DEG channel would damage the transpodbserved in all three samples investigated. The detailed
properties underneath the contact itself [5]. energy dependence of the oscillation magnitude measured
The relevant sample dimensions, as obtained from scafn a second sample is shown in Fig. 3(a).
ning electron microscope micrographs, are (see Fig. 1) The data of Fig. 2 also clearly show a second phenom-
L=1.1pum, W=390nm, d=250nm, and L, = enon observed in all the samples, namely, that the mini-
1.0 um. The samples are realized by means of threenum in the amplitude of the oscillations is accompanied
step electron beam lithography in combination withby a shift in their phase. The phase shift occurs rather
chemical wet etching, Nb electron-beam evaporation andbruptly atE = 0.4 meV and its magnitude is close but
lift-off techniques. Details of the technology and of the not equal tor (=0.87). This characteristic behavior is
material properties have been reported elsewhere [6,7]lustrated in Fig. 3(b). At a given dc voltage, the cor-
Here we emphasize only that (1) transport between theesponding phase has been inferred by fitting the differ-
two superconducting contacts is ballistit € [,) and ential resistance oscillations with a cosine function. The
(2) the angular distribution of the holes reflected by theamplitude and phase of the conductance oscillations at
superconductors is essentially isotropic [7]. energy E < A are described byR, . (E, ¢), the phase
The experiments consist in measuring the (differential)dependent part of the total AR probability [9]. In or-
resistance of the channel as a function of the dc voltagder to highlight the relevant microscopic processes giving
[8] and of the magnetic field. Current is sent from contacta relevant contribution t&SR; .(E, ¢), we introduce a
A to C and, at the same time, the voltage across B andemiclassical model, 21 nm, is much smaller than the
C is measured. The differential resistance of one of ousample dimensions) which provides us with a parametriza-
samples measured at 1.6 K as a function of the magnettion of the energy dependence of the oscillation amplitude
field Bis shown in Fig. 2, for different values of the applied and phase [10].
dc voltage. The magnetic field used in the experiments We first note that in a semiclassical description we can
is so small B < 10 G) that the magnetic flux piercing separate the trajectories of an electron propagating bal-
the 2D channel between the superconductors is negligiblistically in the 2DEG channel towards the superconduct-
compared to a flux quantum. Hence the magnetic field haisg electrodes into two groups, depending on whether the
the only effect of tuning the macroscopic phase differencelectron hits electrod§1 or S2 first. Only after hitting
¢ between the two superconducting electrodes, via the flurne of the electrodes, due to the disorder present at the
® induced through the Nb ringl( = 27 ® /D). 2DEG/S interface, the electron is reflected into (either
The change of the macroscopic phase difference inducesectron or hole) partial waves propagating in all possible
oscillations in the resistance due to quantum interferencdirections that eventually interfere quantum mechanically.
of electrons and holes Andreev reflected by the two superFhis makes it convenient to evaluate quantum interference
conductors. Upon increasing the electron energy (i.e., that the position where an electron experiences the first col-
dc voltage) we observe that two related phenomena occulision with one of the superconductors [12]. It also fol-
The oscillation amplitude first decreases with increaging lows that we can consider the interference of trajectories
from 0 [trace @) in Fig. 2] to=0.4 meV [trace 6)]. How-
ever, a further increase of the electron energy results in an
increase of the amplitude, which reaches a maximum at
E = 0.7 meV [trace ¢)], before eventually decaying and
vanishing at energies above the superconducting energy
gapA [trace d); A = 1.2 meV is determined from the on-
set of the rapid increase of AR probability observed in the
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460 FIG. 3. (a) Energy dependence (normalized at the= 0
value) of the conductance oscillation amplitude: the data
450 . . . . (squares) are compared with theory (continuous line) in the case
-4 -2 0 2 4 ¢,d =0, b/a = 0.5 (for the casec,d # 0 we obtain a fit of
B (Gauss) the same quality fob/a = 0.8). (b) Energy dependence of the

oscillation phase: experimental data (circles) are compared with
FIG. 2. Resistance oscillations at 0 mV (a), 0.4 mV (b), theoretical prediction for,d = 0 (b/a = 0.5, dotted line) and
0.7 mV (c), 1.3 mV (d) dc voltage (curves offset for clarity). c¢,d # 0 (b/a = 0.8, continuous line).
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in which an electron hit§'1 first separately from those in 1) |S_2|
which the electron hits?2 first [13].

Since superconductdt1 is coupled only to the sides
of the 2DEG channel, the largest contribution&®;, . is 31 31
due to electron-hole trajectories hittifd the least number —_— =
of times. These are the trajectories represented in Fig. 4, c
which describe the following processes: (1) Anincoming
electron is directly transformed into an outgoing partial 4) %ﬂ

\

hole wave; (2) normal reflection &l generates an electron
partial wave that is Andreev reflected & into a hole,
which, after a second normal reflectionsdt, produces an Sq S1
outgoing hole wave; (3) AR of the incoming electron at
S1 generates a hole partial wave, which, after undergoing
two more AR’s ats2 andS1, produces an outgoing hole. FIG. 4. The most relevant processes contributing to the

Processes 4-6 are analogous to 1-3 apart from the fa%?nductance oscillations. Electrons (holes) are represented by
continuous (dashed) lines; the arrows indicate the propagation

that the incoming electron hits2 first. direction (see description in the text).
Note that in Fig. 4 we have drawn only those processes
in which the electron-hole partial waves propagate from SR @ _
one superconducting electrode to the other and back alorf§1€r€ e, 7, andr,. are the amplitudes for normal
phase conjugated trajectories (i.e., trajectories along whicfFection (respectively, el(e)ctronllnto eIec(Elr)on and hole into
electron and hole trace back each others paths), since W@le) atS1 and AR ats2; P; = ek (P = giki(Ex)
expect these trajectories to give the largest contributiofs the dynamical phase that an electron (hole) acquires in
to phase modulated quantum interference [7]. Note alsgropagating fron$'1 to S2 (from $2 to S1) along trajectory
that, in order to calculate the total quantum amplitude of , Of lengthx;. The}; is a sum over all phase conjugated
processes 2 and 3 (and also 5 and 6), one has to sum tH@jectories connectin§l to S2.
amplitudes of all possible phase conjugated trajectories. In order to proceed in the evaluation of Eqg. (1) at
We illustrate the estimate of the energy and phase depefnergyE < A [14] we approximate the sum over the phase
dence of the quantum amplitudes of the above process€9njugated trajectories as an integral over the possible
by briefly discussing the evaluation of the amplitutieof lengths §; = fﬁ:j: dx; with Ly, and Ly,x minimum
process 2. The amplitudé, can be factorized in terms and maximum length of the relevant phase conjugated
of the amplitudes of the basic processes undergone by thiggjectories). In this approximation we obtain theand
electron and the hole during their motion along the trajec¢ dependence ofi, (and analogously the amplitude of

tory represented in graph (2) of Fig. 4: all the other processes shown in Fig. 4). By taking the
squared modulus of the sum of the amplitudes of the
A, = ng}zpl(e)r}(l?ngh)r}(l{})l’ (1) Processes represented in Fig. 4 we arrive at the following

parametrization obR; . (E, ¢):

i

6Rh,e(Ev ¢) = F(E){a COi(f) + kFLaVE/EF) + bCOS(—d) + kFLaVE/EF)
+ cco§—¢ + kpL,yE/Er — 2arcco$E/A)] + dcog¢ + krpL.wE/Er — 2arccosE/A)]}.

)
Herekr andEr are the Fermi wave vector and energly,produced by the interference of trajectories (4) with (5)
respectively, and L,y = (Lmin + Lmax)/2. T'(E) =  and of (4) with (6) (electrons that h$2 first) [15].
sinkkpALE/EF)/(krALE/Er), where AL = (Lp.x — After convoluting with the Fermi-Dirac distribution

Lunin)/2 is the spreading in the length of the relevant phaséo account for the finite temperature [9] we obtain
conjugated trajectories, describes the decay of the oscilldrom Eq. (2) the energy dependence of the oscillation
tion amplitude at finite energy due to the breaking of phasamplitude and phase. In order to decrease the number
conjugation. — arcco$E/A) is the energy dependent part of parameters we initially neglect trajectories involving
of the phase picked up in the AR process [14]. three AR’s [(3) and (6) in Fig. 4] by setting=d = 0

a, b, ¢, andd are energy and phase independent reahnd we normalize the oscillation amplitude to the= 0
constants that define the relative strength of the four termgalue, so that the theoretical curve depends only on the
in Eq. (2). With reference to Fig. 4, the terms proportionalratio »/a. L,, and AL are also varied to optimize
to a and ¢ come from the interference of trajectories (1) the comparison between model and experiments. The
with (2) and (1) with (3), respectively (electrons that hit continuous line in Fig. 3(a) is a best fit of the oscillation
S1 first), whereas the terms proportional koandd are  amplitude energy dependence under the conditions just
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discussed, withb/a = 0.5. It is obtained forL,, = the relative phase i, i.e., the two contributions are

1.3 um andAL = 0.5 um. These values, which cannot again in phase: this produces the local maximum in the
be varied significantly without decreasing the quality ofamplitude observed at0.7 mV. One expects to see a
the fit between theory and experiment, are only slightlysecond minimum a8E;/4 = 1.1 mV but the oscillation
larger than those inferred from the samples geometryamplitude keeps on decreasing at higher energy, because
This indicates that trajectories connectifigg to S2 and E > A and the particles are no longer efficiently reflected
bouncing once or twice off the channel sides give aby the gap.

relevant contribution. As for thé&Z dependence of the  This work is financially supported by FOMIWO and
phase, Eqg. (2) withc,d = 0 reproduces the energy at KNAW (B.J.v.W.).
which the jump occurs, but not its shape and magnitude

[Fig. 3(b)]. For the shape the situation is improved if one

takes into account nonzero values forand d. In this

case one has the best fit of both amplitude and phasdl] I.O. Kulik, Zh. Eksp. Teor. Fiz.57, 1745 (1969) [Sov.
for b/a = 0.8 and ¢/a, d/a in the range0 to =0.3 Phys. JETR30, 944 (1970)]; J. Bardeen and J. L. Johnson,
(for L,, and AL same values as above). However the Phys. Rev. Bs, 72 (1972); C. W.J. Beenakker, Phys. Rev.
magnitude of the jump is still not exactly reproduced, for Lett. 67, 3836 (1991). ,

which a more elaborate theoretical description is needed[?] A F- Andreev, Zh. Eksp. Teor. Fi2i6, 1823 (1964) [Sov.
Note also that, in spite of the high transparency of the Phys. JETPL9, 1228 (1964)].

. . . ; [3] See, for instance, E.L. WolfPrinciples of Electron
Nb/2DEG interfaces, processes involving three AR’s are Tunneling SpectroscopfOxford University Press, New
not the most relevant.

! o ] York, 1985).
Finally, our parametrization oBR;.(E,¢) predicts  [4] A.F. Morpurgo and F. Beltram, Phys. Rev. B, 1325

that the oscillation amplitude measured at 1.6 K is ap-

proximately 3 times larger than at 4.2 K (8§, = 0) not
far from the experimental value, 2.6.

6, L221 (1994).
[5] P.H.C. Magneeet al., Appl. Phys. Lett67, 3569 (1995).

(1994); see also C.J. Lambert and A. Martin, J. Phys. C.

We now discuss the significance of the experimental re-[6] A.F. Morpurgoet al., Appl. Phys. Lett.70, 1435 (1997).
sults in relation to the problem of Andreev levels. Well [7] A.F. Morpurgoet al.,Phys. Rev. Lett78, 2636 (1997).
defined bound states can be formed betw&érand S2, [8] The_voltag_e corresponds to t.he electron energy, since
only if the confinement due t§1 is strong enough. In that ;Z%;?:A?i:'li lsocr?gtteir't?]%riet?]%ttﬁgnt:; ﬁ;g{ehlo pm, 1S
case the levels induce resonances [16] in the AR probabilg) 'z "gjonder, M. Tinkham, and T.M. Klapwiik, Phys.
ity as a function of£ and ¢. However, if the confine- Rev. B25, 4515 (1982); C.W. J. Beenakker, Phys. Rev. B
ment due taS1 is not strong enough, multiple reflections 46, 12841 (1992).
responsible for the full formation of the bound states have §0] A minimum in the oscillation amplitude and & phase
low probability to occur and the resonances are broadened  shift implicit in the data of Pothieet al.[11] has been
into an oscillatory dependence of the AR probability on accounted for by Volkov and Zaitsev [Phys. Rev.5B,

E and ¢, which is accounted for by the lowest order pro- 9267 (1996)]. Their theory describes a system in which
cesses only. These are the processes responsible for the the transparency of the normal/superconductor interfaces
behavior of our samples: that is why Eq. (2), valid in the |s_Iow and transport in the normal conductor is diffusive.
regime of low coupling t& 1, reproduces the experimental It is therefore not applicable to our samples.
observations. H. P_othler et al, I_Dr_lys. Rev. Lett.73, 2488 (1994);

In conclusion we like to demonstrate that, in spite ':t' Sm}gi‘ga? f tsezléslb(lféggi.6;)26(1325)%/&;&I;(latriaglaov
of the ngmber of quesd40) present in_the channel, 76, 4592 (i9§6);77, 4954 (1’99'6)_' R
we can interpret qualitatively our results in terms of the[12] The sjtuation is similar to the semiclassical treatment
idealized 1D level diagram of Fig. 1 [the energy scale in' "~ of weak localization: in that case it is convenient to
the diagram is determined &, the Andreev level energy evaluate quantum interference at impurity sites. [See, e.g.,
spacing, which for the idealized (lineak) ¢) relation, is G. Bergmann, Phys. Reft07, 1 (1984)].

E, = 2wEr/krL = 1.5 mV]. As we sweep the phase [13] For the same reason we consider separately trajectories
¢ at fixed electron energye, an energy levelE(¢) hitting S1 on the opposite side of the 2DEG channel.
decreases the conductance most effectively whigh) =  [14] As stated in the text Eq. (2) holds £ < A and in the

E (recall that Andreev levels produce conductance dips).  Presence of highly transpare§t2DEG interfaces. In that
For every value ofE two main contributions to the case we can neglect the energy dependence of the modulus
conductance oscillations are therefore presg) = E of r in (1) and approximate the energy dependent part of

. . ) v the phase acquired upon AR witharccosE/A).
has two SOlunon_S] Whose r_elatlve phase it £ o 0 (for [15] Interference of trajectories (2) with (3) and of (5) with (6)
E = 0 the solutions coincide ap = ), and increases

] o give a contribution of higher order in the coupling §.
with E. At E,/4 = 0.38 mV the two contributions are [16] In the present experimental configuration a finite proba-
7 out of phase, and the oscillation magnitude shows bility of normal scattering at the NlRDEG interfaces is

the observed minimum [Fig. 3(a)]. A;/2 = 0.75 meV required to observe the resonances.

(11]
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