
VOLUME 79, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 17 NOVEMBER 1997

4002
Localization and Metal-Insulator Transition in Multilayer Quantum Hall Structures
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We study the phase structure and Hall conductance quantization in weakly coupled multilayer electron
systems in the integer quantum Hall regime. We derive an effective field theory and perform a two-
loop renormalization group calculation. It is shown that (i) finite interlayer tunnelings (however small)
give rise to successive metallic and insulating phases and metal-insulator transitions in the unitary
universality class; (ii) the Hall conductivity is not renormalized in the metallic phases in the 3D regime;
and (iii) the Hall conductances are quantized in the insulating phases. In the bulk quantum Hall phases,
the effective field theory describes the transport on the surface. [S0031-9007(97)04575-4]

PACS numbers: 73.40.Hm, 71.30.+h, 72.15.Rn, 73.50.Jt
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The quantum Hall effect (QHE) in a two-dimensiona
electron gas (2DEG) has led to many new physical co
cepts and principles [1]. The main part of the ph
nomenology is that, in strong magnetic fields, a 2DE
exhibits continuous zero-temperature phase transitions
tween successive quantum Hall states of vanishing d
sipation and quantized Hall resistances. It is interesti
to ask what happens to the physics associated with
QHE in dimensions greater than two [2]. Experimentall
two classes of quasi-three-dimensional materials ha
been found to show integer-quantized Hall plateaus: m
tilayer quantum wells formed by graded GaAsyAlGaAs
heterostructures [3,4] and molecular crystalssTMTSFd2X
sX ­ PF6, ClO4d [5]. In this paper, we concentrate on
the former, which is a natural generalization of the QH
above two dimensions. Thus, the changes in the ph
structure and the properties of the phase transitions
quantum Hall layers coupled by weak interlayer tunne
ings are the concerns of the present paper. Moreover,
focus on the integer quantum Hall regime and ignore t
effects of electron-electron interactions [6].

We shall follow the approach of Chalker and Dohme
who generalized the network model [7] for the integ
QHE (IQHE) in a 2DEG to layers of networks couple
by interlayer tunnelings [8]. They performed numer
cal transfer matrix calculations and demonstrated the
istence of three phases: insulator, metal, and quanti
Hall conductor, and extended surface states in the qu
tized Hall state. In this paper, we provide an analytic
treatment using the effective field theory representati
of the network model [9–11]. We first show that th
long wavelength transport properties are governed by
3D anisotropic unitary nonlinears model (NLsM). The
anisotropic couplings are the dissipative conductivitie
whereas the Hall conductivity enters as a coupling to t
layered sum of the 2D topological term. The renorma
ization group (RG) is then used to study the crossov
between two and three dimensions. In the 3D regim
the RG flow equations for the conductances are calcula
to two-loop order to determine the phase structure in t
plane spanned by the Fermi energy and the interlayer t
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l
n-

e-
G
be-
is-
ng
the
y,
ve
ul-

E
ase

in
l-
we
he

n
er
d
i-
ex-
zed
an-
al
on
e

a

s,
he
l-
er
e,
ted
he
un-

neling. The results show that a finite interlayer couplin
(however weak) leads to metallic and insulating phas
and metal-insulator transitions in the unitary universalit
class. Furthermore, the Hall conductivity is found to b
unrenormalized by weak localization in the 3D regime
We show that the Hall conductance is quantized in the i
sulating phases provided that the above results hold to
orders in the RG.

Following Ref. [10], the Hamiltonian forN layered
networks in thesx, yd plane coupled in thez direction by
interlayer tunnelingt' is

H0 ­
X
x,z

s21dx
Z

dy cysx, y, zd fi≠y 2 Vx,y,zgcsx, y, zd

2
X
x,z

Z
dy txfcysx 1 1, y, zdcsx, y, zd 1 H.c.g

2
X
x,z

Z
dy t'fcysx, y, z 1 1dcsx, y, zd 1 H.c.g .

(1)

Here, cy creates an electron traversing the edges of t
Hall droplets as modeled by the links of the network
tx ­ tf1 2 ds21dxg, where d measures the distance of
the Fermi energysEFd relative to the center of the
Landau level sEcd, represents the quantum tunneling
amplitudes at the saddle points of the random potenti
i.e., at the nodes of the network.V is a local random
variable that generates the link Aharonov-Bohm phas
kVx,y,zVx0,y0,z0 l ­ Udx,x0dz,z0dsy 2 y0d.

For t' ­ 0, Eq. (1) describesN decoupled 2D net-
works; each undergoes a quantum Hall transition asd is
varied. In this case, quench averaging overV and regard-
ing y as the Euclidean timet, it has been shown that the
original network model corresponds to a half filled 1D
U(2n) Hubbard model in the limitn ! 0 [10]. The 2D
quantum Hall transition is then equivalent to the dimer
zation transition of the Hubbard chain [10]. Generalizin
to t' fi 0, we obtain the generating functionalZ ­R

D fc, cg exph
R

dt
P

xzfihSpcc 2 H0sc , cdgj in
the form of a s2 1 1d-dimensional Euclidean action
if we let cp ! cpsicpd and cp ! 2icpscpd for
© 1997 The American Physical Society
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S ­
Z

dt

24 X
x,z,a

ca ≠tca 1 Hjcyscd!cscd

35 . (2)

Here, h is a positive infinitesimal,a ­ sa, pd are the
replica indexa ­ 1, . . . , n and energy indexp ­ 1s2d
for the advanced (retarded) channels, andSp ; sgnspd.
The resulting HamiltonianH in Eq. (2) corresponds to an
interacting quantum theory in two spatial dimensions:

H ­ 2
X
x,z

txfcy
a sx 1 1, zdcasx, zd 1 H.c.g

1
U
2

X
x,z

fcy
a sx, zdcasx, zdg2

1
X
x,z

it's21dxfcy
a sx, z 1 1dcasx, zd 1 H.c.g

2 h
X
x,z

s21dxSpcy
a ca , (3)

where sums over repeated indices are implied. Note t
Eq. (3) is not the usual quasi-1D U(2n) Hubbard model
for the form of the interchain couplings.

We now derive the effective low energy, long wave
length theory. The partition function for Eq. (3) can b
written asZ ­

R
D fc, cgD fDg exps2Sd:

S ­
Z

dt
X
x,z

2hs21dxSpcaca 1 S0 1 SI 1 S' ,

S0 ­
Z

dt
X
x,z

hca ≠tca 2 txfcasx 1 1dcasxd 1 c.c.gj ,

SI ­
Z

dt
X
x,z

"
D2

2U
2

µ
ca Dabcb 2

1
2

Dabdab

∂#
,

S' ­
Z

dt
X
x,z

it's21dxfcasz 1 1dcaszd 1 c.c.g , (4)

where Dsx, t, zd is a matrix Hubbard-Stratonovich field.
As usual, at a mean-field levelD

0
ab ­ Ukcbca 2 daby2l,

which is easily solved to giveD0
absxd ­ D0s21dxLab

with Lab ­ Spdab. The massless fluctuations beyond th
mean-field theory can be represented by slowly varyi
unitary rotations of the “staggered magnetization”D

0
ab .

Ignoring the massive modes associated with the amplitu
fluctuations, we write

Dabsx, t, zd ­ uacsx, t, zdD0
cdsxduy

dbsx, t, zd ,

where u [ SUs2nd. In terms of the leftscLd and right
scRd moving fermion fields defined in the continuum
limit around the Fermi points in the strongly coupledx
direction, the action in Eq. (4) can be written as

S0 ­ TrscR≠2cR 1 cL≠1cLd 2 2idt TrscRcL 2 cLcRd ,

SI ­ TrsD2
0y2Ud 2 D0 TrscRuLuycL 1 cLuLuycRd ,

S' ­ it' TrfcRszdcLsz 1 1d 1 cLszdcRsz 1 1d 2 c.c.g .

Here, Tr stands for the trace over space-time as well as
replica and energy indices,≠6 ­ ≠t 6 iyF≠x with yF

the Fermi velocity. Next, we perform a local gauge tran
hat

-
e

e
ng

de

the

s-

formation, c
0
L,R ­ uycL,R , and define the pure SU(2n)

gauge fieldsA6 ; 2iuy≠6u ­ At 6 iyFAx. The action
becomes (dropping the primes)

S ­ TrfcRs≠2 1 iA2dcR 1 cLs≠1 1 iA1dcLg

1 iD0 TrfcReiLspy212DudcL 2 cLe2iLspy212DudcR g

1 TrsD2
0y2Ud 1 S'scL,R ! uycL,Rd , (5)

whereD0 ­ sD2
0 1 4d2t2d1y2 and2Du ­ tan21s2dtyD0d.

The final step is to integrate out the fermion fields. I
order to do so, we need to bring the term proportion
to D0 in Eq. (5) to the standard mass term for Dira
fermions iD0 TrfcRcL 2 cLcRg. This can be done by
the following chiral gauge transformation:

cR,sLd,a ! es2diLaaspy41DudcR,sLd,a . (6)

As a result, we encounter the well-known chiral anoma
[12], which arises from the Jacobian associated with t
transformation (6) and leads to

SchiralsAd ­
i
p

µ
p

4
1 Du

∂
TremnL≠mAn , (7)

where m, n ­ x, t, in the transformed action. Now it
is straightforward to integrate out the massive ferm
ons and obtain the effective action in terms of th
gauge field. Using the equalities TremnL≠mAn ­
siy4d TremnQ≠mQ≠nQ and TrfAm, Lg2 ­ Tr≠mQ≠mQ,
whereQ ; uLuy [ Us2ndyUsnd 3 Usnd, we obtain,

Seff ­
s0

xx

8
Tr≠mQ≠mQ 1

s0
xy

8
TremnQ≠mQ≠nQ

2
s0

zz

4l2
TrQsz 1 1dQszd 2 h TrLQ . (8)

Here, we have rescaled the coordinates bylx ! x,
lyFt ! t, and z ! z. The coupling constants
s

0
a,b have the meaning of conductivities defined o

the length scale cutoffl. For the present network
model, s0

xx ­ sD0y
p

p D0d2, s0
xy ­

1
2 1 2Duyp , and

s0
zz ­ st'D0y

p
p yFD0d2 for small t'yyF and d, and

h ­ hD0yyFUl2. The coupled layers in the thermody
namic limit are thus described by the zero-temperatu
properties of the aboves2 1 1dD quantum NLsM.

For t' ­ 0, s0
zz ­ 0. Equation (8) reduces toN in-

dependent 2D NLsMs discovered by Pruisken and co
workers for the single layer IQHE [13]. In this case, th
term that couples tos0

xy becomes a topological quantity
which produces the critical fixed points atssxx , sxyd ­
sconst, i 1

1
2 d for the plateau transitions, and the stab

fixed points atssxx , sxyd ­ s0, id for the quantum Hall
states in units ofe2yh. For the network model, thei ­
0 ! 1 transition happens atd ­ 0, wheres0

xy ­
1
2 . For

s0
xy fi

1
2 , the conductancesssxx , sxyd flow to s0, 1d for

d . 0 ands0, 0d for d , 0. At the transition, the dissipa-
tive conductance has a critical valuesc

xx . s0.58 6 0.05d
[14,15]. Notice, however, for finites0

zz ø s0
xx , the sys-

tem is highly anisotropic but three dimensional. Thes0
xy

term, having two derivatives, no longer contains nontrivi
4003
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topological contributions from slowly varying field con
figurations on the scale of the interlayer lattice spacing.

We now present a RG study of Eq. (8). For wea
interlayer tunnelings, we follow the dimensional crossov
analysis used in theO(3) NLsM description of weakly
coupled quantum spin chains [16]. The basic idea is th
since R ; s0

zzys0
xx ø 1, it is possible to consider the

renormalization of the coupling constants in Eq. (8)
the 2D sectorsx, td independently until the renormalized
couplings become comparable in all directions at a larg
length scalel0. The 3D isotropic RG is switched on
beyondl0. Since the scaling dimension of theQ field is
zero in the replica limit, this crossover takes place wh
Rs0

xxyl2 ø s2d
xx sl0dyl02. One then takes the continuum

limit in the z direction by absorbing the cutoffl022

into defining the derivatives and obtains an isotropic 3
NLsM action (plus the symmetry breaking term),

S0
eff ­

sxxsl0d
8

Tr≠rQ≠rQ

1
sxysl0d

8
TremnQ≠mQ≠nQ , (9)

with r ­ x, t, z andsabsl0d ­ s
2d
absl0dyl0, the conduc-

tivities at cutoffl0. The important point is that the latte
are the bare coupling constants for the subsequent 3D
[16]. Whether the system is in the insulating or meta
lic phase is thus determined by the renormalized cond
tances at the end of the 2D RG.

Since thesxy term in the continuum action Eq. (9)
is no longer topological, we performed perturbative R
calculations to two-loop order to determine the flow o
the conductance parameters. This approach is valid in
metallic phase, where the bare conductivity is large f
a large number of layers. For generaln, we found the
recursion relations for the conductivities under RG sca
transformation,l0 ! bl0,

s0
xx ­ sxx

"
1 2 2n

1
sxx

Id 1 2sn2 1 1d
e

d
1

s2
xx

I2
d

#
, (10)

s0
xy ­ sxy

"
1 2 2n

e

d
1

sxx
Id 2 8n2 e

d2

1
s2

xx
I2

d

#
, (11)

where Id ­
R1yl0

1ybl0 ddpys2pddf1ysp2 1 hdg and e ­
d 2 2. Notice that the corrections tos0

xy vanish in
the replica limit n ! 0, i.e., the Hall conductivity is
unrenormalized in the 3D regime. We will show
later that this property is crucial for the quantization o
the Hall conductance. This result should be contras
to the one obtained in weak magnetic fields, whe
the Hall conductivity is found to renormalize in the
same way as the dissipative conductivity [17]. Defin
ing the dimensionless conductancesgmn ­ s0

mnl0ebe

and b ­ el , Eq. (10) leads to the RG equation i
the limit n ! 0, dgxxydl ­ egxx 2 s4ydK2

ddg21
xx , and

Kd ­ 2d21pdy2Gs d
2 d [18]. For d ­ 3, there is a non-

trivial critical fixed point atgc ­
p

4ydK2
de ­ 1y

p
3 p2.

It separates a metallic phase withgxxsl0dygc . 1 form
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an insulating phase, wheregxxsl0dygc , 1. The dis-
sipative conductivity vanishes at the metal-insulato
transition whereas the Hall conductivity remains clos
to its bare value at the beginning of the 3D RG
The Hall conductance follows the simple Ohm’s law
dgxyydl ­ sd 2 2dgxy.

We now discuss the phase structure assuming the carr
density in each layer to be nominally the same. (i) Fo
d ­ 0, s0

xy ­
1
2 . The individual layers are at the critical

point for the 2D plateau transition. During the initial 2D
RG, s2d

xy does not renormalize ands2d
xx flows towards

its finite critical value, which is of order one. Thus,
the crossover lengthl0 ø ly

p
R . For small interlayer

tunnelingR ø 1, l0 ¿ l such thats2d
xx sl0d flows towards

the fixed point values2d
xx s`d ­ sc

xx . 0.55 [14,15]. The
latter is greater than the 3D critical conductancegc derived
above. Thus, we conclude that when the Fermi energy
located at the critical point for the 2D plateau transition, a
arbitrarily small interlayer tunneling leads to a 3D metallic
state. A unique feature of the metallic phase is that th
Hall conductivity is unrenormalized and remains close t
sxysl0d down to low temperatures. (ii) Ford fi 0, the 2D
RG scales towards the insulatoryquantum Hall fixed points,
i.e., s2d

xx ! 0, whereass2d
xy ! 0 sd , 0d and 1sd . 0d

around the first plateau transition. The metallic phase
stable as long ass2d

xx sl0d . gc. Clearly, with decreasing
(increasing)t' sjdjd, at a criticaltc

' sdcd, wheres2d
xx sl0d ­

gc, a metal-insulator transition takes place. Fort' , tc
'

(or jdj . dc), the system is in the 3D insulating phase
To determine the phase boundary, notice that ford fi 0,
a finite localization length develops in the 2D sector,j2d ~

jdj2n2d with n2d . 7
3 [7,10,15]. Thus, the 2D RG flow

stops atj2d beyond which a gap would develop in the 2D
sector. Setting the crossover lengthl0 ­ j2d, one finds
that the critical anisotropyRc , slyj2dd2, leading to the
phase boundarytc

' ~ tjdjn2d . The width of the metallic
phase is then given byWd ~ st'ytd1yn2d , consistent with
the numerical results of Chalker and Dohmen [8]. (iii)
From the above discussion, it is clear that the meta
insulator transition is in the 3D unitary universality class
of the Anderson transition since the Hall conductivity
appears to be a 3D RG invariant. The two-loop RG
equations imply that the 3D localization length diverge
as j3d ~ jgxx 2 gcj2n3d , where n3d ­

1
2 . Simulations

of various unitary models given3d ­ 1.35 6 0.15 [19],
which indeed agrees with the numerical value1.45 6 0.25
obtained directly from the layered network model [8].

We next discuss the quantization of the Hall con
ductance in the insulating phases. In this case, du
ing the first stage of the RG, the Hall conductances2d

xy
in Eq. (9) flows towards the 2D quantized values, i.e
s2d

xy sl0d ! ie2yh, for large anisotropysR ø 1d such that
l0 ! `. The quantization of the 3D Hall conductance is
then possible provided thatsxy in Eq. (9) does not renor-
malize in the 3D regime. Restoring the discrete sum i
thez direction, i.e.,s1yl0d

R
dz !

P
z, this term becomes

Sxy ­ Ns2d
xy sl0d

R
dx dt tremnQ ≠mQ ≠nQ, leading to the
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Hall conductance quantizationsxy ! iNe2yh. The 3D
quantum Hall states are, therefore, characterized by
resistance behaviorsrxx , ryy ! 0, rzz ! `, and rxy ­
siNd21hye2. Because of the intervening metallic phase
the transitions between the quantized Hall plateaus co
prise an insulator-metal and a subsequent metal-insula
transition, and have a finite width at low tempera
tures. These results are consistent with the expe
mental observations of the IQHE in the 30-layer [3] an
the more recent 200-layer GaAsyAlGaAs structures [4].

In contrast to 2D, where the electronic states are loc
ized at all energies except a critical set of zero measure
is the existence of metal-insulator transitions and the a
sence of localization corrections to the Hall conductivit
that give rise to the quantization of the Hall conductan
in weakly coupled layered systems. This is supported
our two-loop RG results in Eqs. (10) and (11). Althoug
these results do not form a proof to all orders in the pe
turbative RG, we believe that the evidence is sufficient
strong.

We now briefly discuss the possible topological effec
not included in the present analysis. The discrete (in t
z direction) action in Eq. (8) allows contributions from
topologically stable, point-singular field configurations
i.e., the hedgehogs at which the instanton number chan
abruptly from one layer to the next [20]. These contr
butions could, in principle, enter during the first stage
the RG and modify the bare parameters of the continuu
action in Eq. (9). The precise effects of the hedgeho
in the replica limit is not understood at the present tim
Nevertheless, we do not expect them to change the m
results discussed above.

Finally, we consider the surface states in the quantu
Hall phases where the bulk localization length is ve
short. The edge state supported by each layer couples
gether and forms an interesting 2D surface system dec
pled from the bulk [8,21]. In the presence of boundarie
in addition to the bulksxy term, the action in Eq. (7)
leads to an additional contributionsisxyy2d

H
drm trLAm,

where the integral is over the boundary of the samp
at sx ­ 0, Ld while keeping the periodic boundary con
dition in t. It is easy to show that this surface term
can be written in terms ofQsu, t, zd, a smooth homo-
topy betweenQsu ­ 0d ­ Qsx ­ 0d and Qsu ­ 1d ­
Qsx ­ Ld. The action on the surface is then

Ssf ­
sxy

4

Z 1

0
du TrQ ≠uQ ≠tQ 1

s0
zz

8
Tr≠zQ ≠zQ . (12)

This action is identical to the coherent state path integ
action of an SU(2n) ferromagnetic Heisenberg spin chai
with spinS ­ sxyy2 and exchangeJ ­ 2s0

zzys2
xy. The

first term in Eq. (12) corresponds to the Berry phas
term. The spin quantization in this case results fro
the Hall conductance quantization in the quantum Ha
state. The equations of motion ofSsf give the exactly
known one-magnon dispersion valid for alln, i.e., iqt ­
jJjSq2

z . By the analogy between the spin-spin correl
tion function and the edge electron two-particle Green
the
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function [10], it can be shown that this mode corre
sponds to the anisotropic diffusive mode on the sur
face,ivr ­ 2iqt 1 ss0

zzy2sxydq2
z . Following Wegner

[22], the latter leads to the conductivities on the sur
face: ssf

zz ­ s0
zzy2sxy and ssf

ttsvd ~ iyv. The present
approach to the chiral surface state is complimentary
those formulated using supersymmetric fields [23].
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