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Localization and Metal-Insulator Transition in Multilayer Quantum Hall Structures
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We study the phase structure and Hall conductance quantization in weakly coupled multilayer electron
systems in the integer quantum Hall regime. We derive an effective field theory and perform a two-
loop renormalization group calculation. It is shown that (i) finite interlayer tunnelings (however small)
give rise to successive metallic and insulating phases and metal-insulator transitions in the unitary
universality class; (ii) the Hall conductivity is not renormalized in the metallic phases in the 3D regime;
and (i) the Hall conductances are quantized in the insulating phases. In the bulk quantum Hall phases,
the effective field theory describes the transport on the surface. [S0031-9007(97)04575-4]

PACS numbers: 73.40.Hm, 71.30.+h, 72.15.Rn, 73.50.Jt

The quantum Hall effect (QHE) in a two-dimensional neling. The results show that a finite interlayer coupling
electron gas (2DEG) has led to many new physical conthowever weak) leads to metallic and insulating phases
cepts and principles [1]. The main part of the phe-and metal-insulator transitions in the unitary universality
nomenology is that, in strong magnetic fields, a 2DEGclass. Furthermore, the Hall conductivity is found to be
exhibits continuous zero-temperature phase transitions benrenormalized by weak localization in the 3D regime.
tween successive quantum Hall states of vanishing disA/e show that the Hall conductance is quantized in the in-
sipation and quantized Hall resistances. It is interestingulating phases provided that the above results hold to all
to ask what happens to the physics associated with therders in the RG.

QHE in dimensions greater than two [2]. Experimentally, Following Ref. [10], the Hamiltonian folN layered
two classes of quasi-three-dimensional materials haveetworks in the(x, y) plane coupled in the direction by
been found to show integer-quantized Hall plateaus: mulinterlayer tunneling , is

tilayer quantum wells formed by graded GaA$éGaAs

heterostructures [3,4] and molecular crystaiMTSF), X H, =Z(—1))‘ [ dy ¢t (x,y,z2) [idy — Viy (x,y,2)

(X = PR, ClOy4) [5]. In this paper, we concentrate on X2

the former, which is a natural generalization of the QHE B +

above two dimensions. Thus, the changes in the phase ;] dy tfyl(x + Ly, 9(x.y.2) + Hel
structure and the properties of the phase transitions in ’

guantum Hall layers coupled by weak interlayer tunnel- - Z] dyt [y, v,z + Dy(x,y,z) + Hel.
ings are the concerns of the present paper. Moreover, we %2
: i : 1)
focus on the integer quantum Hall regime and ignore the
effects of electron-electron interactions [6]. Here, ¢ creates an electron traversing the edges of the

We shall follow the approach of Chalker and DohmenHall droplets as modeled by the links of the network.
who generalized the network model [7] for the integerz, = t[1 — 8(—1)*], where § measures the distance of
QHE (IQHE) in a 2DEG to layers of networks coupled the Fermi energy(Er) relative to the center of the
by interlayer tunnelings [8]. They performed numeri- Landau level (E.), represents the quantum tunneling
cal transfer matrix calculations and demonstrated the examplitudes at the saddle points of the random potential,
istence of three phases: insulator, metal, and quantizdce., at the nodes of the networkV is a local random
Hall conductor, and extended surface states in the quawariable that generates the link Aharonov-Bohm phases
tized Hall state. In this paper, we provide an analyticakVy . Vi y ) = U8y 8, ,8(y — y').
treatment using the effective field theory representation For ¢, = 0, Eq. (1) describedN decoupled 2D net-
of the network model [9-11]. We first show that the works; each undergoes a quantum Hall transitiord as
long wavelength transport properties are governed by saried. In this case, quench averaging ovaand regard-
3D anisotropic unitary nonlinear model (NLoM). The ingy as the Euclidean time, it has been shown that the
anisotropic couplings are the dissipative conductivitiespriginal network model corresponds to a half filled 1D
whereas the Hall conductivity enters as a coupling to théJ(2n) Hubbard model in the limiz — 0 [10]. The 2D
layered sum of the 2D topological term. The renormal-quantum Hall transition is then equivalent to the dimeri-
ization group (RG) is then used to study the crossoveration transition of the Hubbard chain [10]. Generalizing
between two and three dimensions. In the 3D regimeto r;, # 0, we obtain the generating function&d =
the RG flow equations for the conductances are calculated D[, ¢lexpl [ d7 > .. [inS,¢y — Ho(¥, )] in
to two-loop order to determine the phase structure in théhe form of a (2 + 1)-dimensional Euclidean action
plane spanned by the Fermi energy and the interlayer turif we let ¢, — 4, (is,) and ¢, — —i,(¢,) for
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even (oddX [10]:
S = ] dr| > Y, d:tha + Hlyiig-)

} - @
X,Z,a

Here, n is a positive infinitesimala = (a, p) are the
replica indexa = 1,...,n and energy indeyp = +(—)
for the advanced (retarded) channels, @pd= sgr(p).
The resulting Hamiltoniai in Eqg. (2) corresponds to an

interacting quantum theory in two spatial dimensions:

H=-> [yl + 1L, ¢a(x,2) + Hel

+ L ST e e, 2P
+ > it (D gt vz + Dipa(x,2) + Hel

— > (=S, 3)

where sums over repeated indices are implied. Note that

Eqg. (3) is not the usual quasi-1D W{RHubbard model
for the form of the interchain couplings.

We now derive the effective low energy, long wave-
length theory. The partition function for Eq. (3) can be
written asZ = [ D[y, y1D[A]exp—S):

S = ] dr Y = (=1 Sydha + So + S + S,

X,z

So = [ dr S, 0ths — 0Tyl + Dalx) + col),

’ 2
Sy ZdeZ[A
X,z

— 1
U <¢a Awthy — EAab5ab>:|,
$.= [ ar S W + D) + ol @
X,Z
where A(x, 7, z) is a matrix Hubbard-Stratonovich field.
As usual, at a mean-field leval, = U, ba — Sap/2),
which is easily solved to give\?, (x) = Ag(—1)* Ay,

formation, ¥; = u' x, and define the pure SUER
gauge fieldst- = —iuto.u = A, + ivpA,. The action
becomes (dropping the primes)
S = Tr{yr(0- + iA)pr + (04 + iAL)p;]

+ iA’Tr[JRe"A(”/”ZM)sz _ JLe_iA(”/HZM)lﬂR]

+ Tr(A2/2U) + S, (Yrr — ulgrr), (5)

whereA’ = (A3 + 482¢2)1/2 and2A 60 = tan 1 (261/A¢).

The final step is to integrate out the fermion fields. In
order to do so, we need to bring the term proportional
to A’ in Eq. (5) to the standard mass term for Dirac

fermions iA' Tr{yrpr — ¢, ). This can be done by
the following chiral gauge transformation:
YR(L)a — 6(_)iA““(7T/4+M)iﬁR,(L),a . (6)

As a result, we encounter the well-known chiral anomaly
[12], which arises from the Jacobian associated with the
transformation (6) and leads to

Schiral(A) = %(% + A0>TFE#VA8MAV, (7)

where u, v = x, 7, in the transformed action. Now it
is straightforward to integrate out the massive fermi-
ons and obtain the effective action in terms of the
gauge field. Using the equalities ey, Ad,A, =
(i/4)Tre,,00,00,0 and TfA,, AP = Tr9,00,0,
whereQ = uAu’ € U@2n)/U(n) X U(n), we obtain,

0 0

O-xx O-X)’
Seft = ?TI’BMQ(‘)MQ + ?TFE#,,Q(‘)MQ("),,Q
0
~ 5TOG + DQE) ~ ATIAQ.  (8)

Here, we have rescaled the coordinates by — x,
AvpT — 7, and z —z. The coupling constants
003 have the meaning of conductivities defined on
the length scale cutoffA. For the present network
model, ¢¥, = (Ao/y7A'?, 0, = 5 + 246/, and

ol = (t,0o//mvpA')? for small 7, /vp and §, and

with A,y = S,84. The massless fluctuations beyond the? = mAo/vrUA*. The coupled layers in the thermody-

mean-field theory can be represented by slowly varying'

unitary rotations of the “staggered magnetizatiah®, .

Ignoring the massive modes associated with the amplitude

fluctuations, we write
A6, 7,2) = ttae(x, 7, 2) A (Ouly (x, 7,2),

whereu € SU(2n). In terms of the left(y;) and right
(g) moving fermion fields defined in the continuum
limit around the Fermi points in the strongly couplgd
direction, the action in Eq. (4) can be written as

So = Tr(rd_pg + bpo+br) — 2i8t Tr(bphr — Py hr)
S] Tr(A(%/2U) — AoTr(ERMAMTlﬂL + ELMAMTlﬂR),
Sy =ity Trlr(@)br(z + 1) + ¢ ()yr(z + 1) — c.c].

Here, Tr stands for the trace over space-time as well as tH&4,15]. Notice, however, for finiter). < o

replica and energy indice$+ = 9, * ivgd, With vg

amic limit are thus described by the zero-temperature
properties of the abov@ + 1)D quantum Nlg M.

Fort, =0, o). = 0. Equation (8) reduces til in-
dependent 2D N&Ms discovered by Pruisken and co-
workers for the single layer IQHE [13]. In this case, the
term that couples t@r)?y becomes a topological quantity
which produces the critical fixed points @&, o,y) =
(consti + %) for the plateau transitions, and the stable
fixed points at(o., ox,) = (0,i) for the quantum Hall
states in units ok?/h. For the network model, the =

0 — 1 transition happens & = 0, Wherea;’y = 5. For

02), # % the conductance§&r,,, oy,) flow to (0,1) for
8 > 0and(0,0) for § < 0. At the transition, the dissipa-
tive conductance has a critical valaé, = (0.58 = 0.05)
0, the sys-

xXx?

tem is highly anisotropic but three dimensional. Tth%

the Fermi velocity. Next, we perform a local gauge transterm, having two derivatives, no longer contains nontrivial
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topological contributions from slowly varying field con- an insulating phase, wherg,,(A')/g. < 1. The dis-
figurations on the scale of the interlayer lattice spacing. sipative conductivity vanishes at the metal-insulator
We now present a RG study of Eq. (8). For weaktransition whereas the Hall conductivity remains close
interlayer tunnelings, we follow the dimensional crossovetto its bare value at the beginning of the 3D RG.
analysis used in th®©(3) NLoM description of weakly The Hall conductance follows the simple Ohm’'s law
coupled quantum spin chains [16]. The basic idea is that/g.,/dl = (d — 2)g.y.
since R = 02 /0? <« 1, it is possible to consider the  We now discuss the phase structure assuming the carrier
renormalization of the coupling constants in Eq. (8) indensity in each layer to be nominally the same. (i) For
the 2D sectol(x, 7) independently until the renormalized 6 = 0, 02), = % The individual layers are at the critical
couplings become comparable in all directions at a largepoint for the 2D plateau transition. During the initial 2D
length scaleA’. The 3D isotropic RG is switched on RG, o}¢ does not renormalize and;¢ flows towards
beyond)’. Since the scaling dimension of tiggfield is its finite critical value, which is of order one. Thus,
zero in the replica limit, this crossover takes place wherthe crossover lengti/ = A/+/R. For small interlayer
Ra¥./A* = g24()\)/A'2. One then takes the continuum tunnelingR < 1, A’ > X such thatr2¢(\’) flows towards
limit in the z direction by absorbing the cutofA’"?  the fixed point valuer2?(«) = o¢_ = 0.55[14,15]. The
into defining the derivatives and obtains an isotropic 3Dlatter is greater than the 3D critical conductageelerived

NLoM action (plus the symmetry breaking term), above. Thus, we conclude that when the Fermi energy is
, (X)) located at the critical point for the 2D plateau transition, an
Setr = Tro,Q00,0 arbitrarily small interlayer tunneling leads to a 3D metallic
) state. A unique feature of the metallic phase is that the
4 T Tre,, 09,00,0, 9) Hall conductivity is unrenormalized and remains close to
8 oy (A") down to low temperatures. (i) F@ # 0, the 2D

with p = x, 7,z ando,g(A') = ai‘iﬁ()t’)/)\’, the conduc- RG scales towards the insulatguantum Hall fixed points,
tivities at cutoffA’. The important point is that the latter i.e., 03¢ — 0, whereaso}¢ — 0 (6 < 0) and 1(6 > 0)
are the bare coupling constants for the subsequent 3D R&ound the first plateau transition. The metallic phase is
[16]. Whether the system is in the insulating or metal-stable as long as2¢(A’) > g.. Clearly, with decreasing
lic phase is thus determined by the renormalized condudincreasingy, (|5]), at a critical:{ (8.), whereo2?(A') =
tances at the end of the 2D RG. g¢, a metal-insulator transition takes place. For< t9
Since theo,, term in the continuum action Eq. (9) (or [8] > &.), the system is in the 3D insulating phase.
is no longer topological, we performed perturbative RGTo determine the phase boundary, notice thatsfot 0,
calculations to two-loop order to determine the flow ofa finite localization I%ength develops in the 2D sectoy,
the conductance parameters. This approach is valid in thé | " with 25, = 5 [7,10,15]. Thus, the 2D RG flow
metallic phase, where the bare conductivity is large foistops at,, beyond which a gap would develop in the 2D
a large number of layers. For generalwe found the sector. Setting the crossover length= &,,4, one finds
recursion relations for the conductivities under RG scaldhat the critical anisotropR, ~ (A/&24)?, leading to the
transformation)\’ — b/, phase boundary{ <« ¢[5|**. The width of the metallic
phase is then given bWs = (r, /t)"/*x, consistent with

1 e 1 . .

O = a-xx|:1 —2n ol T 2(n* + 1) ] U—zlﬁ] (10)  the numerical results of Chalker and Dohmen [8]. (iii)
e o From the above discussion, it is clear that the metal-

. e 1 e 1, insulator transition is in the 3D unitary universality class
Toy = U”[l 2n d o la = 8n d? o I"}’ (1) of the Anderson transition since the Hall conductivity

appears to be a 3D RG invariant. The two-loop RG
equations imply that the 3D localization length diverges
as &g < g — gol7", where vyy = % Simulations
of various unitary models gives; = 1.35 = 0.15 [19],

where I, = [0y d'p/@m)[1/(p> + k)] and e =
d — 2. Notice that the corrections tmr,’w vanish in
the replica limitn — 0, i.e., the Hall conductivity is

unrenormalized in the 3D regime. We will show  hichindeed agrees with the numerical valués + 0.25
later that this property is crucial for the quantization of yntained directly from the layered network model [8].

the Hall conductance. This result should be contrasted \we next discuss the quantization of the Hall con-
to the one obtained in weak magnetic fields, wher&y,ciance in the insulating phases. In this case, dur-
the Hall conductivity is found to renormalize in the ing the first stage of the RG, the Hall conducta

same way as the dissipative conductivity [}7]'/ Defin-in"Eq. (9) flows towards the 2D quantized values, i.e.,
ing the dllmensmnless conductances, = o,,A"°b¢ o2d(X') — ie?/h, for large anisotropyR < 1) such that
and b = ¢', Eq.(10) leads to the RG_ equation N )"’ w. The quantization of the 3D Hall conductance is
the limit n — 0, ggxx/dl = €gx — (4/dKg)g,,', and  then possible provided that,, in Eq. (9) does not renor-
K, = 29717921 (5) [18]. Ford = 3, there is a non- malize in the 3D regime. Restoring the discrete sum in
trivial critical fixed point atg. = /4/dKje = 1//3 w2 thezdirection, i.e.(1/)\)) [dz — Y., this term becomes

It separates a metallic phase wigh.(A')/g. > 1 form Sy, = No2d(X) [dxdrtre,, 0 9,0 4,0, leading to the
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Hall conductance quantizatios,, — iNe?/h. The 3D  function [10], it can be shown that this mode corre-
quantum Hall states are, therefore, characterized by thgponds to the anisotropic diffusive mode on the sur-
resistance behaviorg,., p,y — 0, p,. — «, andp,, = face,iwp = —ig, + (¢2/20,)q>. Following Wegner
(iN)"'h/e?. Because of the intervening metallic phases[22], the latter leads to the conductivities on the sur-
the transitions between the quantized Hall plateaus conface: ¢3! = 00 /20, and o3l (w) = i/w. The present
prise an insulator-metal and a subsequent metal-insulatapproach to the chiral surface state is complimentary to
transition, and have a finite width at low tempera-those formulated using supersymmetric fields [23].
tures. These results are consistent with the experi- The author thanks J.S. Brooks, V. Dobrosavljevic,
mental observations of the IQHE in the 30-layer [3] andF. Gaitan, D.-H. Lee, and N. Read for many useful
the more recent 200-layer Gap&lGaAs structures [4]. discussions and Aspen Center for Physics for hospitality.
In contrast to 2D, where the electronic states are localThis work was supported in part by an award from
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