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Decay of a Quasiparticle in a Quantum Dot: The Role of Energy Resolution
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The disintegration of a quasiparticle in a quantum dot due to electron interaction is considere
It was predicted recently that above the energy´p ­ Dsgy ln gd1y2 each one particle peak in the
spectrum is split into many components. We show that the observed value of´p should depend
on the experimental resolutiond´. In the broad region of variation ofd´ the lng term should be
replaced by lnsDygd´d. We also argue against delocalization transition in the Fock space. Most likel
the number of satellite peaks grows continuously with energy. The predicted logarithmic distributio
of interpeak spacings may be used for experimental confirmation of the below-golden-rule dec
[S0031-9007(97)04576-6]
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Decay of single-electron excitations in quantum dots h
now become the subject of intensive experimental [1,
and theoretical [2–6] investigations. For a closed quantu
dot instead of real decay of a quasiparticle one shou
consider the disintegration of oned peak in the single-
particle spectral densityrs´d into a relatively dense bunch
of peaks. Each component of this bunch represents
one particle contribution to a complicated exact eigensta
The quasiparticle lifetime in a large Fermi system
usually associated with decay into two-particle–one-ho
configuration. The corresponding width may be foun
using the usual golden rule [2]. The energy´0 at which
this width becomes of the same order of magnitude w
three-particle level spacing gives us the natural thresh
for the decay of a quasiparticle. However, it was shown
the authors of Ref. [4] that due to the effective interactio
with five-particle, seven-particle, and so on excitation
[they call all states consisting ofn 1 1 particles andn
holes the (2n 1 1)th generation] the actual threshold fo
particle disintegration is much lower. The more detaile
investigation of statistics of states constituting the singl
particle excitation beloẃ 0 is the subject of this Letter.
The statistical approach to finite interacting Fermi system
has a long history [7–11]. However, the main attentio
was paid to the investigation of the fully developed chao
Here we are interested in the very beginning of the chao
behavior, then quasiparticles may be coupled with only
few many-particle states.

The convenient quantity, which describes the splittin
of a noninteracting quasiparticle peak into many peak
is the participation ratio (PR)P ­

P
i a

4
i . Here a

2
i

is the relative strength of an individual peak inrs´d
and the sum over a bunch of peaks corresponding
one-particle excitation is

P
a

2
i ­ 1. Physically the PR

is the inverted effective number of exact many-partic
eigenstates constituting the quasiparticle excitation. Fro
a technical point of view, the authors of Ref. [4] hav
summed up starting from the small excitation energi
the series of special perturbative contributions leading
quasiparticle disintegration and then estimated at whi
0031-9007y97y79(20)y3994(4)$10.00
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energy ´p this series blows up. In terms of PR this
procedure gives

P ­ 1 2
´2

gD2 ps´d ,

ps´d ­
X
n­0

pn

µ
´2

gD2 ln g

∂n

,
(1)

where D is the averaged single-particle level spacing
g ¿ 1 is the dimensionless conductance,´ ¿ D is the
energy of our quasiparticle, andpn are some numerical
coefficients. Each new term in the sum in Eq. (1) corre
sponds to taking into account more and more complicate
admixtures to quasiparticle. The first termsn ­ 0d de-
scribes the mixing with two particles and one hole, secon
to three particles and two holes, and so on.

At energies close tóp ­ Dsgy ln gd1y2 all terms of the
series in Eq. (1) become of the same order of magnitud
This means that at́ . ´p the PR cannot be close
to 1. However, the concrete way of the quasiparticl
disintegration with the growth of́ depends on the
behavior of the coefficientspn. In general, the three
possibilities for the asymptotics ofpn are

pn , n! , (2a)

pn , anng , (2b)

pn , 1yn! , (2c)

which corresponds to zero, finite, and infinite radii o
convergence of the series in Eq. (1), respectively. On
should naturally expect very different features of th
resumed result in these three cases. Mapping the probl
of quasiparticle lifetime onto that of particle hopping
on the Cayley tree led the authors of Refs. [4,5] to th
asymptotics (2b). However, as we will show below, the
actual asymptotics is close to Eq. (2c).

In general, in order to observe experimentally th
splitting described by Eq. (1) one should be able t
resolve all many-particle eigenstates, which means th
the experimental errors should be exponentially sma
d´ , D exps22p

p
´y6Dd [12]. Therefore, in this Letter
© 1997 The American Physical Society
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we find how the mechanism considered in [4] wil
manifest itself for more realisticd´. First of all, even
in order to see the decay of quasiparticle into thre
particle configurations one should have sufficiently goo
resolutiond´ , D3y´2 (any few peaks falling into the
segment,d´ are seen as one of joint strength

P
d´ a

2
i ).

The most interesting is the result forD5y´4 ø d´ ø

D3y´2. Physically this means that accuracy is much bett
than needed to resolve the three-particle levels, but n
enough to see the five-particle ones. In this case

P ­ 1 2
´2

gD2 bs´d , bs´d ­
X
n­0

bns´y´cd2n, (3)

where´c ­ D
p

gy lnsDygd´d. The transition from pure
single-particle to split spectrum now takes place at´ ,
´c. In particular ifd´ , D3y´2 one haś c , ´0 ­ D

p
g

in accordance with the golden rule prediction [2,4]. A
d´ , D5y´4 the expansion (1) formally is restored, bu
the coefficients of this new seriespp

n are much smaller
than those of Eq. (1). For better accuracyd´ ø D5y´4

the coefficientspp
n become a function of the resolution

pp
n ­ pp

nsd´d. Only at extremely smalld´ one has
pp

nsd´ , Dn11y´nd ø pn.
As shown in Refs. [3,4] the values of the matrix

elements (MEs) of two-particle interaction are Gaussia
distributed with the variance:

V 2 ­ D2yg2. (4)

Here the numerical factors,1 (see, e.g., Ref. [4]) are
included into the definition ofg ¿ 1. The estimate (4)
was done for the diffusive quantum dot. However, ou
approach may be valid for the ballistic dot also. The on
necessary condition is that the MEs of interaction shou
be random with the amplitudejV j ø D.

Consider first the mixing of particle with three-particle
states. The density of these states is

n3 ­ ´2y4D3. (5)

Here one factor1y2 comes from the integration over
the three energies at fixed́p1 1 ´p2 1 ´h ­ ´ and an-
other is added due to the Fermi statistics of two pro
duced particles. We are interested in energies´ ø D

p
g.

ThereforejV jn3 ø 1, which means that the majority of
one-particle states is almost nonperturbed. In this ca
the main contribution to the PR comes from the ver
small part of levels, for which the energy difference be
tween one- and three-particles excitations´s1d 2 ´s3d oc-
casionally turns out to be of the same order of magnitu
with the ME V . The relative fraction of such states is
small, jV jn3, but their PR differs by 100% fromP ­ 1.
Therefore, the averaged contribution of such events toP
is dP3 , jV jn3 , ´2ygD2. The accurate calculation [13]
allows one to find also the numerical factor

P3 ­ 1 2 2pjV jn3 ­ 1 2

q
py2 ´2ygD2. (6)

Here due to Eq. (4)jV j ­
p

2yp Dyg.
Mixing of quasiparticle with higher generations (five

particle, seven particle, etc.) may be formally taken in
l
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account in the same way:

dP2n11 ­ 22pjV
s2n11d
eff jn2n11 , (7)

where n2n11 , ´2nyD2n11. The only difference from
(6) is that nowV

s2n11d
eff is the effective ME connecting

the first and (2n 1 1)th generations via thenth order of
the usual perturbation theory. The naive estimate of th
effective interaction givesVeff , sDygdns1yDdn21, which
lead to dP2n11 , 2s´2ygD2dn. The main advantage
of Ref. [4] was in fact the observation that the hig
order corrections toP have an additional enhancemen
,sln gdn21 compared to the naive estimate. In order
demonstrate the origin of this large logarithm, consid
the effective ME connecting generations 1 and 5

jV
s5d
eff j ­

ÉX
2

V12V23

´1 2 ´2

É
­

2D2

pg2

Z D

Dyg

d´

D´
­

2D

pg2
ln g .

(8)

Here we have left in the sum oveŕ2 only one level
closest to´1 (contribution of the other levels is,1y
ln g smaller) and then averaged over its position. Ther
fore, the upper bound of the integral isj´j , D. More in-
teresting is the origin of the lower bound. The use of th
effective interaction requiresjV12j, jV23j ø j´1 2 ´2j ø
j´3 2 ´2j. Otherwise one should consider the strong mi
ing of three almost degenerate statesj1l, j2l, j3l (accu-
rately taking into account such a three-level interactio
leads also to,1y ln g corrections). That is why the lower
bound in the integral in Eq. (8) isj´j . Dyg.

The ME (8) together withn5 , ´4yD5 allows one to
reproduce the first nontrivial term of the expansion (1
Moreover, even if one does not take into account t
mixing with higher generations, the correction describe
by (8) could blow up the PR (6) at́ , Dg1y2sln gd21y4.
However, one more important feature ofrs´d may be
demonstrated by Eq. (8). The logarithmic divergence
the integral in (8) shows that the MEs with very differen
denominators are equally important for the PR. Suppo
we are not able to resolve peaks which are closer th
some d´ ø Dyg. As we mentioned before, one can
see two peaks of comparable amplitude at distanced´

only if d´ , Veff , ´1 2 ´3. This means that the upper
bound in the integral in Eq. (8) should be chosen v
Veff , D2yg2´12 . d´ and thus

´max ­
D2

g2d´
, jV

s5d
eff sd´dj ­

2
p

D

g2 ln

µ
D

gd´

∂
, (9)

in accordance with (3). In order to illustrate this resu
we have shown in Fig. 1 the density of couples of pea
as a function of the logarithm of spacingl between
them dnyd lnsld (at ´ slightly below ´p). The mixing
with third generation leads to the narrow (width,1)
peak atl , D3y´2 , Dyg. The contribution from fifth
generation atl , Dyg is in ´2ygD2 times weaker, but
such events are uniformly distributed over the wide regio
lnsDyg2d , lnsld , lnsDygd.
3995



VOLUME 79, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 17 NOVEMBER 1997

ne
m

e

It
of
e
-
n

l
of

f

s-
-
n

o
-
l

re-

nd

re
FIG. 1. Distribution of spacingsl for first doubling of the
peaks as a function of lnl. The mixing with generations 3, 5,
7, and 9 is shown. The dashed line is the total distribution.

Generalization of (8) for an arbitrary generation gives

jV
s2n11d
eff j ­

√ p
2D

p
pg

!n Z D Y
i,n

d´i

D´i
­ A

2
n

2 Dsln gdn21

p
n

2 gn
,

kX
i­1

ln

µ
g´i

D

∂
. 0,

n21X
i­k

ln

µ
g´i

D

∂
. 0 , (10)

The upper limit for all integrals here is the same as
(8): ´i , D. The small values of́ i are restricted due
to the requirement that none of the intermediate sta
in Veff could be mixed strongly with the initial or final
state. One may find the lower and upper bounds forjVeffj

by considering the simplified version of the logarithm
inequalities in (10): lnsg´iyDd . 0 for any i for lower
bound and

Pn21
1 lnsg´iyDd . 0 for upper bound. For

largen such a calculation gives

1 , A , en . (11)

Thus at least the integral (10) could not contain anyn!
[14]. Equations (7) and (10) together lead to Eq. (1).

For finite accuracy one should take into account on
the MEs exceeding the experimental errorVeff . d´,
which is equivalent to the additional restriction on th
domain of integration

n21X
1

lnsg´iyDd , lnsDygd´d . (12)

If in addition lnsDygd´d ø lnsgd, the integration in
Eq. (10) may be performed explicitly

jV
s2n11d
eff sd´dj ­

1
n 2 1

2
n

2 D

p
n

2 gn
flnsDygd´dgn21. (13)

In terms of log distribution of level spacingsdnyd lnsld
shown in Fig. 1 the contribution of generation2n 1 1
leads to correction,flnsDygd´dgn21.

Consider now the physical consequences for the sp
trum of the different variants of asymptotic behavior of th
3996
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coefficientspn sbnd shown in Eq. (2): (a) In fact, there is
no real danger in divergence of the asymptotic series. O
should simply break the summation at the smallest ter
(with the numbernc ,

p
´py´ or nc ,

p
´cy´). The same

smallest term gives the order of magnitude estimate of th
rest (nonperturbative) part of the sum.ps´d, bs´d become
completely nonperturbative at́. ´p, ´c. (b) The series
in ´2 has finite radius of convergenceR ­ ´p2ya s´2

cyad
and theg is responsible for the kind of singularity of the
resummed result at́2 ­ R (botha, g , 1). Close to this
point all terms of the series become equally important.
is natural to consider such a behavior as an indication
the localization-delocalization transition in the Fock spac
[4,5]. (c) The series is absolutely convergent. We con
sider this as the indication of absence of delocalizatio
transition.

The estimates of ME [(8),(10),(13)] were done for a
given tree-type Feynman diagram connecting given initia
and final states. Now we have to estimate the number
such diagrams, first of all, the density of final states:

n2n11 ­
´2n

D2n11

1
s2nd! sn 1 1d! n!

. (14)

Here s2nd! appears after the integration over energies o
final particles (holes),sn 1 1d! and n! account, respec-
tively, for then 1 1 identical particles andn holes. The
number of diagrams for the fixed final state is easy to e
timate for the Schrödinger perturbation theory. The ex
amples of diagrams for the screened Coulomb interactio
V sx 2 yd , dsx 2 yd are shown in Fig. 2 [15]. Each
individual ME of V sx 2 yd corresponds to decay of one
particle into two particles and one hole, or one hole int
two holes and one particle. In order to find the num
ber of diagrams it is convenient to start from the fina
state. At first step there aresn 1 1dn2y2 ways to join
two sn 1 1d particles and onen hole into one particle
andsn 1 1dnsn 2 1dy2 ways to join one particle and two
holes into one hole. Then the same procedure may be
peated withn particles andn 2 1 holes. The number of
diagrams connecting the same initial and final states fou

FIG. 2. The examples of diagrams. Energy denominators a
associated with transverse sections (dashed lines).
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in this way is
22nn! sn 1 1d! s2n 2 1d!! . (15)

The doubling of single-particle peaks is based on very ra
events of almost coincidence of the small ME and sma
energy difference. This means that the probability to fin
two equally large MEs is small and one should simpl
multiply the correction (7) by the number of statistically
independent diagrams. However, not all of the diagram
(15) are statistically independent. First of all, we have n
taken into account the Fermi statistics of particles in th
intermediate states. This means that some of the diagra
should cancel each other. Second, we have estimated
number of diagrams of Schrödinger perturbation theory.
one goes to the Feynman technique, many of the diagra
having the same MEs and different energy denominato
will be joined into one. For example, for the two diagram
in Fig. 2 one has

1y´a´b 1 1y´a´c ­ 1y´b´c , (16)
becausé b 1 ´c ­ ´a (for almost degenerate initial and
final states). Heré a,b,c are the energy denominators
for corresponding cross section in the figure. Therefor
Eq. (15) gives only the upper bound of the number o
independent diagrams. Combining together (14) and (1
and the estimate ofjVeffj one finds

pn , sconstdn n! sn 1 1d! s2n 2 1d!!
s2nd! sn 1 1d! n!

,
sconstdn

n!
.

(17)
We see that combinatorics of the diagrams (15) could n
compensate the decrease of phase space and the asy
totics of pn (as well asbn) is described by Eq. (2c).
Slightly above´ ­ ´p, ´c due to the mixing with finite
numbers,

p
ln g d high order (withn , ln g) generations

the PR becomes sufficiently smaller than 1. This fini
number of connected generations constitutes the main d
ference of our result from what happens on the Cayley tr
[4,5], where even the first splitting of the quasiparticle pea
into two proceeds through the interaction with all gener
tions. For higher energies our perturbative approach fo
mally is not valid. We are able to consider rigorously onl
the first splitting of quasiparticle peak into two. In orde
to go further one should be able to diagonalize exactly t
three-levels almost degenerate events, then the four-lev
and so on. Mathematically, this means that one has
sum up the series of,1y lnsgd corrections toP. Never-
theless, it is natural to suppose that further disintegrati
of the quasiparticle also proceeds through the interacti
with a finite number of generations. If so, the numbe
of peaks constituting one excitation most likely will grow
smoothly with energy (crossover instead of phase tran
tion). The delocalization in the Fock space will not tak
place in this scenario (although, it may be difficult to fin
the experimental evidence of presence or absence of s
delocalization).
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Even more informative thanP is the distribution of
spacings inside the quasiparticle bunch. The distributio
of spacings for first decay into two peaks (two distinc
bunches) has complicated hierarchical structure. Th
natural variable to describe this distribution is lnl

(Fig. 1). In particular this means that the disintegration
threshold́ c should depend on the experimental accuracy
It is natural to expect that this log distribution of spacings
will survive after further disintegration into three or more
peaks. Moreover, both new delocalization thresholds´p

and ´c differ only by the square root of the logarithm
from the golden-rule prediction, which makes them
quite difficult to be observed in the direct experiment
However, the wide logarithmic distribution of spacings
within the single particle bunch of peaks (like that in
Fig. 1) may be easily distinguished from, e.g., Poisso
or Wigner-Dyson distribution. Thus we may conclude
that the investigation of spacings distribution in the singl
particle spectral density should open the easiest way
observe the below-golden-rule decay of quasiparticles
a quantum dot predicted in Ref. [4].
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