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Decay of a Quasiparticle in a Quantum Dot: The Role of Energy Resolution
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The disintegration of a quasiparticle in a quantum dot due to electron interaction is considered.
It was predicted recently that above the energy= A(g/Ing)'/? each one particle peak in the
spectrum is split into many components. We show that the observed valgé sifiould depend
on the experimental resolutiofie. In the broad region of variation ofe the Ing term should be
replaced by IfA/gde). We also argue against delocalization transition in the Fock space. Most likely
the number of satellite peaks grows continuously with energy. The predicted logarithmic distribution
of interpeak spacings may be used for experimental confirmation of the below-golden-rule decay.
[S0031-9007(97)04576-6]
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Decay of single-electron excitations in quantum dots hagnergy ¢* this series blows up. In terms of PR this
now become the subject of intensive experimental [1,2pbrocedure gives

and theoretical [2—6] investigations. For a closed quantum &2
dot instead of real decay of a quasiparticle one should P=1- oA2 p(e),
. - . . . g
consider the disintegration of on® peak in the single-
. . . . 2 n (1)
particle spectral density(e) into a relatively dense bunch p(e) = Z » ( € Ing)
of peaks. Each component of this bunch represents the ="\ gA? ’

one particle contribution to a complicated exact eigenstatgyhere A is the averaged single-particle level spacing,
The quasiparticle lifetime in a large Fermi system isg > 1 is the dimensionless conductanee;> A is the
usually associated with decay into two-particle—one-hole'energy of our quasiparticle, ane, are some numerical
configuration. The corresponding width may be foundgpefficients. Each new term in the sum in Eq. (1) corre-
using the usual golden rule [2]. The energyat which  gonds to taking into account more and more complicated
this width becomes of the same order of magnitude withyymixtures to quasiparticle. The first term = 0) de-
three-particle level spacing gives us the natural threshold.ripes the mixing with two particles and one hole, second
for the decay of a quasiparticle. However, it was shown by, three particles and two holes, and so on.

the authors of Ref. [4] that due to the effective interaction ¢ energies close te* = A(g/In g)"/2 all terms of the

with five-particle, seven-particle, and so on excitationsSerieS in Eq. (1) become of the same order of magnitude.
[they call all states consisting of + 1 particles and:  Tpis means that at > s* the PR cannot be close
holes the Zn + 1)th generation] the actual threshold for ; 1 However, the concrete way of the quasiparticle
particle disintegration is much lower. The more deta”eddisintegration with the growth ofs depends on the
investigation of statistics of states constituting the singleyehavior of the coefficienty,. In general, the three
particle excitation belowe’ is the subject of this Letter. possibilities for the asymptotics ¢f, are

The statistical approach to finite interacting Fermi systems

has a long history [7—11]. However, the main attention pn ~ nl, (2a)
was paid to the investigation of the fully developed chaos. pu ~ a'n?, (2b)
Here we are interested in the very beginning of the chaotic

behavior, then quasiparticles may be coupled with only a pn ~ 1/nt, (2¢)
few many-particle states. which corresponds to zero, finite, and infinite radii of

The convenient quantity, which describes the splittingconvergence of the series in Eq. (1), respectively. One
of a noninteracting quasiparticle peak into many peaksshould naturally expect very different features of the
is the participation ratio (PR = Y, a;. Here a7  resumed result in these three cases. Mapping the problem
is the relative strength of an individual peak p(e) of quasiparticle lifetime onto that of particle hopping
and the sum over a bunch of peaks corresponding ton the Cayley tree led the authors of Refs. [4,5] to the
one-particle excitation i’ al = 1. Physically the PR asymptotics (2b). However, as we will show below, the
is the inverted effective number of exact many-particleactual asymptotics is close to Eq. (2c).
eigenstates constituting the quasiparticle excitation. From In general, in order to observe experimentally the
a technical point of view, the authors of Ref. [4] have splitting described by Eq. (1) one should be able to
summed up starting from the small excitation energiesesolve all many-particle eigenstates, which means that
the series of special perturbative contributions leading tehe experimental errors should be exponentially small
quasiparticle disintegration and then estimated at whictds ~ A exp(—27+/e/6A) [12]. Therefore, in this Letter
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we find how the mechanism considered in [4] will accountin the same way:
manifest itself for more realistiée. First of all, even SP I S 7
in order to see the decay of quasiparticle into three- 2ntl TlVett V2041, 7
particle configurations one should have sufficiently goodwhere v,,+; ~ *'/A>"*!. The only difference from
resolution e ~ A%/&? (any few peaks falling intozthe (6) is that nowV.ir " is the effective ME connecting
segment~3de are seen as one of joint strendify, ai).  the first and 2 + 1)th generations via theth order of

Tr;e most interesting is the result fa’/e* < 8¢ < the ysual perturbation theory. The naive estimate of this
A°/e. Physically this means that accuracy is much bettegftective interaction givese ~ (A/g)"(1/A)"~!, which

than needed to resolve the three-particle levels, but nQtaq to 6P,, ., ~ —(2/gA?". The main advantage
enough to see the five-particle ones. In this case of Ref. [4] was in fact the observation that the high
) : "
_ . & _ o order corrections taP have an additional enhancement
p=1 gAzb(S)’ ble) = n;) bule/e)™, () ~(Ing)"~! compared to the naive estimate. In order to

. demonstrate the origin of this large logarithm, consider
wheree, = Ay/g/In(A/gde). The transition from pure yhe effective ME connecting generations 1 and 5
single-particle to split spectrum now takes placesat
Z ViaVa3

g.. Inparticularifée ~ A%/e” one has, ~ & = A /g —&
5 €1 7 &2

in accordance with the golden rule prediction [2,4]. At Veirl =
e ~ A’/&* the expansion (1) formally is restored, but

the coefficients of this new serigs, are much smaller 8)
than those of Eq. (1). For better accuraty < A°/e*  Here we have left in the sum ovey, only one level
the coefficientsp, become a function of the resolution closest toe; (contribution of the other levels is-1/

p, = p,(8e). Only at extremely smallse one has Ing smaller) and then averaged over its position. There-
p,(8e ~ An*l/en) = p,. fore, the upper bound of the integrallid < A. More in-

As shown in Refs. [3,4] the values of the matrix teresting is the origin of the lower bound. The use of the
elements (MEs) of two-particle interaction are Gaussiareffective interaction requiref/ ,|, |Vas| < e — &3] =
distributed with the variance: les — e»|. Otherwise one should consider the strong mix-

V2 = A%/g2, 4) ing of three almost degenerate statés |2),[3) (accu-
rately taking into account such a three-level interaction
leads also te-1/ In g corrections). That is why the lower
bound in the integral in Eq. (8) i&| > A/g.

The ME (8) together withws ~ £*/A° allows one to
eproduce the first nontrivial term of the expansion (1).

oreover, even if one does not take into account the
mixing with higher generations, the correction described
by (8) could blow up the PR (6) at ~ Ag'/2(Ing)~ /4.
A However, one more important feature pfe) may be

vy = &°/4A°. (5)  demonstrated by Eq. (8). The logarithmic divergence of
Here one factorl/2 comes from the integration over the integral in (8) shows that the MEs with very different
the three energies at fixed,; + £,, + &, = ¢ and an- denominators are equally important for the PR. Suppose
other is added due to the Fermi statistics of two prowe are not able to resolve peaks which are closer than
duced particles. We are interested in energies A,/g. SOme e < A/g. As we mentioned before, one can
Therefore|V|vs < 1, which means that the majority of See two peaks of comparable amplitude at distabee
one-particle states is almost nonperturbed. In this casenly if 5e ~ Vet ~ &1 — £3. This means that the upper
the main contribution to the PR comes from the verybound in the integral in Eq. (8) should be chosen via
small part of levels, for which the energy difference be-Verr ~ A%/g%e12 > 8¢ and thus
tween one- and three-particles excitatien8 — £® oc- A2 ——— 5 A A

. . )
casionally turns out to be of the same order of magnitudemax = —5=—,  [Veir(d)l = — — < > )
with the ME V. The relative fraction of such states is g-os T8
small~ |V|v3, but their PR differs by 100% from?t = 1. in accordance with (3). In order to illustrate this result
Therefore, the averaged contribution of such eventg to we have shown in Fig. 1 the density of couples of peaks
is8P3 ~ |V|vs ~ £2/gA%. The accurate calculation [13] a@s a function of the logarithm of spacing between
allows one to find also the numerical factor th_err]n Crl:'l{jd In() (at & SI*”QZUV be'ﬁW &"). Th? ”(11';(';”)9
PP - S | 2/ A2 with third generation leads to the narrow (widthl

Py =1 zﬂl’“ - m/2e7/gA%  (6) peak atA ~ A3/e2 ~ A/g. The contribution from fifth
Here due to Eq. (A)V| = 2/7 A/g. generation at ~ A/g is in £2/gA? times weaker, but

Mixing of quasiparticle with higher generations (five such events are uniformly distributed over the wide region
particle, seven particle, etc.) may be formally taken inton(A/g?) < In(A) < In(A/g).

_ 2A2fA de 2A

wg? Jaje Ae wg?

Here the numerical factors-1 (see, e.g., Ref. [4]) are
included into the definition og > 1. The estimate (4)
was done for the diffusive quantum dot. However, our
approach may be valid for the ballistic dot also. The only
necessary condition is that the MEs of interaction shoul
be random with the amplitudé’| < A.

Consider first the mixing of particle with three-particle
states. The density of these states is

gde
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FIG. 1. Distribution of spacings\ for first doubling of the
peaks as a function of ln. The mixing with generations 3, 5,
7, and 9 is shown. The dashed line is the total distribution.

Generalization of (8) for an arbitrary generation gives

ds,_ 2A(Ing)”1
-(2) [ nge- ’

7T2g"
g&; 8E&i

I > In{ >— | > 10

pul(sg)=o S0 o

T (@n+1), +1)
|Vettn

coefficientsp, (b,) shown in Eq. (2): (a) In fact, there is
no real danger in divergence of the asymptotic series. One
should simply break the summation at the smallest term
(with the numbern,. ~ \/e*/eorn. ~ /e./e). The same
smallest term gives the order of magnitude estimate of the
rest (nonperturbative) part of the sump.(¢), b(e) become
completely nonperturbative at> &*,e.. (b) The series

in €2 has finite radius of convergende = £*?/a (¢2/a)

and thevy is responsible for the kind of singularity of the
resummed result at®> = R (botha,y ~ 1). Close to this
point all terms of the series become equally important. It
is natural to consider such a behavior as an indication of
the localization-delocalization transition in the Fock space
[4,5]. (c) The series is absolutely convergent. We con-
sider this as the indication of absence of delocalization
transition.

The estimates of ME [(8),(10),(13)] were done for a
given tree-type Feynman diagram connecting given initial
and final states. Now we have to estimate the number of
such diagrams, first of all, the density of final states:

gn 1

A2+ 2p)! (n + 1)! n!

Here (2n)! appears after the integration over energies of
final particles (holes)(n + 1)! and n! account, respec-
tively, for then + 1 identical particles and holes. The
number of diagrams for the fixed final state is easy to es-

(14)

Von+1 =

The upper limit for all integrals here is the same as intimate for the Schrédinger perturbation theory. The ex-

(8): &; < A. The small values ok; are restricted due

to the requirement that none of the intermediate state®(x — y) ~ 8(x — y) are shown in Fig. 2 [15].

in Ve could be mixed strongly with the initial or final
state. One may find the lower and upper boundg oy |

by considering the simplified version of the logarithmic two holes and one particle.

inequalities in (10): Ifge;/A) > 0 for any i for lower
bound andy "} 'In(ge;/A) > 0 for upper bound. For
largen such a calculation gives

1 <A <em. (11)

Thus at least the integral (10) could not contain arly
[14]. Equations (7) and (10) together lead to Eq. (1).

amples of diagrams for the screened Coulomb interaction
Each
individual ME of V(x — y) corresponds to decay of one
particle into two particles and one hole, or one hole into
In order to find the num-
ber of diagrams it is convenient to start from the final
state. At first step there a@ + 1)n?/2 ways to join

two (n + 1) particles and one: hole into one particle
and(n + )n(n — 1)/2 ways to join one particle and two
holes into one hole. Then the same procedure may be re-
peated withn particles and: — 1 holes. The number of
diagrams connecting the same initial and final states found

For finite accuracy one should take into account only

the MEs exceeding the experimental erfdy; > de,

which is equivalent to the additional restriction on the

domain of integration

n—1
Z In(ge;/A) < In(A/gbe).
1
If in addition In(A/gde) < In(g), the integration in
Eqg. (10) may be performed explicitly
2 A

(12)

n+1 1
s se)l = ——

Vst )

(13)

In terms of log distribution of level spacings:/d In(A)
shown in Fig. 1 the contribution of generati@m + 1
leads to correction-[In(A/gd¢e)]" .

a b 1
o z
| 3
I\I\< 5
| ] 6
1 | 7
a C 1
I ' 2
] 1 3
I 5

1 6
| 1 7

Consider now the physical consequences for the spegiG. 2. The examples of diagrams. Energy denominators are
trum of the different variants of asymptotic behavior of theassociated with transverse sections (dashed lines).
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in this way is Even more informative tharP is the distribution of
27" (n + 1D)!'2n — DI, (15)  spacings inside the quasiparticle bunch. The distribution

The doubling of single-particle peaks is based on very rar@ SPacings for first decay into two peaks (two distinct
events of almost coincidence of the small ME and smalPunches) has complicated hierarchical structure. The
energy difference. This means that the probability to find'atural variable to describe this distribution is Aln

two equally large MEs is small and one should simply(Fig' 1). In particular this means that 'ghe disintegration
multiply the correction (7) by the number of statistically thresholde,. should depend on the experimental accuracy.

independent diagrams. However, not all of the diagram is natural to expect that this log distribution of spacings

(15) are statistically independent. First of all, we have notVill survive after further disintegratior_l int_o three or more
taken into account the Fermi statistics of particles in thé?€aks. Moreover, both new delocalization threshaits

intermediate states. This means that some of the diagrar@@d €. differ only by the square root of the logarithm
should cancel each other. Second, we have estimated t@™M the golden-rule prediction, which makes them
number of diagrams of Schradinger perturbation theory. Ifluite difficult to be observed in the direct experiment.
one goes to the Feynman technique, many of the diagranllé_o"‘{ever’ th_e wide Io_ganthmlc distribution o.f spacings
having the same MEs and different energy denominator¥!thin the single particle bunch of peaks (like that in

will be joined into one. For example, for the two diagramsFig' 1) may be easily distinguished from, e.g., Poisson
in Fig. 2 one has or Wigner-Dyson distribution. Thus we may conclude

o that the investigation of spacings distribution in the single
1/eaes + 1/eaec = 1/epec, (16)  barticle spectral density should open the easiest way to

becauses;, + . = &, (for almost degenerate initial and opserve the below-golden-rule decay of quasiparticles in
final states). Heres, ;. are the energy denominators 5 quantum dot predicted in Ref. [4].

for corresponding cross section in the figure. Therefore, The author thanks V.F. Dmitriev, V.B. Telitsin,

Eq. (15) gives only the upper bound of the number ofp v/ savin, V.V. Sokolov, and A.S. Yelkhovsky for
independent diagrams. Combining together (14) and (15)jscussions.

and the estimate dV.¢| one finds
nl(n+ 1)2n — D! _ (consy)”
@2n)!(n + D!n! n!

pn < (cons}”
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