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The range and sparsity of the one-electron density matrix (DM) in density functional theory is stud
for large systems using the analytical properties of its Chebyshev expansion. General estimates o
range of the DM are derived, showing that the range is inversely proportional to the square root o
insulator band gap and inversely proportional to the square root of the temperature. These findings
port “principle of nearsightedness” introduced recently by W. Kohn [Phys. Rev. Lett.76, 3168 (1996)].
These estimates are used to study the complexity of several linear system-size scaling elect
structure algorithms which differ in their dependence on the geometric dimensionality of the syst
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The Hohenberg-Kohn and Kohn-Sham (KS) densi
functional theory (DFT) of the many-electron groun
state energy has served as a basis for numerous la
scale electronic-structure and molecular dynamics sim
lations, especially using plane-wave total energy a
Car-Parrinello approaches [1,2]. These methods a
however, capable of dealing with a limited number o
atoms, presently on the order of102, primarily due to the
OsMN2

e d scaling, whereNe is the number of electrons
in a unit cell andM is the number of plane waves. A
great challenge thus remains for dealing with system
containing many more atoms which have no simplifyin
symmetry such as lattice periodicity. Recently, it wa
pointed out [3–5] (and see also Ref. [6] for earlie
ideas) that by invoking a nonorthogonal basis of localize
functions, it is possible to develop methods which sca
linearly with system size. Pursuing this idea, sever
algorithms for electronic-structure calculations have be
developed [7–20].

Recently, Kohn [20] introduced the principle of “the
nearsightedness of equilibrium systems,” with which h
argues that unlike the KS orbitals, the one-electron dens
matrix (DM) rsr, r 0d is always short ranged injr 2 r 0 j,
thereby enabling a linear system-size scaling.

This paper attempts to contribute to these efforts
introducing a new analytical method to derive estimat
for the range of the DM in an electronic system, bas
on a few characteristics of the system. This allows
to compare the intrinsic complexity of several algorithm
approaches and evaluate their scaling with the accura
of the calculation and the dimensionality of the system
The method also demonstrates in a simple way Kohn
nearsightedness principle concerning the range of the D
The technique makes use of the Chebyshev polynom
expansion of the DM introduced recently by Goedeck
and Colombo [14,15].

KS-DFT reduces the2Ne electron problem to a one-
electron self-consistent field (SCF) procedure leading
0031-9007y97y79(20)y3962(4)$10.00
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global energy minimization. The SCF procedure involve
two steps combined and iterated to convergence. The fi
is the construction of a Hamiltonian̂H ­ 2h̄2y2me=2 1

V̂eff, where me is the electron mass and the effectiv
potential Veffsrd is built from the electron densityrsrd.
The second step is the calculation of the electron dens
determined by the Hamiltonian, given in the Kohn
Sham scheme asrsrd ­

P
i ni jcisrdj2, where cisrd are

normalized eigenfunctions of the Hamiltonian̂Hci ­
´ici and ni is an occupancy number, equal to 1
´i # ´Ne

and 0 otherwise.
New theoretical and numerical developments [7,8] ha

recently enabled the step of constructing the Hamiltoni
from the density to scale linearly with system size. Th
can be achieved for both KS-DFT and Hartree-Foc
effective Hamiltonians [9]. With these advances, th
computational bottleneck shifts to the second stage, wh
simple diagonalization schemes lead to expensiveOsN3d
scaling.

It is convenient at this point to define the DM by

rsr, r0d ­
X

i

nicisrdcp
i sr0d . (1)

Note that the DM is a projector onto the space spann
by the Ne lowest energy orbitals, so an alternativ
formulation based on the Heaviside weightus´d, equal to
1 if ´ is positive and to 0 if́ is negative, is

r̂ ­ usm 2 Ĥd . (2)

The chemical potentialm is determined by the electron
number: trr̂ ­ Ne. For systems with band gapd´, the
DM can be approximated to precision102D by the Fermi-
Dirac (FD) matrix (FDM):

F̂ ­
1

1 1 ebsĤ2md
, (3)

where the chemical potentialm is determined by the con-
dition tr F̂ ­ Ne and the inverse temperature parameterb
© 1997 The American Physical Society
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controls the accuracy, chosen so that discrepancies lar
than 102D between the FD and the Heaviside function
are confined within the band gap and do not affect the co
responding DMs. The relation ofb to the gapd´ should
be

bd´y2 $ D log10 . (4)

This equivalence of the FDM and the insulator DM (to
the precisionD) is due to the existence of a band gap. Fo
conductors, Eq. (3) can still be used at low temperatur
[21].

Unlike us´d, the functionFs´d ­ s1 1 ebs´2mdd21 is
infinitely differentiable on the real line. This allows
efficient use of polynomial expansions to approxima
the DM in numerical applications as first suggested b
Goedecker and Colombo [14]:

FsĤd ­
P21X
n­0

ansb, mdpnsĤd . (5)

Here, pn are orthogonal polynomials (with respect to
some weight) andan are numerical constants, dependen
on the temperature and chemical potential.

The choice of the polynomial series for the expansion
crucial for good convergence. A Taylor expansion aroun
any energy value does not converge at all due to poles
the FD function in the complex plane limiting the radiu
of convergence. Following Goedeckeret al. [14,15], we
choose Chebyshev polynomials which converge fastest
the maximum norm [22]. Chebyshev expansions ha
proved invaluable in quantum dynamical computation
since their introduction to that field by Kosloff and
Tal-Ezer [23] (see Refs. [24–27] for examples and d
velopments) and recently have also been used to direc
expand the DM in plane-wave DFT calculations [28].

We now briefly summarize the Chebyshev expansion
the FDM. The expansion is written as

FsĤd ­
P21X
n­0

ansbs , msdTnsĤsd , (6)

where P is the expansion length and̂Hs is a shifted
and scaled Hamiltonian, constructed so its eigenvalu
are contained in the intervalf21, 1g. To be specific,
we define Emax and Emin as the largest and smalles
eigenvalues of̂H, and

Ĥs ­
Ĥ 2 E

DE
, (7)

where

E ­
Emax 1 Emin

2
; DE ­

Emax 2 Emin

2
. (8)

Similarly, the scaled inverse temperature and a scale
shifted chemical potential are

bs ­ bDE, ms ­ sm 2 E dyDE . (9)

Tnsxd ­ cossn cos21xd is thenth Chebyshev polynomial,
and the expansion coefficients are
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ansbs , msd ­
2

s1 1 dn0dp

3
Z 1

21

Tnsxd
p

1 2 x2

1
1 1 ebssx2msd dx . (10)

The error committed in using a finite expansion
smooth and uniform throughout the interpolated interv
In a future publication, we show that when2p øp

1 2 m2
s bs (a condition invariably met in practice),

the required lengthP of the expansion for an accurac
102D sD . 1d is largely insensitive toms and closely
estimated by

P ø 2
3 sD 2 1dbs . (11)

This equation generalizes a relation introduced
Goedecker and Colombo [14].

Combining Eq. (4) with Eq. (11), the length of the
Chebyshev expansion for insulating systems is determin
by

P ­ 3DsD 2 1d
DE
d´

(12)

(here, the numerical constants multiply to a value ofø3).
We exploit the fact that the Chebyshev expansion

of finite length for studying properties of the DM, an
we now estimate its spatial rangeW sF̂d. The Hilbert
space associated with the system can be represented u
a finite basis of normalized GaussiansGr of range s,
centered on a mesh of pointsr, with spacinga comparable
in size to s. The mesh points are in a large bo
containing the system. The overlap matrix is

Sr0,r ­ kGr0 j Grl ­ e2sr2r0d2y2s2

, (13)

and the dual biorthonormal basis can be defined by

kGrj ­
X
r0

sS21drr0 kGr0 j . (14)

We state results for a finite basis and then take the lim
to an infinite basis by indefinitely decreasing the me
spacinga and the width of the Gaussianss (keepingays

constant). We assume that for a large separation, a b
function and its dual have similar functional behavior, an
the Hamiltonian matrix elements take the form

kGr0 jĤjGrl ø e2sr2r0d2y2s2

. (15)

The prefactor of the exponent has been dropped, si
due to the locality of the interactions, it depends on
weakly on jr 2 r0j when the latter is large. The long
range matrix elements for̂H2 can be estimated by a
Gaussian composition rule as

kGr0 jĤ2jGrl ­
X
x

kGr0 jĤjGxl kGxjĤjGrl

ø e2sr2r0d2y4s2

. (16)
3963
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Thus, the range of̂H2 is
p

2 s, and repeatedly using the
Gaussian composition rule, the range ofHP is estimated
as

p
P s.

Now, since the Chebyshev expansion of the FD
involves operating with the HamiltonianP times, we
conclude that the spatial range of the DM is also of th
order

p
P s. Special cancellations due to the coefficien

of the expansion mayreduce the range further, so this
estimate is probably an upper bound in most cases. Us
Eq. (12) for the expansion lengthP, the range of the DM
for insulators is then given by

W sF̂d ­

s
3s2DE

d´
DsD 2 1d . (17)

This equation contains two representation-depend
parameters: the spatial widths of the basis functions and
the eigenvalue range of the Hamiltonian matrix, given b
DE ­ sEmax 2 Emindy2. For small enoughs, Emin is, at
worst, dominated by the minimal values of the potenti
energy on mesh points close to atomic centers, wh
due to the Coulomb potentialEmin ~ s21. (Actually,
Emin is finite even whens ! 0.) Emax is the kinetic
energy of a Gaussian; thusEmax ø h̄2s22y2me. As s

diminishes, the kinetic energy term dominatesDE, and
Eq. (17) converges to

W sF̂d ø

s
3h̄2

4med´
DsD 2 1d . (18)

This result conforms to Kohn’s estimates for the rang
of orbitals in one dimensional periodic systems [29]. Th
arguments we present can be considered a general
tion of Kohn’s theorem to systems of any dimensio
Furthermore, for nonperiodic systems, although Eq. (1
probably overestimates the range of the DM, it esta
lishes a finite range for it, a conclusion derived also
Refs. [30,31].

The range of the DM for a finite temperature is com
puted using Eq. (11), with physical temperatureskBbd21:

WsF̂d ø
p

P s ­

s
h̄2

3me
sD 2 1db . (19)

This estimate is independent of the chemical potent
so it parallels a free electron gas model for metals. F
insulators, it overestimates the FDM range unless t
temperature is very high. Equation (19) closely resemb
the thermal de Broglie wavelengthl ­

p
h2y3mekBT ,

which serves to estimate the range of DM correlatio
for a particle in thermal equilibrium. The dependence o
the square root ofD 2 1 shows that initially the density
matrix decays faster than an exponential of the distan
as is actually the case for the range of the DM of
homogeneous gas of noninteracting electrons.

We now discuss the DM sparsity of a large system in
finite basis, composed ofN functions with a Hamiltonian
matrix Hmn ­ kmjĤjnl. We assume that the system i
3964
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large so the Hamiltonian is very sparse. In order t
measure sparseness, we introduce the concept ofbreadth.
For a given accuracy102D, the breadth of a column
vector v , BDsvd is the number of its elements having a
magnitude larger than102D. For the breadth of a matrix
H, BDsHd is the maximal breadth of its columns. Base
on the preceding results, we conclude thatBDsĤnd ø
ndy2BDsĤd, whered is the geometric dimensionality of
the system. The DM breadth is then

BDsF̂d ø Pdy2BDsĤd , (20)

whereP is given by Eq. (12) for ground state calculation
or by Eq. (11) for finite temperature calculations, an
BDsĤd is the Hamiltonian breadth, primarily determined
by the breadth of the inverse overlap matrixS21. The
latter breadth is proportional to thesquare rootof the
condition number of the overlap matrix [32].

Using the breadth given in Eq. (20), it is possi
ble to assess the algorithmic complexity of sever
linear scaling approaches. We first discuss metho
that calculate the DM by minimization of a modified
energy functional constructed to ensure idempotenc
We name these “F 3 F methods.” The minimization
process consists of a sequence of computations of
power of the DM Fn, where n ­ 2, 3, 4 in the Li-
Nunes-Vanderbilt-Daw (LNV-D) [11–13], Hernandez
et al. [17,33], and Kohn [20] approaches, respectively
The total numerical work in theF 3 F methods is then

JfF 3 Fg ø MnPdBDsĤd2N , (21)

whereMn is the number ofF 3 F evaluations required
for minimization until F is determined to102D in some
norm. Next, we discuss the computation of the DM
by a Chebyshev expansion [15]. The computation no
consists of applyinĝHs P times toN unit vectors, so

JfChebg ø Pdy211BDsĤd2N . (22)

In order to demonstrate that these relations are i
deed reflected in actual calculations, both Chebyshev a
LNV-D methods were applied to a tight-binding cubic
lattice model, having10d sites (d ­ 1, 2, 3 is the di-
mensionality) and a nearest neighbor spacing of4 a.u.
The parametrization of the model was based on th
Hamiltonian of Ref. [34] for carbon, but the follow-
ing changes were made for simplifying the interaction
achieving a large band gap and smaller spectral rang
Only two electrons were allocated to each atom an
separately for each dimensiond we changed the mag-
nitude of the Slater-Koster parameterVss,s until a band
gap ofd´ ­ 0.1 a.u. was achieved and the spectral rang
DE was in the range 0.25–0.3 a.u. We plotted in Fig.
the numerical workJ as a function of the theoretical
polynomial lengthP determined by the accuracyD [via
Eq. (11)], where

102D ­ maxhjtrsr2 2 rdj,
p

trsfr, Hsg2djytrsrd . (23)
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FIG. 1. The numerical work vs Chebyshev polynomial leng
Circles (LNV-D) and squares (Chebyshev) are calculat
results, while lines are of slope given by equations in the te
LNV-D calculations for a 3D system were not attempted due
memory limitations.

Both methods were applied using a sparse matrix
code [32]. In the LNV-D implementation, the conjuga
gradients method was used for minimizing the ener
starting fromF ­ 1y2Î. Also plotted in the figure are
lines with the slope taken from Eqs. (21) and (22).
can be seen that, in general, the trends shown by
actual numerical work, with respect to the dependence
dimensionality and accuracy, correspond satisfactorily
the theory presented above. Figure 1 and Eqs. (21)
(22) show that different linear scaling methods can ha
different complexities depending on the geometry of
system.
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