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Sparsity of the Density Matrix in Kohn-Sham Density Functional Theory
and an Assessment of Linear System-Size Scaling Methods
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The range and sparsity of the one-electron density matrix (DM) in density functional theory is studied
for large systems using the analytical properties of its Chebyshev expansion. General estimates of the
range of the DM are derived, showing that the range is inversely proportional to the square root of an
insulator band gap and inversely proportional to the square root of the temperature. These findings sup-
port “principle of nearsightedness” introduced recently by W. Kohn [Phys. Rev. I&t8168 (1996)].

These estimates are used to study the complexity of several linear system-size scaling electronic
structure algorithms which differ in their dependence on the geometric dimensionality of the system.
[S0031-9007(97)04543-2]

PACS numbers: 71.15.Mb

The Hohenberg-Kohn and Kohn-Sham (KS) densityglobal energy minimization. The SCF procedure involves
functional theory (DFT) of the many-electron ground two steps combined and iterated to convergence. The first
state energy has served as a basis for numerous largs-the construction of a Hamiltoniatt = —72/2m,V? +
scale electronic-structure and molecular dynamics simuVes;, where m, is the electron mass and the effective
lations, especially using plane-wave total energy angotential V. (r) is built from the electron density(r).
Car-Parrinello approaches [1,2]. These methods ar&he second step is the calculation of the electron density
however, capable of dealing with a limited number ofdetermined by the Hamiltonian, given in the Kohn-
atoms, presently on the order t#?, primarily due to the Sham scheme ag(r) = >, n;|¢:(r)|?, where ;(r) are
O(MN?) scaling, whereN, is the number of electrons normalized eigenfunctions of the Hamiltoniafy,; =
in a unit cell andM is the number of plane waves. A g;¢; and n; is an occupancy number, equal to 1 if
great challenge thus remains for dealing with systems; = ey, and O otherwise.
containing many more atoms which have no simplifying New theoretical and numerical developments [7,8] have
symmetry such as lattice periodicity. Recently, it wasrecently enabled the step of constructing the Hamiltonian
pointed out [3-5] (and see also Ref. [6] for earlierfrom the density to scale linearly with system size. This
ideas) that by invoking a nonorthogonal basis of localizeccan be achieved for both KS-DFT and Hartree-Fock
functions, it is possible to develop methods which scaleeffective Hamiltonians [9]. With these advances, the
linearly with system size. Pursuing this idea, severatomputational bottleneck shifts to the second stage, where
algorithms for electronic-structure calculations have beesimple diagonalization schemes lead to expensiva’?)
developed [7-20]. scaling.

Recently, Kohn [20] introduced the principle of “the It is convenient at this point to define the DM by
nearsightedness of equilibrium systems,” with which he

argues that unlike the KS orbitals, the one-electron density p(r,r') = D mii(r)y; (). 1)
matrix (DM) p(r, r') is always short ranged inr — r/|, ;
thereby enabling a linear system-size scaling. Note that the DM is a projector onto the space spanned

This paper attempts to contribute to these efforts byhy the N, lowest energy orbitals, so an alternative
introducing a new analytical method to derive estimategormulation based on the Heaviside weight), equal to
for the range of the DM in an electronic system, based if ¢ is positive and to 0 i is negative, is
on a few characteristics of the system. This allows us . -
to compare the intrinsic complexity of several algorithmic p=0(u—H). (2)
approaches and evaluate their scaling with the accurachhe chemical potentiak is determined by the electron
of the calculation and the dimensionality of the systemnumber: tp = N,. For systems with band gage, the
The method also demonstrates in a simple way Kohn’®M can be approximated to precisiod” by the Fermi-
nearsightedness principle concerning the range of the DMRirac (FD) matrix (FDM):

The technigue makes use of the Chebyshev polynomial ) 1
expansion of the DM introduced recently by Goedecker F =
and Colombo [14,15].

KS-DFT reduces the@nN, electron problem to a one- where the chemical potential is determined by the con-

electron self-consistent field (SCF) procedure leading talition tr ¥ = N, and the inverse temperature paramgter

®3)

1 + eﬁ(lf]*l‘«) ’
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controls the accuracy, chosen so that discrepancies largey (By, ) = 2
than 1072 between the FD and the Heaviside functions """ (1 + 8,0)7
are confined within the band gap and do not affect the cor- LT (x) 1
i i X 4 dx. (10
Leespondmg DMs. The relation ¢ to the gapse should T 1+ P (10)
B6e/2 = Dlog10. (4) The error committed in using a finite expansion is

] ] ) smooth and uniform throughout the interpolated interval.
This equivalence of the FDM and the insulator DM (t0 |, 5 future publication, we show that whedmr <

the precisiorD) is due to thg existence of a band gap. For /7 — w2 B, (a condition invariably met in practice),
conductors, Eg. (3) can still be used at low temperatureg,e required length? of the expansion for an accuracy

[21]. _ oot 107? (D > 1) is largely insensitive tou, and closely
Unlike 6(e), the functionF(e) = (1 + eP*"#)71is  octimated by

infinitely differentiable on the real line. This allows
efficient use of polynomial expansions to approximate
the DM in numerical applications as first suggested by
Goedecker and Colombo [14]:

P=2(D - 1),. (11)

This equation generalizes a relation introduced by

P-1
N A Goedecker and Colombo [14].
F(H) = ’;) an(B. w)pn(H). () Combining Eq. (4) with Eq. (11), the length of the

Here, p, are orthogonal polynomials (with respect to Chebyshev expansion for insulating systems is determined

some weight) andi,, are numerical constants, dependentby
on the temperature and chemical potential. AE

The choice of the polynomial series for the expansion is P =3D(D - 1) Se (12)
crucial for good convergence. A Taylor expansion around
any energy value does not converge at all due to poles dhere, the numerical constants multiply to a value=g).
the FD function in the complex plane limiting the radius We exploit the fact that the Chebyshev expansion is
of convergence. Following Goedecker al. [14,15], we  Of finite length for studying properties of the DM, and
choose Chebyshev polynomials which converge fastest iwe now estimate its spatial rang&(#). The Hilbert
the maximum norm [22]. Chebyshev expansions havépace associated with the system can be represented using
proved invaluable in quantum dynamical computationg? finite basis of normalized Gaussiags of range o,
since their introduction to that field by Kosloff and centered on a mesh of pointswith spacingz comparable
Tal-Ezer [23] (see Refs. [24—27] for examples and dein size to o. The mesh points are in a large box
velopments) and recently have also been used to direct§ontaining the system. The overlap matrix is

expand the DM in plane-wave DFT calculations [28]. Ser = (Gy | Gy) = e 0710/20° (13)
We now briefly summarize the Chebyshev expansion of o e ’
the FDM. The expansion is written as and the dual biorthonormal basis can be defined by
P—1
FH) = D a,(Bs, m)Tu(H,), (6) (Gel = (S (Gl (14)
n=0 r/
where P is the expansion length andl; is a shifted We state results for a finite basis and then take the limit

and scaled Hamiltonian, constructed so its eigenvalueg an infinite basis by indefinitely decreasing the mesh
are contained in the intervdl—1,1]. To be specific, spacings and the width of the Gaussians(keepinga/o
we define En. and Enin as the largest and smallest constant). We assume that for a large separation, a basis

eigenvalues of7, and function and its dual have similar functional behavior, and
N H-E the Hamiltonian matrix elements take the form
H‘y = B 7) — A —(r—1')2 /202
AE (GulH|G,) = e x7rV /20, (15)
where

The prefactor of the exponent has been dropped, since
Emax + Emin AE — Emax — Emin ) due to the locality of the interactions, it depends only
2 ’ 2 ' weakly on|r — r’| when the latter is large. The long-

.. . . £r2 .
Similarly, the scaled inverse temperature and a scaled@19€ matrix elements ';OH can be estimated by a
shifted chemical potential are Gaussian composition rule as

E =

o= PBAE. oy =(u - E)AE. () (GolA21G,) = 3 (GulH1G) (CLlAIG,)
T,(x) = cogn cos 'x) is thenth Chebyshev polynomial, X N
and the expansion coefficients are ~ o T4 (16)
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Thus, the range off? is V2 o, and repeatedly using the large so the Hamiltonian is very sparse. In order to

Gaussian composition rule, the rangeHf is estimated measure sparseness, we introduce the concedpieafith

asVPo. For a given accuracyl0~?, the breadth of a column
Now, since the Chebyshev expansion of the FDMvectorv, Bp(v) is the number of its elements having a

involves operating with the Hamiltonia® times, we magnitude larger thah0~”. For the breadth of a matrix

conclude that the spatial range of the DM is also of theH, Bp(H) is the maximal breadth of its columns. Based

order+/P o. Special cancellations due to the coefficientson the preceding results, we conclude tiR3(H") ~

of the expansion mayeducethe range further, so this n%/2Bp(H), whered is the geometric dimensionality of

estimate is probably an upper bound in most cases. Usintpe system. The DM breadth is then

Eq. (12) for the expansion lengih, the range of the DM

for insulators is then given by Bp(F) = P By (H), (20)
. \/302AE whereP is given by Eq. (12) for ground state calculations
W(F) = DD —1). (A7) or by Eqg. (11) for finite temperature calculations, and
€ Bp(H) is the Hamiltonian breadth, primarily determined

This equation contains two representation-dependerty the breadth of the inverse overlap matsix'. The
parameters: the spatial width of the basis functions and latter breadth is proportional to thequare rootof the
the eigenvalue range of the Hamiltonian matrix, given bycondition number of the overlap matrix [32].

AE = (Emax — Emin)/2. For small enougler, Eniy is, at Using the breadth given in Eq. (20), it is possi-
worst, dominated by the minimal values of the potentialble to assess the algorithmic complexity of several

energy on mesh points close to atomic centers, wherénear scaling approaches. We first discuss methods
due to the Coulomb potentia, = o~!. (Actually, that calculate the DM by minimization of a modified

Emin is finite even wheno — 0.) Em. is the kinetic energy functional constructed to ensure idempotency.
energy of a Gaussian; thU,.. =~ 2o ~2/2m,. As o We name theseF' X F methods.” The minimization

diminishes, the kinetic energy term dominaté&, and Process consists of a sequence of computations of a

Eq. (17) converges to power of the DM F", where n = 2,3,4 in the Li-
> Nunes-Vanderbilt-Daw (LNV-D) [11-13], Hernandez
W) z\/ 3n DD - 1). (18) et al.[17,33], and Kohn [20] approaches, respectively.

4m.b¢e The total numerical work in th& X F methods is then

This result conforms to Kohn’s estimates for the range J[F X F] = M,P?Bp(H)*N, (21)
of orbitals in one dimensional periodic systems [29]. The
arguments we present can be considered a generaliz
tion of Kohn's theorem to systems of any dimension.
Furthermore, for nonperiodic systems, although Eq. (18
probably overestimates the range of the DM, it estab
lishes a finite range for it, a conclusion derived also in

here M, is the number off X F evaluations required
or minimization until F is determined tol0~? in some
orm. Next, we discuss the computation of the DM
by a Chebyshev expansion [15]. The computation now
consists of applyingZ, P times toN unit vectors, so

Refs. [30,31]. N . J[Chelj = P4/>"' B, (H)*N . (22)
The range of the DM for a finite temperature is com- . _
puted using Eq. (11), with physical temperat(tgB) ! In order to demonstrate that these relations are in-

= deed reflected in actual calculations, both Chebyshev and
) ~ — | _ LNV-D methods were applied to a tight-binding cubic
W(F) = vPo = D B. 19

(F)=Pa 3me( B (19) lattice model, havingl0¢ sites ¢ = 1,2,3 is the di-
ensionality) and a nearest neighbor spacingd @.u.

he parametrization of the model was based on the

amiltonian of Ref. [34] for carbon, but the follow-

This estimate is independent of the chemical potenti
so it parallels a free electron gas model for metals. Fo[_|
insulators, it overestimates the FDM range unless the

. : ; ing changes were made for simplifying the interactions,
temperature is very high. Equation (19) closely resemblegcghievingga large band gap andp sf?\/wa?ler spectral range:

. Only two electrons were allocated to each atom and
Sseparately for each dimensiah we changed the mag-
hitude of the Slater-Koster paramet®y; , until a band
é;ap of6e = 0.1 a.u. was achieved and the spectral range
AE was in the range 0.25-0.3 a.u. We plotted in Fig. 1

for a particle in thermal equilibrium. The dependence o
the square root oD — 1 shows that initially the density
matrix decays faster than an exponential of the distanc

as is actually the case for the range of the DM of %he numerical workJ as a function of the theoretical

homogeneous gas of noninteracting electrons. ; : ;
We now discuss the DM sparsity of a large system in gly?fr)]la\llvlﬁgrgethP determined by the accurady [via

finite basis, composed a@f functions with a Hamiltonian
matrix H,,, = (m|H|n). We assume that the system is 1072 = max|tr(p> — p)|,Vtr((p, H;)}/tr(p). (23)
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