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The top quark decays more quickly than the strong-interaction time scale,L
21
QCD , and might be

expected to escape the effects of nonperturbative QCD. Nevertheless, the top-quark pole mass, lik
pole mass of a stable heavy quark, is ambiguous by an amount proportional toLQCD . [S0031-9007
(97)04700-5]

PACS numbers: 14.65.Ha, 12.38.Cy, 12.38.Lg
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The mass of the recently discovered top quark [1] h
been measured with impressive accuracy,mt ­ 175.6 6

5.5 GeV [2], by the CDF and D0 experiments at th
Fermilab Tevatron. The uncertainty will be reduced eve
further, to perhaps 1–2 GeV, with additional running at th
Tevatron [3], or at the CERN Large Hadron Collider [4]
High-energye1e2 [5] or m1m2 [6] colliders operating
at the tt̄ threshold hold the promise of yet more precis
measurements ofmt , to 200 MeV or even better.

With such increasingly precise measurements on t
horizon, it is important to have a firm grasp of exactl
what is meant by the top-quark mass. Thus far the to
quark mass has been experimentally defined by the posit
of the peak in the invariant-mass distribution of the to
quark’s decay products, aW boson and ab-quark jet [2].
This closely corresponds to the pole mass of the top qua
defined as the real part of the pole in the perturbative to
quark propagator. The perturbative propagator of a t
quark with four-momentump has a pole at the complex
position

p
p2 ­ mpole 2

i
2 G, and yields a peak in theWb

invariant-mass distribution (for experimentally accessib
real values ofp) when

p
p2 ø mpole. The extent to which

this correspondence continues to hold beyond perturbat
theory is one of the topics of this paper.

The pole mass of a stable quark is well defined in th
context of finite-order perturbation theory [7]. However
the all-order resummation of a certain class of diagram
associated with “infrared renormalons,” indicates that th
pole mass of a stable heavy quark (heavy here mea
m ¿ LQCD) is ambiguous by an amount proportional to
LQCD , as a result of nonperturbative quantum chromod
namics (QCD) [8,9]. Physically, this is a satisfying resul
because we believe that quarks are permanently confin
within hadrons, precluding the unambiguous definition o
a quark pole mass [10].

The top quark decays very quickly, having a widt
G ø 1.5 GeV, approximately an order of magnitude
greater than the strong-interaction energy scaleLQCD ø
200 MeV. Such a short lifetime means that the top qua
decays before it has time to hadronize [11–13]. Th
large top-quark width can act as an infrared cutoff in th
calculation of physical quantities, insulating the top qua
from the effects of nonperturbative QCD [12,14–16].
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Motivated by these facts, we ask whether the top
quark pole mass is free of the ambiguities associate
with nonperturbative QCD. The purpose of this article is
to demonstrate that this is not the case. The top-qua
pole mass, like the pole mass of a stable heavy quar
is unavoidably ambiguous by an amount proportional t
LQCD . We first give a general argument for the existenc
of such an ambiguity. We then give a heuristic argumen
that the ambiguity is proportional toLQCD , using the
specific example of theWb invariant-mass distribution.
Finally, we prove that the ambiguity is proportional to
LQCD by using infrared renormalons.

Consider a scattering process with asymptotic state
consisting of stable particles. We ask if it is possible
for the scattering amplitude to have a pole at the mas
of a stable quark. This would correspond to a quar
propagator connecting two subamplitudes, as depicted
Fig. 1; the pole in the quark propagator would correspon
to the pole in the amplitude. Such a configuration is
impossible, however, because the subamplitudes whic
the quark propagator connects have external states whi
are color singlets (due to confinement), while the quar
is a color triplet, so color is not conserved. Thus there
cannot be a pole in the amplitude at the quark mass.

This argument applies equally well to an unstable
quark, such as the top quark. The fact that the quar
is unstable evidently plays no role in the argument; i
only shifts the imagined pole in the propagator into the
complex plane. As in the case of a stable quark, ther
cannot be a pole in the amplitude, regardless of how sho

FIG. 1. A scattering amplitude consisting of two subampli-
tudes connected by a quark propagator. The external lines re
resent color-singlet asymptotic states. Such an amplitude
forbidden by color conservation.
© 1997 The American Physical Society 3825
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lived the quark. In particular, the fact that the top-qua
lifetime is much less thanL21

QCD is irrelevant.
Such an argument implies that the nonperturbat

aspect of the strong interaction will stand in the w
of any attempt to unambiguously extract the top-qua
pole mass from experiment. For example, consider
extraction of the pole mass from the peak in theWb
invariant-mass distribution. In perturbation theory, t
final state is aW and ab quark, as depicted in Fig. 2(a)
However, theb quark manifests itself experimentally a
a jet of colorless hadrons, due to confinement. At le
one of the quarks which resides in these hadrons co
from elsewhere in the diagram, and cannot be conside
as a decay product of the top quark, as depicted
Fig. 2(b). This leads to an irreducible uncertainty in t
Wb invariant mass ofOsLQCDd and, hence, an ambiguity
of this amount in the extracted top-quark pole mass.

We now turn to an investigation of the top-qua
pole mass from the perspective ofinfrared renormalons.
We first review the argument which demonstrates
existence of a renormalon ambiguity in the pole mass o
stable heavy quark [8,9]. We then extend the argum
to take into account the finite width of the top quar
Finally, we investigate the existence of a renormal
ambiguity in the top-quark width itself.

The pole mass of a quark is defined by the position of
pole in the quark propagator. The propagator of a qu
of four-momentump is

Dspyd ­
i

py 2 mR 2 Sspyd
, (1)

wheremR is a renormalized short-distance mass [by sho
distance mass we mean a running mass (such as theMS
mass) evaluated at a scalem ¿ LQCD ], and Sspyd is the
renormalized one-particle irreducible quark self-ener
The equation for the position of the pole is an implic
equation that can be solved perturbatively:

pypole ­ mR 1 Sspypoled ­ mR 1 Ss1dsmRd 1 . . . , (2)

whereSs1dsmRd is the one-loop quark self-energy show
in Fig. 3(a). This quantity is real, so the pole positio
is real.

Renormalons arise from the class of diagrams genera
by the insertion ofn vacuum-polarization subdiagram
into the gluon propagator in the one-loop self-ener
diagram, as shown in Fig. 3(a′). One can express this as

FIG. 2. The production and decay of a top quark in (a) p
turbation theory and (b) nonperturbatively.
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Ss1dsmR , ad ­
16mR

3b0

X̀
n­0

cnan11, (3)

where

a ;
b0assmRd

4p
(4)

and b0 is the one-loop QCD beta-function coefficien
b0 ; 11 2 s2y3dNf . Formally, these are the domi-
nant QCD corrections in the “large-b0” limit. Thus
Ss1dsmR, ad in Eq. (3) is calculated at leading order inas,
but to all orders ina.

For largen the coefficientscn grow factorially, and are
given by [8,9,17]

cn
n!`
! e2Cy22nn! , (5)

where C is a finite renormalization-scheme-depende
constant (in theMS scheme,C ­ 25y3). The series in
Eq. (3) is therefore divergent. One can attempt to su
the series using the technique of Borel resummation [1
The Borel transform (with respect toa) of the self-energy
is obtained from the series coefficients, Eq. (5), via

eSs1dsmR , ud ­
16mR

3b0

X̀
n­0

cn

n!
un, (6)

whereu is the Borel parameter. Because the coefficien
cn are divided by n! in the above expression, the
series has a finite radius of convergence inu, and can
be analytically continued into the entireu plane. The
self-energy is then reconstructed via the inverse Bo
transform, given formally by

Ss1dsmR , ad ­
Z `

0
du e2uya eSs1dsmR , ud . (7)

The integral in Eq. (7) is only formal, because the Bor
transform of the quark self-energy possesses singulari
on the real-u axis, which impede the evaluation of the
integral. These singularities are referred to as infrar
renormalons because they arise from the region of s
gluon momentum in Fig. 3(a′). The series for the self-
energy in Eq. (3) is therefore not Borel summable.

The divergence of the series for the self-energy is go
erned by the infrared renormalon closest to the orig
which lies atu ­ 1y2. This renormalon is not associated

FIG. 3. Diagrams contributing to the top quark self-energy
leading order inas and aW . sa0d replaces (a) when summing
to all orders inb0as.
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with the condensate of a local operator, so it cannot be a
sorbed into a nonperturbative redefinition of the pole ma
[8,9]. Instead, one can choose somead hocprescription to
circumvent the singularity in the integral. The difference
between various prescriptions is a measure of the am
guity in the pole mass. Estimating the ambiguity as ha
the difference between deforming the integration contou
above and below the singularity gives [9]

dmpole ,
8p

3b0
e2Cy2LQCD , (8)

so the pole mass is ambiguous by an amount proportion
to LQCD .

We now include theOsaW d contribution to the top-
quark self-energy shown in Fig. 3(b). The pole positio
is still given by Eq. (2), but whereSs1dsmRd includes both
Figs. 3(a) and 3(b). Since Fig. 3(b) has an imaginary pa
the pole moves off the real axis. The imaginary part o
the one-loop pole position defines the tree-level top-qua
width via Im Ss1dsmRd ; 2

1
2 Gtree. As before, to extend

the calculation to all orders ina, we replace Fig. 3(a) by
Fig. 3(a′). This contribution to the pole mass remains th
same as for a stable quark, and has the same renorma
ambiguity. Thus, at leading order inaW , the infrared
renormalons do not know about the top-quark width.

The Osasd contribution to the top-quark self-energy
learns about the top-quark width if one works to all order
in aW , via a Schwinger-Dyson representation [19], a
shown in Fig. 4. The circles on the internal propagator
and the vertex in Figs. 4(a) and 4(b) represent the we
corrections to all orders inaW [the circles in Fig. 4(b)
also contain one power ofas]. We wish to solve for
the pole position as given by the first equality in Eq. (2)
We denote the pole position at zeroth order inas, but
to all orders in aW , by the complex valueM, with
Im M ; 2

1
2 G, where G is the top-quark width to all

orders inaW . At leading order inas, the pole position is
then given by

pypole ­ mR 1 SsMd , (9)

whereSsMd is given by Figs. 4(a) and 4(b). Again, we
extend this calculation to all orders ina by making n
vacuum-polarization insertions in the gluon propagato

FIG. 4. Diagrams contributing to the top quark self-energy a
leading order inas, but to all orders inaW . sa0d replaces (a)
when summing to all orders inb0as.
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as depicted in Fig. 4(a′). This yields a series ina,
which we denote bySsM, ad in analogy with Eq. (3). To
investigate whether the width might cut off the infrare
renormalons generated by these diagrams, we need o
consider the contribution of soft gluons. In the limit o
vanishing gluon momentum, the internal quark propaga
reduces toZyspy 2 Md, where Z is the wave-function
renormalization factor. The Ward identity tells us tha
in this same limit, the dressed vertex is simplyZ21.
Thus, in the infrared limit,SsM, ad is formally identical
to Ss1dsmR , ad with mR replaced byM everywhere. The
infrared renormalons, which are associated with the Bo
transform with respect toa, are unaffected. The width
does not act as a cutoff for infrared renormalons, desp
the fact that it is much greater thanLQCD . We conclude
that the ambiguity in the pole mass of the top quark
given by Eq. (8), just as for a stable quark.

We now ask whether the top-quark width suffers from
a similar renormalon ambiguity. Because the first-ord
calculation yields the top-quark width at tree level only
it is insufficient to address this question. The solution
Eq. (2) atOsaW asd is

pypole ­ mR 1 SsssmR 1 SsmRdddd

­ mR 1 Ss1dsmRd 1 Ss2dsmRd

1 Ss1d0smRdSs1dsmRd , (10)

where the superscripts onS indicate the order at which
it is to be evaluated. The imaginary part of this equatio
(times21y2) defines the top-quark width atOsaW asd.

One may calculate the imaginary part of Eq. (10) usin
the Cutkosky rules. This reduces to the calculation of t
QCD correction to the processt ! Wb [the term involv-
ing Ss1d0smRd corresponds to the wave-function renormal
zation of the top quark]. The presence of renormalons
this process was investigated in Refs. [8,20]. If the wid
is expressed in terms of the pole mass, then it has
infrared renormalon atu ­ 1y2, corresponding to an am-
biguity proportional toLQCD . However, if the width is
expressed in terms of a short-distance mass, such as
MS mass, there is no renormalon atu ­ 1y2, and hence
no ambiguity proportional toLQCD .

Let us summarize our results. The confinement
color, a nonperturbative property of QCD, precludes th
existence ofS-matrix poles at quark masses and imped
any attempt to unambiguously define the pole mass o
stable heavy quark. The same is true of the top-quark p
mass despite the fact that the top-quark width is mu
greater than the strong-interaction energy scale,LQCD .
This is signaled by the divergent behavior at large orde
of the expansion of the top-quark self-energy in powe
of a ­ b0assmRdy4p , which leads to an unavoidable
ambiguity ofOsLQCDd in the top-quark pole mass. The
top-quark pole mass is therefore not a physical quanti
The top-quark width does not suffer from an ambiguity o
the same order.
3827
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as is the convention for the lighter quarks [21]. Th
relation between the top-quark pole mass and theMS mass
evaluated at the pole mass,msmpoled, is known to two
loops [22] (assmd is the ms coupling evaluated at the
scalem):
s
y

mpole ­ msmpoled

"
1 1

4
3

assmpoled
p

1 10.95

√
assmpoled

p

!2

1 . . .

#
1 OsLQCDd , (11)

where the last term reminds us that the pole mass has an unavoidable ambiguity ofOsLQCDd. Given that the pole mas
is ambiguous, we suggest as the standard theMS mass evaluated at theMS mass, which is related to the pole mass b

mpole ­ msm d

"
1 1

4
3

assmd
p

1 8.28

√
assmd

p

!2

1 . . .

#
1 OsLQCDd . (12)
-
,

,

.

The difference in the coefficients of the twoa2
s terms

above is 8y3. For a top-quark pole mass of175.6 6

5.5 GeV [2], msmd ­ 166.5 6 5.5 GeV [msmpoled ­
166.0 6 5.5 GeV].

The considerations of this paper apply to any color
particle, stable or unstable. Thus, if nature is supersy
metric, the pole masses of squarks and gluinos will nec
sarily be ambiguous by an amount proportional toLQCD .
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