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Measuring Cosmological Parameters with Galaxy Surveys
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We assess the accuracy with which future galaxy surveys can measure cosmological parameter
breaking parameter degeneracies of the Planck cosmic microwave background satellite, the Sloan
sky survey may be able to reduce the Planck error bars by about an order of magnitude on the large
power normalization and the reionization optical depth, down to percent levels. However, pinpoin
attainable accuracies to within better than a factor of a few depends crucially on whether it wil
possible to extract useful information from the mildly nonlinear regime. [S0031-9007(97)04537-7]
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One of the main challenges in modern cosmology is
refine and test the standard gravitational instability mod
of structure formation by precision measurements of
free parameters: The slopen and normalizationQ of the
primordial spectrum of density fluctuations, the densiti
of various types of matter, etc. A seminal paper in th
journal [1] recently showed that future cosmic microwav
background (CMB) experiments such as the MAP a
Planck satellites would revolutionize this endeavor, allow
ing the simultaneous determination of a dozen parame
to hitherto unprecedented accuracies. This prompted s
eral more detailed studies [2–4], which confirmed this o
timistic conclusion.

A parallel effort towards precision cosmology is large
and more systematic galaxy redshift surveys. The larg
currently available three-dimensional surveys conta
about 25 000 galaxies. The 2dF survey (described in [
will measure 10 times as many, and the Sloan digital s
survey (SDSS) is scheduled to acquire106 redshifts within
five years [5,6]. It is therefore quite timely to perform
an analogous first assessment of the ability to meas
cosmological parameters with large galaxy surveys. T
is the purpose of the present Letter. We derive a use
approximation for large scales where clustering is line
and find that the greatest uncertainty by far lies in our ab
ity to extract useful information from the smaller scale
where the linearity assumption begins to break down.

The accuracy with which cosmological parameters c
be measured from a given data set is conveniently co
puted with the Fisher information matrix formalism (se
[7] for a comprehensive review). In our case, the da
set can be viewed as anN-dimensional vectorx, whose
componentsxi are the fluctuations in the galaxy densit
relative to the mean inN disjoint cells that cover the
three-dimensional survey volume in a fine grid.x is mod-
eled as a random variable whose probability distributi
fsx; Qd depends on a vector of cosmological paramete
Q that we wish to estimate (for instance, we might ha
u1 ­ n, u2 ­ Q, etc.). The Fisher matrix is defined by

Fij ; 2

ø
≠2 ln f
≠ui≠uj

¿
, (1)
0031-9007y97y79(20)y3806(4)$10.00
to
el

its

es
is
e

nd
-

ters
ev-
p-

r
est
in

5])
ky

ure
his
ful

ar,
il-
s

an
m-
e
ta

y

on
rs

ve

and its inverseF21 can, crudely speaking, be thought of
as the best possible covariance matrix for the measureme
errors on the parameters. The Cramér-Rao inequality [
shows that no unbiased method whatsoever can meas
the ith parameter with error bars (standard deviation) les
than 1y

p
Fii. If the other parameters are not known bu

are estimated from the data as well, the minimum standa
deviation rises tosF21d1y2

ii .
In the approximation that the probability distributionf

is a multivariate Gaussian with meanm ; kxl and covari-
ance matrixC ; kxxtl 2 mmt , Eq. (1) becomes [7,9]

Fij ­
1
2

tr

∑
C21 ≠C

≠ui
C21 ≠C

≠uj

∏
1

≠mt

≠ui
C21 ≠m

≠uj
.

(2)

This equation was employed in all the above-mentione
papers on CMB parameter determination, since for a
all-sky CMB map, the covariance matrixC can be diago-
nalized by a spherical harmonic expansion, making th
computation ofF numerically trivial. For our galaxy
survey case, the situation is more difficult. The analo
of the CMB trick (a Fourier transformation) does not
diagonalizeC, since only a finite spatial volume is probed.
The accuracy of the assumed priorC is of course readily
tested given measured datax.

Since brute force application of Eq. (2) tends to obscur
the underlying physics, we will now derive a simple
approximation forF below, which allows a more intuitive
understanding of numerical results and shows the relativ
information contribution from different scalesk. Ignoring
redshift-space distortions and nonlinear clustering, all th
cosmological information is contained in the galaxy powe
spectrumPskd. In the limit where the survey volume
is much larger than the scale of any features inPskd, it
has been shown [10] that all the cosmological informatio
in x is recovered whenPskd is estimated with the FKP
method [11]. Let us therefore redefinexn to be not the
density fluctuation in thenth spatial volume element, but
the average power measured with the FKP method in
thin shell of radiuskn in Fourier space, with widthdkn

and volume elementVn ; 4pk2
ndknys2pd3. With our
© 1997 The American Physical Society
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notation, we can rewrite the FKP results [11] as

mn ø Psknd , (3)

Cmn ø 2
PskndPsknd
VnVeffsknd

dmn , (4)

where

Veffskd ;
Z ∑

n̄srdPskd
1 1 n̄srdPskd

∏2

d3r . (5)

Here n̄srd is the selection function of the survey, which
gives thea priori expectation value for the number densit
of galaxies. Veffskd can be interpreted as the effective
volume utilized for measuring the power at wave numb
k, since the integrand will be of order unity in those region
where the cosmic signalPskd exceeds the Poissonian sho
noise1yn̄, and typically gives only a small contribution
from other regions. For a volume-limited survey,n̄ is
constant in the observed region, soVeff (and hence the
Fisher matrix) is simply proportional to the survey volume

Choosing the shells thick enough to contain many unco
related modes each,VnVeffsknd ¿ 1, the central limit theo-
rem indicates thatx will be approximately Gaussian. In the
same limitVnVeffsknd ¿ 1, the second term in Eq. (2) will
be completely dominated by the first [12], so substitutin
Eqs. (3) and (4) into Eq. (2) gives

Fij ø
1

4p2

X
n

≠P
≠ui

sknd
≠P
≠uj

sknd
Veffskndk2

n dkn

Psknd2
. (6)

Replacing the sum by an integral and usingd ln P ­
dPyP, this reduces to the handy approximation

Fij ø 2p
Z kmax

kmin

≠ ln P
≠ui

≠ ln P
≠uj

wskd d ln k , (7)

where we have definedwskd ; Veffskdyl3, and the wave-
length isl ; 2pyk. Equation (7) conveniently separate
the effects of cosmology from those of the survey-specifi
details. The former enter only through the logarithmi
derivatives≠ ln Py≠ui , which are plotted in Fig. 1 for some
simple examples. The selection functionn̄ and the geo-
metric bounds of the survey volume (outside of whic
n̄ ­ 0) enter only via the weight functionwskd, which
is essentially the number of independent modes of wav
length l that fit into the volume probedsVeffd. The top
panel of Fig. 1 shows the weight function for the mai
northern part of the SDSS [6] and for the SDSS bright re
galaxy (BRG) sample. The latter is assumed to be volum
limited at 1000h21 Mpc, containing105 galaxies with a
bias factorb ­ 2.

We close this section by emphasizing that Eq. (7) is
rather crude approximation, since it ignores edge effec
redshift space distortions, and, most importantly, nonline
clustering. We will return to the last issue in thenonlinear
clusteringsection. To quantify the edge effect errors, w
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FIG. 1. Parameter accuracies, linear case.

have tested Eq. (7) numerically by brute force manip
lations of theN 3 N matrices of Eq. (2) for a number o
cases withN , 104, and find that it is typically accurate
to within a factor of two for a cold dark matter (CDM
power spectrum when the survey size¿200h21 Mpc.
The differences have two sources, with opposite sig
which both grow in importance if we decrease the surv
volume: (1) The effective number of modes probed
slightly larger thanVeff indicates, since the density field
just inside the survey volume is correlated with that ju
outside. This reduces error bars. (2) The measured po
spectrum is effectively smoothed on the scale of the sur
volume, which can destroy information on the smallk
behavior of the power spectrum and on sharp features
wiggles. This increases error bars.

A linear clustering example.—Before discussing realis-
tic nonlinear power spectra, we will now highlight some
the features of Eq. (7) with a simple linear power spectru
example. Let us consider a CDM power spectrum of t
form

Pskd ­ Q2shkykpdnTshkd2. (8)

On a log-log plot such as Fig. 1 (top panel), varying t
normalizationQ shifts the spectrum vertically, wherea
varying the parameterh shifts it horizontally. We chose
kp ­ 0.025h Mpc21, roughly the scale whereP takes
its maximum, so varyingn tilts the spectrum about its
peak. The transfer functionT is computed numerically
with the CMBFAST software [13] for a Hubble constan
h ­ 0.5, baryon fractionVb ­ 0.06, CDM fractionVc ­
0.48, and vacuum density (relative cosmological consta
3807
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Vy ­ 0.46, chosen to be virtually indistinguishable from a
Bond and Efstathiou model fit [14] with “shape parameter
G ; hVc ­ 0.25. For our fiducial model,n ­ h ­ 1
andQ is such that the8h21 Mpc normalization iss8 ­ 1.

Partial derivatives needed for Eq. (7) are plotted in th
second panel of Fig. 1.≠ ln Py≠ ln Q ­ 2, ≠ ln Py≠n ­
lnskykpd, and ≠ ln Py≠ ln h ­ ≠ ln Py≠ ln k, simply the
logarithmic slope of the power spectrum, ranging from11
to 23 and vanishing at the peak (together with≠ ln Py≠n).
The dependence on all other parametersui enters via the
transfer function. Figure 1 shows only one such exampl
the baryon fractionVb .

(i) Single-parameter accuracy.—The third panel in
Fig. 1 shows the error barsDui ­ 1yF1y2

ii on each parame-
ter that would result from the SDSS BRG survey if the
true values of all other parameters were known, as a fun
tion of the upper limit of integrationkmax, with kmin ­ 0.
As Eq. (7) shows, the informationFii on a parameter is
simply the square of the corresponding curve in the se
ond panel, integrated against the weight function in th
top panel. For instance, there is no information aboutVb

on scalesk ø kp, since the physical impact of baryons on
fluctuation growth is different from that of CDM only on
scales entering the horizon before matter and radiation d
couple atz , 103 [15]. Also, we see that the bulk of the
information onVb is coming not from the characteristic
baryon-induced acoustic oscillations (wiggles) in the tran
fer function, but from the overall suppression of powe
rightward of the peak. Although the wiggles help some
what in breaking parameter degeneracy (discussed belo
this can be somewhat misleading, since all but perha
the first oscillation are likely to have been smeared o
by mode coupling as the clustering goes nonlinear. For
more detailed treatment of the constraints onVb , submit-
ted after the present paper, see [16].

How should the limits of integration (kmin andkmax) be
chosen? Since information on scales comparable to a
larger than the survey is destroyed by smearing and me
removal effects, it is natural to chose2pykmin to be of
order the survey size. The choice ofkmax, on the other
hand, is seen to be of paramount importance, since thek3

phase space factor causeswskd to peak far shortward of
the power spectrum peak scalekp, where nonlinear effects
become important. We defer this issue to thenonlinear
clusteringsection.

(ii) Degeneracies.—The bottom panel in Fig. 1 shows
the error barsDui ­ sF21d1y2

ii on each parameter that
would result if a joint fit to all four parameters were
performed, and no other constraints (e.g., from CMB map
were available for the other three parameters. Equation
can be interpreted asF being the dot products of a set
of vectors (the functions≠ ln Py≠ui), where the inner
product is defined by the weight functionw. If any of
the functions in the second panel can be written as
linear combination of some others, thenF will clearly be
singular, and the errors on the corresponding paramet
3808
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will be infinite. For instance,≠ ln Py≠ ln h and≠ ln Py≠n
are essentially degenerate forkmax , 0.1h Mpc21 (they
both look like straight lines vanishing atk ­ kp, and
the curvature of≠ ln Py≠ ln h at k , 0.01h Mpc21 is
irrelevant since these scales receive so little weight), wh
is why lnh and n have such large uncertainties in th
bottom panel until≠ ln Py≠ ln h bends downward and
breaks this near degeneracy atk , 0.1h Mpc21.

Nonlinear clustering.—Since much of the information
on cosmological parameters comes from small scal
nonlinear clustering cannot be ignored when assess
the attainable accuracy. The power spectrum remain
perfectly well-defined quantity even in the deeply non
linear regime. However, the density field becomes no
Gaussian, which causes Eq. (2) [and hence also Eq.
to misestimate the Fisher matrix in two competing way
(1) The variance of the power spectrum estimates tends
exceed the value given by Eq. (4), causing us to und
estimate the parameter error bars. (2) Additional cosm
logical information is contained in the higher moments o
the distribution, causing us to overestimate the parame
error bars. Bearing these important caveats in mind,
nonetheless apply Eq. (7), using the analytic fits describ
in [17] to compute the relevant nonlinear power spectr
This changes the accuracy curves corresponding to Fig
for k ¿ 0.1h Mpc21, but only marginally. A more radi-
cal change occurs when including the linear bias factorb
(the ratio of the galaxy fluctuations to the underlying ma
ter fluctuations, which we assume to be scale independe
as an additional parameter, since in linear theory, it is p
fectly degenerate with the large-scale power normalizati
Q. The top panel of Fig. 2 shows the partial power deriv
tives with respect toQ, b, n, andh, and we see that non-
linear effects begin to break this degeneracy around
scalek , 0.1h Mpc21. Power spectra with wiggles can
not be accurately treated with this nonlinear formalism,
we have used the above-mentioned wiggle-free Bond a
Efstathiou transfer function fit [14] here to be conservativ
and avoid underestimating error bars.

Combining galaxy surveys and CMB experiments.—
So what is the bottom line? How well can future galax

FIG. 2. Parameter accuracies, nonlinear case.
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surveys constrain cosmological parameters? Since deg
eracies are crucial, especially when considering joint fi
to a dozen parameters as in the context of CMB expe
ments, a sensible answer must clearly take into accou
the degeneracy-breaking information from other source
It has recently been shown [3,4] that CMB experimen
suffer from a near-exact degeneracy between the spa
curvatureV and the cosmological constantL (since they
are virtually unable to distinguish between combination
that give the same angle-distance relationship), but th
degeneracy is likely to be independently broken by bo
supernova and lensing measurements. The second w
degeneracy for the Planck satellite links the normalizatio
Q to t (the optical depth from reionization), and partly
also to the scalar-to-tensor ratio. This second degenera
is an example where future galaxy surveys have the p
tential to substantially improve the situation. The bottom
panel of Fig. 2 shows the error bars onb andQ whenn
andh are assumed known, and it is seen that an accura
DQyQ ­ 1% is attained forl ­ 2pyk , 18h21 Mpc.
A fundamental limit onQ accuracy will probably arise
from partial degeneracy with the location and slope of th
spectrum (h andn) on small scales, so since these param
ters can only be measured to about 1% by Planck [3], t
Q accuracy from SDSS will at best be of the same orde
However, if this accuracy is indeed attainable despite th
above-mentioned caveats regarding nonlinearity, it wou
be quite a radical improvement over theDQyQ , 15%
that Planck alone can attain [3]. By breaking this dege
eracy, SDSS would also help Planck pin down the oth
parameters that were nearly degenerate withQ. For in-
stance, repeating the analysis of [3] with a mere 1% pri
uncertainty onQ, we find that the error bar on the reion-
ization optical depth drops from 0.16 to 0.03, which woul
make reionization detectable at1 2 s as late asz ­ 8 in
a standard CDM cosmology.

In conclusion, we have derived, tested, and applie
an approximate formula for the accuracy with which
large galaxy surveys can measure cosmological param
ters. Although our results indicate that such surveys c
substantially enhance the accuracy attainable from CM
measurements alone, a number of issues must be addre
before quantitative claims should be believed. (1) Ar
current calculations [17] of the nonlinear power spectru
sufficiently accurate for our application (when including
the effect of baryons, possible massive neutrinos, etc
en-
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(2) Does the non-Gaussianity of the cosmological densi
field on weakly nonlinear scales cause our approximatio
to substantially over- or underestimate the attainable acc
racy? (3) Is biasing sufficiently nonlinear on these scale
to invalidate our results?

Thus although Eq. (7) is in itself a rather crude approx
mation, the main source of uncertainty lies elsewhere:
our ability to model and extract information from clus-
tering in the marginally nonlinear regime. The nonlinea
domain appears to be a gold mine of cosmological info
mation, but one whose riches may prove extremely diffi
cult to extract.
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