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Measuring Cosmological Parameters with Galaxy Surveys
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We assess the accuracy with which future galaxy surveys can measure cosmological parameters. By
breaking parameter degeneracies of the Planck cosmic microwave background satellite, the Sloan digital
sky survey may be able to reduce the Planck error bars by about an order of magnitude on the large-scale
power normalization and the reionization optical depth, down to percent levels. However, pinpointing
attainable accuracies to within better than a factor of a few depends crucially on whether it will be
possible to extract useful information from the mildly nonlinear regime. [S0031-9007(97)04537-7]
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One of the main challenges in modern cosmology is tand its inversef~! can, crudely speaking, be thought of
refine and test the standard gravitational instability modeas the best possible covariance matrix for the measurement
of structure formation by precision measurements of iterrors on the parameters. The Cramér-Rao inequality [8]
free parameters: The slopeand normalizatiorQ of the  shows that no unbiased method whatsoever can measure
primordial spectrum of density fluctuations, the densitiegheith parameter with error bars (standard deviation) less
of various types of matter, etc. A seminal paper in thisthan1//F;;. If the other parameters are not known but
journal [1] recently showed that future cosmic microwaveare estimated from the data as well, the minimum standard
background (CMB) experiments such as the MAP andjeviation rises t¢F*1)§,/2.

Planck satellites would revolutionize this endeavor, allow- |n the approximation that the probability distributign
ing the simultaneous determination of a dozen parameteis a multivariate Gaussian with mean= (x) and covari-
to hitherto unprecedented accuracies. This prompted se¥nce matrixC = (xx’) — uu', Eq. (1) becomes [7,9]
eral more detailed studies [2—4], which confirmed this op-

timistic conclusion. F.. — ltr|:c—1 aC c-! BC} n op' c-! pm
. . ij .
A parallel effort towards precision cosmology is larger 2 a0, a6, a0, a0,
and more systematic galaxy redshift surveys. The largest (2)

currently available three-dimensional surveys contain_ . . ) )
about 25000 galaxies. The 2dF survey (described in [5]y NS equation was employed in all the above-mentioned
will measure 10 times as many, and the Sloan digital skyp@Pers on CMB parameter determination, since for an
survey (SDSS) is scheduled to acquifé redshifts within ~ @ll-Sky CMB map, the covariance matrx can be diago-
five years [5,6]. It is therefore quite timely to perform Nalized by a spherical harmonic expansion, making the
an analogous first assessment of the ability to measuf@PMputation ofF numerically trivial. For our galaxy
cosmological parameters with large galaxy surveys. Thi§urvey case, the situation is more difficult. The analog
is the purpose of the present Letter. We derive a usefl}f the CMB trick (a Fourier transformation) does not
approximation for large scales where clustering is lineardiagonalizeC, since only a finite spatial volume is probed.
and find that the greatest uncertainty by far lies in our abil-The accuracy of the assumed pridris of course readily
ity to extract useful information from the smaller scalestested given measured data
where the linearity assumption begins to break down. Since brute force application of Eg. (2) tends to obscure
The accuracy with which cosmological parameters caf® underlying physics, we will now derive a simple

be measured from a given data set is conveniently con@PProximation for= below, which allows a more intuitive
puted with the Fisher information matrix formalism (Seeunderstandlng of numerical results and shows the relative

[7] for a comprehensive review). In our case, the datdnformation contributipn from differe_nt scalés Ignoring

set can be viewed as av-dimensional vectox, whose redshift-space distortions and nonlinear clustering, all the
components; are the fluctuations in the galaxy density cosmological information i; contained in the galaxy power
relative to the mean inv disjoint cells that cover the SPECtrUmP(k). In the limit where the survey volume
three-dimensional survey volume in a fine grigis mod- 1S much larger than the scale of any featuresit), it
eled as a random variable whose probability distributior?@S been shown [10] that all the cosmological information
f(x;®) depends on a vector of cosmological parameterd? X is recovered wherP (k) is estimated with the FKP

® that we wish to estimate (for instance, we might haveMethod [11]. Let us therefore redefing to be not the
0, = n, 6, = Q, etc.). The Fisher matrix is defined by density fluctuation in theth spatial volume element, but

5 the average power measured with the FKP method in a
F, = _<‘“_”f> (1) thin shell of radiusk, in Fourier space, with widthik,
/ 00;00;/’ and volume elemenV, = 4wk2dk,/(27)3. With our
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notation, we can rewrite the FKP results [11] as Y SO B A B AL B
108 & .
Mp = P(ky) ., (3) ®, %8? %_/ ’——\\-‘;
"} 108 =
P(ky)P(k > 108 3
Cp = zw S » (4) 1(1) 2 Y
aneff(kn) 0.1 frl . (I_' g e T—;
where e |
s 0
_ N -2
a(r)P (k) T 3 e
Vert (k) = ———— | d’r. 5 g -4
s I O
'_"8 T T TTTTT T T T TTTTIT T T T T1T1T
Here ii(r) is the selection function of the survey, which 10 %1\ ' PARAMETERS
gives thea priori expectation value for the number density g n e uEASURED o
of galaxies. V. (k) can be interpreted as the effective 3 0.1 F ]“a
volume utilized for measuring the power at wave number ?é’; £
k, since the integrand will be of order unity in those regions e e ————————
where the cosmic sign&l(k) exceeds the Poissonian shot 10 r N7 ' PARAMETERS 1
noise1/i1, and typically gives only a small contribution ~  1¥ In QN e 1
from other regions. For a volume-limited survey,is g OlF - E
constant in the observed region, g (and hence the O‘O_i 3
Fisher matrix) is simply proportional to the survey volume. 0= E T y
Choosing the shells thick enough to contain many uncor- 10-2 0.01 0.1 1 10
related modes eacl,, Vs (k,) > 1, the central limit theo- k [1/(h™! Mpc)]

rem indicates that will be approximately Gaussian. Inthe
same limitV, Vg (k,) > 1, the second termin Eq. (2) will

be completely dominated by the first [12], so substituting ) )
Egs. (3) and (4) into Eq. (2) gives have tested Eq. (7) numerically by brute force manipu-
lations of theN X N matrices of Eq. (2) for a number of

FIG. 1. Parameter accuracies, linear case.

1 oP P Ve (kn)k2 dk,, cases withvV ~ 10*, and find that it is typically accurate
Fyj =~ 42 Z 90, (K») 871_ (k) P(k,)? - (6) {0 within a factor of two for a cold dark matter (CDM)
" ' power spectrum when the survey size2004 ! Mpc.
Replacing the sum by an integral and usiddn P =  The differences have two sources, with opposite sign,
dP /P, this reduces to the handy approximation which both grow in importance if we decrease the survey

L volume: (1) The effective number of modes probed is
P, - 277] m glnP dlnP w(k) dInk. 7) slightly larger thanV.¢; indicates, since the density field
k

w00, 00 just inside the survey volume is correlated with that just
_ 5 outside. This reduces error bars. (2) The measured power
where we have defined(k) = Ve (k)/A°, and the wave-  gpectrum is effectively smoothed on the scale of the survey

length isA = 27 /k. Equation (7) conveniently separates yolume, which can destroy information on the small

the effects of cosmology from those of the survey-specifigehavior of the power spectrum and on sharp features and
details. The former enter only through the Iogarithmicwigg|es_ This increases error bars.

derivativesy In P/a6;, which are plotted in Fig. 1forsome A llinear clustering example—Before discussing realis-
simple examples. The selection functiorand the geo- tjc nonlinear power spectra, we will now highlight some of
metric bounds of the survey volume (outside of whichine features of Eq. (7) with a simple linear power spectrum

n = 0) enter only via the weight functiom (k), which  example. Let us consider a CDM power spectrum of the
is essentially the number of independent modes of wavepprm

length A that fit into the volume probe@.s;). The to "
pangel of Fig. 1 shows the Weingl)t function for the nEain P(k) = Q*(nk/k)"T(nk)*. (8)
northern part of the SDSS [6] and for the SDSS bright redOn a log-log plot such as Fig. 1 (top panel), varying the
galaxy (BRG) sample. The latter is assumed to be volumeaormalizationQ shifts the spectrum vertically, whereas
limited at 100042 ~! Mpc, containingl0® galaxies with a varying the parametes shifts it horizontally. We chose
bias factorb = 2. k. = 0.025h Mpc~!, roughly the scale where® takes
We close this section by emphasizing that Eq. (7) is ats maximum, so varying: tilts the spectrum about its
rather crude approximation, since it ignores edge effectgeak. The transfer functioff is computed numerically
redshift space distortions, and, most importantly, nonlineawith the cCMBFAST software [13] for a Hubble constant
clustering. We will return to the lastissue in thenlinear = = 0.5, baryon fractio), = 0.06, CDM fractionQ),. =
clusteringsection. To quantify the edge effect errors, we0.48, and vacuum density (relative cosmological constant)
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Q, = 0.46, chosen to be virtually indistinguishable from a will be infinite. For instancej InP/dInn anddlnP/on
Bond and Efstathiou model fit [14] with “shape parameter’are essentially degenerate ff,, < 0.1z Mpc™' (they
I' = hQ. = 025. For our fiducial modelp = n =1  both look like straight lines vanishing &t = k., and
andQ is such that th&8:~! Mpc normalizationisrs = 1. the curvature ofaInP/dlnn at k < 0.01h Mpc™! is

Partial derivatives needed for Eq. (7) are plotted in thdrrelevant since these scales receive so little weight), which
second panel of Fig. 1.9InP/aInQ =2, dInP/dn = is why Inn andn have such large uncertainties in the
In(k/k.), and aInP/dlnnp = dlnP/dlnk, simply the bottom panel untilgInP/dInn bends downward and
logarithmic slope of the power spectrum, ranging frerh  breaks this near degeneracykat- 0.12 Mpc™!.
to —3 and vanishing at the peak (together witim P /9n). Nonlinear clustering—Since much of the information
The dependence on all other parametgrenters via the on cosmological parameters comes from small scales,
transfer function. Figure 1 shows only one such examplenonlinear clustering cannot be ignored when assessing
the baryon fraction(,,. the attainable accuracy. The power spectrum remains a

(i) Single-parameter accuracy-The third panel in perfectly well-defined quantity even in the deeply non-
Fig. 1 shows the error bartsg; = l/F}i/2 on each parame- linear regime. However, the density field becomes non-
ter that would result from the SDSS BRG survey if the Gaussian, which causes Eq. (2) [and hence also Eq. (7)]
true values of all other parameters were known, as a funde misestimate the Fisher matrix in two competing ways:
tion of the upper limit of integratiof,.x, with knin = 0. (1) The variance of the power spectrum estimates tends to
As Eq. (7) shows, the informatioR;; on a parameter is exceed the value given by Eq. (4), causing us to under-
simply the square of the corresponding curve in the secestimate the parameter error bars. (2) Additional cosmo-
ond panel, integrated against the weight function in thdogical information is contained in the higher moments of
top panel. For instance, there is no information alfeyt  the distribution, causing us to overestimate the parameter
on scaleg < k., since the physical impact of baryons on error bars. Bearing these important caveats in mind, we
fluctuation growth is different from that of CDM only on nonetheless apply Eq. (7), using the analytic fits described
scales entering the horizon before matter and radiation dén [17] to compute the relevant nonlinear power spectra.
couple at; ~ 10° [15]. Also, we see that the bulk of the This changes the accuracy curves corresponding to Fig. 1
information on{}, is coming not from the characteristic for k > 0.12 Mpc™!, but only marginally. A more radi-
baryon-induced acoustic oscillations (wiggles) in the transeal change occurs when including the linear bias fabtor
fer function, but from the overall suppression of power(the ratio of the galaxy fluctuations to the underlying mat-
rightward of the peak. Although the wiggles help some-ter fluctuations, which we assume to be scale independent)
what in breaking parameter degeneracy (discussed belowgs an additional parameter, since in linear theory, it is per-
this can be somewhat misleading, since all but perhapiectly degenerate with the large-scale power normalization
the first oscillation are likely to have been smeared out). The top panel of Fig. 2 shows the partial power deriva-
by mode coupling as the clustering goes nonlinear. For &ves with respect t@, b, n, andn, and we see that non-
more detailed treatment of the constraints(®s submit-  linear effects begin to break this degeneracy around the
ted after the present paper, see [16]. scalek ~ 0.1h Mpc~!. Power spectra with wiggles can-

How should the limits of integratiorkf,, andkm,x) be  not be accurately treated with this nonlinear formalism, so
chosen? Since information on scales comparable to ange have used the above-mentioned wiggle-free Bond and
larger than the survey is destroyed by smearing and medgfstathiou transfer function fit [14] here to be conservative
removal effects, it is natural to chofer /kn, to be of and avoid underestimating error bars.
order the survey size. The choice &af,x, on the other Combining galaxy surveys and CMB experiments.
hand, is seen to be of paramount importance, sincéthe So what is the bottom line? How well can future galaxy
phase space factor causesk) to peak far shortward of
the power spectrum peak scidle where nonlinear effects
become important. We defer this issue to tlanlinear
clusteringsection.

(i) Degeneracies—The bottom panel in Fig. 1 shows
the error barsAg; = (F~')!/> on each parameter that .
would result if a joint fit to all four parameters were e =S USSR —
performed, and no other constraints (e.g., from CMB maps) 10 \ Q&b

) . 1 MEASURED
were available for the other three parameters. Equation (7) < o1 JOINTLY
can be interpreted a8 being the dot products of a set '

T L B T L el ]

IS
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dlnP /40,

Q&b
MEASURED

LR L e L

of vectors (the functions)InP/a6;), where the inner ?.5)_13 SEPARATELY
product is defined by the weight function. If any of ! E P B R
the functions in the second panel can be written as a 1072 0.01 0.1 1 10
linear combination of some others, thErwill clearly be k [1/(h7 Mpe)]

singular, and the errors on the corresponding parameters FIG. 2. Parameter accuracies, nonlinear case.
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surveys constrain cosmological parameters? Since degef®) Does the non-Gaussianity of the cosmological density
eracies are crucial, especially when considering joint fitdield on weakly nonlinear scales cause our approximation
to a dozen parameters as in the context of CMB experito substantially over- or underestimate the attainable accu-
ments, a sensible answer must clearly take into accoumacy? (3) Is biasing sufficiently nonlinear on these scales
the degeneracy-breaking information from other sourcedo invalidate our results?

It has recently been shown [3,4] that CMB experiments Thus although Eq. (7) is in itself a rather crude approxi-
suffer from a near-exact degeneracy between the spatialation, the main source of uncertainty lies elsewhere: in
curvature() and the cosmological constant(since they our ability to model and extract information from clus-
are virtually unable to distinguish between combinationdering in the marginally nonlinear regime. The nonlinear
that give the same angle-distance relationship), but thidomain appears to be a gold mine of cosmological infor-
degeneracy is likely to be independently broken by bothmation, but one whose riches may prove extremely diffi-
supernova and lensing measurements. The second worsilt to extract.
degeneracy for the Planck satellite links the normalization

Q to 7 (the optical depth from reionization), and partly

also to the scalar-to-tensor ratio. This second degeneracy

is an example where future galaxy surveys have the po- _ _
tential to substantially improve the situation. The bottom __*Electronic address: max@ias.edu

panel of Fig. 2 shows the error bars brand @ whenn [1] G. Jungman, M. Kamionkowski, A. Kosowsky, and D. N.

o Spergel, Phys. Rev. Leff6, 1007 (1996).
andn are assumed known, and it is seen that an accurac;tz] G. Jungman, M. Kamionkowski, A. Kosowsky, and D. N

AQ/Q = 1% is attained forA = 277/]‘_ ~ 18n7! Mpc. Spergel, Phys. Rev. B4, 1332 (1996).

A fundamental limit onQ accuracy will probably arise (3] 3'R. Bond, G. Efstathiou, and M. Tegmark, astro-ph/
from partial degeneracy with the location and slope of the ~ g9702100.

spectrum ¢ andn) on small scales, so since these parame-[4] M. Zzaldarriaga, D. Spergel, and U. Seljak, astro-ph/
ters can only be measured to about 1% by Planck [3], the 9702157, 1997.

Q accuracy from SDSS will at best be of the same order.[5] M. Strauss, astro-ph/9610033, 1997.

However, if this accuracy is indeed attainable despite thel6] J.E. Gunn and D.H. Weinberg, iWide-Field Spectro-
above-mentioned caveats regarding nonlinearity, it would ~ Scopy and the Distant Universegited by S.J. Maddox
be quite a radical improvement over the) /0 ~ 15% and A. Aragon-Salamanca (World Scientific, Singapore,
that Planck alone can attain [3]. By breaking this degen- 1995).

. [7] M. Tegmark, A.N. Taylor, and A.F. Heavens, Astrophys.
eracy, SDSS would also help Planck pin down the other 3,480, 22 (1997).

parameters that were nearly degenerate with For in- 8] M.G. Kendall and A. Stuart,The Advanced Theory of
stance, repeating the analysis of [3] with a mere 1% prior " * siatistics(Griffin, London, 1969), Vol. II.
uncertainty onQ, we find that the error bar on the reion- [9] M. S. Vogeley and A.S. Szalay, Astrophys. 465 43
ization optical depth drops from 0.16 to 0.03, which would (1996).
make reionization detectable ht— o as late ag = 8in  [10] A.J.S. Hamilton, Mon. Not. R. Astron. So@89 285
a standard CDM cosmology. (1997);289, 295 (1997).

In conclusion, we have derived, tested, and applied11] H.A. Feldman, N. Kaiser, and J. A. Peacock, Astrophys.
an approximate formula for the accuracy with which  J-426 23 (1994).
large galaxy surveys can measure cosmological paramé&t2l M. Tegmark, Phys. Rev. 55, 5895 (1997).
ters. Although our results indicate that such surveys caf-s) Ul.9956eljak and M. Zaldarriaga, Astrophys. 469, 437
substantially enhance the accuracy attainable from CM ( )

f IAE] J.R. Bond and G. Efstathiou, Astrophys. 285 L45
measurements alone, a number of issues must be addresse (1984).

before quantitative claims should be believed. (l) Are[15] W. Hu and N. Sugiyama, Astrophys. 471, 542 (1996).
current calculations [17] of the nonlinear power spectrunyi6] D. Goldberg and M. Strauss, astro-ph/9707209, 1997.
sufficiently accurate for our application (when including[17] B. Jain, H.J. Mo, and S.D.M. White, Mon. Not.
the effect of baryons, possible massive neutrinos, etc.)? R. Astron. Soc276, L25 (1995).

3809



