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With supersymmetric quantum mechanics, a coupled-channel potential is determined which is phase
equivalent to a given one, and whose bound spectrum is identical except for one arbitrary bound state
which is removed. The bound state is suppressed by a first supersymmetric transformation and the
original scattering matrix is recovered with a second transformation. The resulting potential presents an
r22 singularity at the origin in some channels. The method is applied to the removal of the nonphysical
state of the deep3S1-3D1 neutron-proton Moscow potential and transforms it into a shallow potential
with a repulsive core. [S0031-9007(97)04528-6]

PACS numbers: 03.65.Nk, 13.75.Cs
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A simple way for describing the interaction betwee
two composite particles is to use a local potential. Su
a potential can often reproduce both the bound sta
formed by the interacting particles, and their scatterin
properties. However, since these particles have an
ternal structure, an ambiguity may arise between diffe
ent potential families:shallow potentials, which possess
physical bound states only, anddeeppotentials, which in
addition have nonphysical bound states simulating the
fect of the Pauli principle between the constituent ferm
ons [1]. Despite such differences, potentials may be pha
equivalent; i.e., they may share the same scattering m
trix at all energies. Studying the relations between pha
equivalent potentials differing by their bound spectrum
thus an important physical problem.

In the single-channel case, supersymmetric quant
mechanics [2] provides a powerful tool for performin
this study, since it allows removing bound states fro
a given deep potential without modifying its phase sh
[3]. More general transformations (addition of boun
states, modification of a bound-state energy) are a
possible [4–6], and provide the most general form
phase-equivalent potentials for arbitrary modifications
the bound spectrum [7].

An ambiguity between deep and shallow potentia
also appears in coupled-channel cases. An import
example in nuclear physics is the coexistence of ve
different families of nucleon-nucleon potentials: sha
low potentials [8–10], which display only the deutero
bound state at22.22 MeV in the 3S1-3D1 channel, and
deep potentials [11–13], which have an additional no
physical bound state simulating the underlying qua
structure (see Ref. [14] for details). To analyze suc
ambiguities, the derivation of phase-equivalent potentia
must be extended to coupled channels, and supersymm
ric quantum mechanics is an ideal tool to perform it. I
Refs. [15,16], the supersymmetric formalism is genera
ized to the coupled-channel case. However, an attem
to perform a phase-equivalent transformation removing
bound state failed [17]. The aim of this Letter is to sho
that a phase-equivalent bound-state removal is in fact p
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sible, provided sufficiently general supersymmetric tran
formations are used.

In this Letter, we consider for a given partial wave
HamiltonianH0 couplingn two-body channels with equa
massesm for simplicity, but with arbitrary thresholds.
The system ofn coupled Schrödinger equations at ener
E (in units h̄ ­ 2m ­ 1) reads

f2d2ydr2 1 V0srdgF0sE, rd ­ EF0sE, rd . (1)

The effective potentialV0 is ann 3 n Hermitian matrix,
which tends to

V0srd !
r!`

D (2)

asymptotically. Then 3 n matrix D is real and diagonal,
and its diagonal elementDii is the threshold of channe
i si ­ 1, . . . , nd. A solution F0 of the system can be
either a column eigenvector or a matrix whose colum
are such eigenvectors. The “0” subscripts distinguish
initial Hamiltonian H0 and its solutions from others tha
are built in the following.

Let us assume that this system has at least
bound state at real energyE lower than all thresholds;
i.e., a normalized eigenvectorc1

0 exists at this energy
[
R`

0 c
1y
0 sE , tdc1

0 sE , td dt ­ 1, where cy is the adjoint
row vector of c]. In this Letter, we construct a new
potential which has the sameS matrix and the same
bound spectrum asV0, with the exception ofE which
is removed. It will be proved below that the Hamiltonia
H2 with potential matrix

V2srd ­ V0srd 2 2
d
dr

c
1
0 sE , rdc1y

0 sE , rdRr
0 c

1y
0 sE , tdc1

0 sE , td dt
(3)

satisfies these properties. The subscript “2” refers
the number of supersymmetric transformations applied
the Hamiltonian. Equation (3) is valid with or withou
thresholds. The removed state may be any bound s
of the system, as in the single-channel case [6], since
denominator is always positive. All solutionsF2sE, rd
© 1997 The American Physical Society
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of H2 that are bounded at infinity, and in particular it
bound and scattering states, can be expressed in term
solutionsF0 of H0 as

F2sEd ­ F0sEd 1 c1
0 sE d

R
`

r c
1y
0 sE dF0sEd dtRr

0 c
1y
0 sE dc1

0 sE d dt
, (4)

whereF0 and F2 can be either vectors or matrices (w
sometimes omit the position variables for brevity). Th
equation shows thatF0 and F2 have the same asymp
totic behavior, which means thatV0 and V2 are phase
equivalent. WhenF0 ­ c

1
0 , a study of Eq. (4) at smallr

shows that the initial bound state does not transform in
a square-integrable state. However, proving thatH2 has
no bound state at this energy is more delicate and will
discussed below.

Equations (3) and (4) can also be proved by dire
verification. They can be used numerically without maj
difficulty: Only bound- and scattering-state calculation
for the initial Schrödinger equation are needed, followe
by simple integrations and derivations. The reader main
interested in the physical content of the method m
directly proceed to the neutron-proton example.

We now establish these results with two supersymm
ric transformations. The initial coupled-channel Hami
tonian is factorized as [15]

H0 ; 2d2ydr2 1 V0srd ­ A1
0 A2

0 1 E , (5)

whereE is the factorization energy, andA6
0 read

A6
0 ­ sA7

0 dy ­ 6dydr 1 U0srd , (6)

with then 3 n superpotential matrix

U0srd ­ C0
0sE , rdC21

0 sE , rd . (7)

In Eq. (7), the factorization solutionC0 is a matrix,
solution of (1) at energyE , and the prime means a
derivation with respect tor. Notice thatU0 is defined
only if the columns ofC0 are linearly independent.

The partner Hamiltonian

H1 ­ A2
0 A1

0 1 E (8)

corresponds to a new effective potential

V1srd ­ V0srd 2 2U 0
0srd . (9)

This potential is Hermitian whenC0 is self-conjugate
[16], i.e., when [18]

W fC0sE , rd, C0sE , rdg ­ 0 (10)

for anyr, where the Wronskian is defined asWfC, Fg ;
CyF0 2 C0yF.

This supersymmetric transformation removes the bou
state from the spectrum of the initial HamiltonianH0 if
s
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C0 reads

C0sE , rd ­ fc1
0 sE , rd, c2

0 sE , rd, . . . , cn
0 sE , rdg , (11)

where c
1
0 is the bound-state eigenvector, and thec

i
0

for i ­ 2, . . . , n are linearly independent column eigen
vectors of H0 with eigenvalueE . In Refs. [15,16],
these other eigenvectors are chosen regular at the orig
hence, they exponentially grow at infinity. As shown in
Ref. [17], this choice does not allow the construction o
phase-equivalent potentials. We make a different choi
here: The other eigenvectors are chosen to exponentia
decrease at infinity, but are then singular at the origi
Thus, for a diagonal matrixk with kii ­ s2E 1 Diid1y2,
one has

C0sE , rd ,
r!`

exps2krdC0 , (12)

where C0 is an invertible constant matrix, so that the
columns ofC0 are linearly independent. The threshold
are not affected by the transformation [see Eqs. (7) a
(9)]. Equation (12) shows thatWfC0, C0g vanishes at
infinity. When a Wronskian of solutions of Eq. (1) is zero
at infinity, it can be written as

WfFsE, rd, CsF, rdg ­ sF 2 Ed
Z `

r
FysEdCsFd dt ,

(13)

which implies Eq. (10).
For E fi E , the solutions ofH1 can be deduced from

the intertwinning relationA2
0 H0 ­ H1A2

0 and read

F1sE, rd ­ A2
0 F0sE, rd (14a)

­ C
21y
0 sE , rdW fF0sE, rd, C0sE , rdgy

(14b)

­ sE 2 EdC21y
0 sE d

Z `

r
C

y
0 sE dF0sEd dt .

(14c)

The asymptotic behavior of Eq. (14a) for positiveE
(above all thresholds) provides the modification of th
initial S matrix S0 into [15,16]

S1skd ­ s2ik 2 kdS0skd sik 2 kd21, (15)

wherek is a diagonal matrix with elementskii ­ sE 2

Diid1y2. The pole atk ­ ik is suppressed, and henceH1

has no bound state atE . Moreover, sinceS1skd fi S0skd,
V1 is not phase equivalent toV0.

A second factorization leading to a new Hamiltonia
H2 (i.e., a factorization ofH1 with Eqs. (5)–(7) where
subscript “0” is replaced by subscript “1”) restores theS
matrix when [17]

S2skd ­ s2ik 1 kdS1skd sik 1 kd21. (16)
3803
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Indeed, sinceskiid2 1 skiid2 ­ E 2 E for all channels,
Eqs. (15) and (16) imply phase equivalence

S2skd ­ S0skd . (17)

Equation (16) is true for a self-conjugate factorizatio
matrix C1, solution ofH1 at energyE and satisfying

C1sE , rd ,
r!`

expskrdC1 , (18)

where C1 is a constant invertible matrix. A direct
verification shows thatC

21y
0 is such a solution, with

C1 ­ C
21y
0 . For constant matricesK andL with LyK ­

KyL, other self-conjugate solutions read [18]

C1sE , rd ­ C
21y
0 sE , rd

3

Ω
K 2

∑Z `

r
C

y
0 sE , tdC0sE , td dt

∏
L

æ
,

(19)

and satisfy (18) withK invertible.
Phase equivalence (17) implies thatS2 has a pole atik

sinceH0 has a bound state at energyE . However, as in
the single-channel case [19], this pole may be due to
pole of the Jost matrix in the lower halfk plane, and not
to a zero of the Jost matrix in the upper halfk plane as
for a bound state [20]. Below, we show in a particula
case that the second transformation does not reintroduc
bound state at energyE whenK andL are chosen as

Kij ­ dij, Lij ­ di1dj1 . (20)

Using Eqs. (19) and (20) to constructU1 ­ C
0
1C

21
1 and

V2 ­ V1 2 2U 0
1 leads to Eq. (3). The thresholds are no

affected by the second transformation. ForE fi E , the
solutions of H1 are expressed in terms of those ofH0
with Eq. (14c) and the solutions ofH2 in terms of those
of H1 with Eq. (14a) (with subscripts increased by 1
Combining these two results leads to Eq. (4).

At the factorization energy,C
21y
1 is solution ofH2. It

consists ofn eigenvectors exponentially decreasing an
linearly independent at infinity, as deduced from (18
The new HamiltonianH2 has thus no bound state atE
if these vectors are singular and linearly independent
the origin, i.e., if the columns ofC1 are regular and
linearly independent at the origin. This behavior ca
be studied with a series expansion of Eq. (19), whic
provides conditions onK and L. Such a study cannot
be performed in all generality in this Letter because
requires assumptions on the behavior of the potential
the origin. We limit ourselves to a particular case whic
simplifies calculations. However, Eqs. (3) and (4) a
valid in a more general context.

For simplicity, the initial potentialV0 is assumed here
to behave near the origin like

V0srd ,
r!0

n0sn0 1 1dr22, (21)

where n0 is a real and diagonal matrix. Moreover, w
assume that the potential of channel 1 is less singular th
3804
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the others:n11
0 , n

ii
0 for i ­ 2, . . . , n. This is the case in

the example treated below. With these assumptions, b
V1 andV2 behave likeV0 in Eq. (21) but with differentn
and the corresponding systems of equations decouple n
the origin. For example, the leading terms ofC0 read

C0sE , rd ,
r!0

srn011b1
0 , r2n0b2

0, . . . , r2n0 bn
0 d , (22)

where thebi
0 are constant column vectors. The firs

column of C0 is regular at the origin, while then 2 1
others are singular. In the same way, imposing t
regularity ofC1 leads to Eqs. (20).

Equations (7), (9), and (22) provide the behavior o
V1 at the origin:n11

1 ­ n
11
0 1 1 andn

ii
1 ­ n

ii
0 2 1 si ­

2, . . . , nd. The behavior ofV2 at the origin can be
deduced from that ofC1 and reads like in Eq. (21) with
n

ii
2 ­ n

ii
1 1 1 for all i. Combining these results allows

expressing theV2 singularity in terms of theV0 singularity
by

n11
2 ­ n11

0 1 2 , (23a)

nii
2 ­ nii

0 si ­ 2, . . . , nd . (23b)

The lowest singularity parameter increases by two un
(as in the single-channel case [3]), while all others rema
unchanged. When one diagonal potential ofV0 is not
assumed to be less singular than the others, a m
complicated result is obtained: The increase of th
singularity is shared between the least singular chann
and their coupling potentials also become singular.

We now apply the method to a neutron-proton3S1-3D1

potential. We start from theD-type Moscow potential
of Ref. [13], which has a nonphysical bound state
2561 MeV, simulating a Pauli forbidden state. The

FIG. 1. Neutron-proton 3S1-3D1 Moscow potential (V0,
dashed lines) of Ref. [13] with a Pauli forbidden bound sta
(FBS) at 2561 MeV, and phase-equivalent shallow potentia
(V2, solid lines) obtained by removal of this bound state wit
Eq. (3). The effective potentials are represented with sup
scripts referring to the channel as in the text (1 forS wave,
2 for D wave).
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FIG. 2. Deuteron normalized wave function of the dee
potential V0 (c0, dashed lines), and of its supersymmetri
shallow partnerV2 (c2, solid lines), as obtained by Eq. (4)
(superscript 1 forS wave, 2 forD wave).

effective potentials [Eqs. (33)–(37) of Ref. [13] ] are
represented in Fig. 1 by dashed lines. There is n
threshold sD11 ­ D22 ­ 0d, and one has n

11
0 ­ 0

(S wave) andn
22
0 ­ 2 (D wave). By removing the deep

bound state, a shallow effective potential is obtaine
represented by solid lines in Fig. 1. The singularity of th
S-wave potential increases by two following Eq. (23a
and creates a repulsive core in qualitative agreeme
with existing shallow potentials [8–10]. A similar resul
was obtained in Ref. [14] with an approximate metho
for a previous version of the Moscow potential [11]
Strikingly, the D-wave potential and the coupling term
are not much modified.

Physical properties of both potential families are com
pared in Refs. [11–14]. Let us briefly discuss here th
deuteron wave function. Both the initial and transforme
potentials have a physical bound state at22.22 MeV, cor-
responding to the deuteron ground state. TheS and D
components of this bound state are represented in Fig
The wave function of the deep potential, obtained by n
merical resolution of Eq. (1), has a node in bothS and
D channels, but only theS-wave node is significant (in
previous versions of the Moscow potential [11], theD
wave also had a marked node, whose existence does
agree with microscopic quark models [13]). These nod
disappear in the wave function of the shallow potentia
calculated by Eq. (4), and are replaced by anr3 behavior
near the origin, in agreement with the singularity mod
fication (23). Figure 2 also shows that both wave fun
tions have very close asymptotic behaviors. This is al
true for scattering states, which confirms the phase equi
lence between both potentials.

In conclusion, supersymmetric quantum mechanics
lows the construction of phase-equivalent potentials
the coupled-channel case, as it does in the single-chan
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case. Previous attempts to derive phase-equivalent pote
tials by supersymmetry were unsuccessful because of
too restricted choice of factorization solutions. The cen
tral result of this Letter [Eqs. (3) and (4)] is valid un-
der broader circumstances than the case for which th
proof is discussed. A systematic study of all supersym
metric transformations in the coupled-channel case shou
lead, as in the single-channel case, (i) to arbitrary modi
fications of the bound spectrum without modification of
the S matrix [7], and (ii) to approximate solutions of the
inverse problem with rationalS-matrix expansions [21].
This general study is under way.
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