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Supersymmetry between Phase-Equivalent Coupled-Channel Potentials
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With supersymmetric quantum mechanics, a coupled-channel potential is determined which is phase
equivalent to a given one, and whose bound spectrum is identical except for one arbitrary bound state
which is removed. The bound state is suppressed by a first supersymmetric transformation and the
original scattering matrix is recovered with a second transformation. The resulting potential presents an
r~2 singularity at the origin in some channels. The method is applied to the removal of the nonphysical
state of the deepS;->*D; neutron-proton Moscow potential and transforms it into a shallow potential
with a repulsive core. [S0031-9007(97)04528-6]

PACS numbers: 03.65.Nk, 13.75.Cs

A simple way for describing the interaction betweensible, provided sufficiently general supersymmetric trans-
two composite particles is to use a local potential. Suchiormations are used.
a potential can often reproduce both the bound states In this Letter, we consider for a given partial wave a
formed by the interacting particles, and their scatteringHamiltonianH, couplingn two-body channels with equal
properties. However, since these particles have an immassesn for simplicity, but with arbitrary thresholds.
ternal structure, an ambiguity may arise between differThe system ofi coupled Schroédinger equations at energy
ent potential familiesshallow potentials, which possess E (in unitsi = 2m = 1) reads
physical bound states only, agéeppotentials, which in
addition have nonphysical bound states simulating the ef- [—d?/dr* + Vo(r)]®o(E,r) = E®(E,r). (1)
fect of the Pauli principle between the constituent fermi-
ons [1]. Despite such differences, potentials may be phasghe effective potentialy is ann X n Hermitian matrix,
equivalent; i.e., they may share the same scattering mavhich tends to
trix at all energies. Studying the relations between phase-
equivalent potentials differing by their bound spectrum is Vo(r) [ A (2)
thus an important physical problem. . . .
In the single-channel case, supersymmetric quanturﬁsymptOt!Cally' The: X n;natnxA is real and diagonal,
mechanics [2] provides a powerful tool for performing ?‘”‘?' its diagonal elemen'x is the threshold of channel
this study, since it allows removing bound states from' (i =1,....n). A solution @, of the system can be

a given deep potential without modifying its phase shifte'ther a cqlumn e|genvector“oi a matrix Whps_e co_Iumns
[3]. More general transformations (addition of bound '€ such eigenvectors. The 0 su_bscnpts distinguish the
itial Hamiltonian Hy and its solutions from others that

states, moadification of a bound-state energy) are alst) o .
possible [4-6], and provide the most general form oft'® built in the following. .
phase-equivalent potentials for arbitrary modifications of Let us assume that this system has at least _one
the bound spectrum [7]. _bound state a_t real 9nerg7y“ Iovxller t_han all thresholds,
An ambiguity between deep and shallow potentials-€:’ aﬁnormahfed eigenvectak, exists at this energy
also appears in coupled-channel cases. An importaftfo %o (£.0%0(E,1)dr =1, where g is the adjoint
example in nuclear physics is the coexistence of veryoW vector of 4. In this Letter, we construct a new
different families of nucleon-nucleon potentials: shal-Potential which has the samg matrix and the same
low potentials [8—10], which display only the deuteronbound spectrum a§, with the exception ofE" which
bound state at-2.22 MeV in the 3§,-*D, channel, and is removed. It will be proved below that the Hamiltonian
deep potentials [11—13], which have an additional non#2 With potential matrix
physical bound state simulating the underlying quark ! 1+
structure (see Ref. [14] for details). To analyze such y,(;) = vy(r) — 2i ‘pol(ff’r)% (Z.r) 3)
ambiguities, the derivation of phase-equivalent potentials dr [t (E, 0 (E, 1) dt
must be extended to coupled channels, and supersymmet-
ric quantum mechanics is an ideal tool to perform it. Insatisfies these properties. The subscript “2” refers to
Refs. [15,16], the supersymmetric formalism is generalthe number of supersymmetric transformations applied to
ized to the coupled-channel case. However, an attemphe Hamiltonian. Equation (3) is valid with or without
to perform a phase-equivalent transformation removing ghresholds. The removed state may be any bound state
bound state failed [17]. The aim of this Letter is to showof the system, as in the single-channel case [6], since the
that a phase-equivalent bound-state removal is in fact postenominator is always positive. All solutionB,(E, r)
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of H, that are bounded at infinity, and in particular its ¥, reads
bound and scattering states, can be expressed in terms of
solutions®, of H, as Yo(E.r) = [ (E.r). 5 (E.r)..... ¢ (E.r)], (11)

By(E) = Do(E) + () [7 " (E)Do(E) d (4) Where gy is the bound-state eigenvector, and tié
1K lp&*(f)%(f)dt ’ for i = 2,...,n are linearly independent column eigen-
vectors of Hy with eigenvalueZ. In Refs. [15,16],
where @, and ®, can be either vectors or matrices (we these other eigenvectors are chosen regular at the origin;
sometimes omit the position variables for brevity). Thishence, they exponentially grow at infinity. As shown in
equation shows tha®, and ®, have the same asymp- Ref. [17], this choice does not allow the construction of
totic behavior, which means that, and V, are phase phase-equivalent potentials. We make a different choice
equivalent. Wherb, = y¢, a study of Eq. (4) atsmal  here: The other eigenvectors are chosen to exponentially
shows that the initial bound state does not transform intglecrease at infinity, but are then singular at the origin.
a square-integrable state. However, proving Hathas ~ Thus, for a diagonal matrix with ' = (= + A)!/2,
no bound state at this energy is more delicate and will b@ne has
discussed below.
Equations (3) and (4) can also be proved by direct Wo(E,r) ~ exp(—kr)Co, (12)
verification. They can be used numerically without major

difficulty: Only bound- and scattering-state calculations : .
for the initial Schrédinger equation are needed, foIIoweu‘:oIumnS of'¥ are linearly independent. The thresholds

by simple integrations and derivations. The reader mainl;?‘re not affected by the transformation [see Egs. (7) and

; ; : 9)]. Equation (12) shows tha/[V,, W] vanishes at
interested in the physical content of the method may™/". : ; .
directly proceed toF:hZ neutron-proton example. Xlgnflnlty. When a Wronskian of solutions of Eq. (1) is zero

We now establish these results with two supersymmet"glt infinity, it can be written as

ric transformations. The initial coupled-channel Hamil- WID(E, r), W(F,r)] = (F — E) fx ot (E)W(F) di
tonian is factorized as [15] T ’ ; ’

where Cy is an invertible constant matrix, so that the

(13)
Hy = —d*/dr® + Vo(r) = AJ A, + E, 5
° ° 070 O hich implies Eq. (10).
whereE is the factorization energy, ant} read For E # E, the solutions of; can be deduced from
the intertwinning relatiom, Hy = H1A, and read

Ay = (A = xd/dr + Uy(r), (6)
D(E,r) = A, Po(E, r) (14a)
with then X n superpotential matrix 1t
=Wy (E,)WIPo(E, 1), Yo(E, )]

Uo(r) = Wo(E,r)¥y ' (E,r). (7) (14b)
In Eg. (7), the factorization solutionV, is a matrix, _ . -1t [x 1
solution of (1) at energyE, and the prime means a (E — Ey¥o (E) . Yo (E)Do(E) dr.
derivation with respect ta. Notice thatU, is defined (14c)
only if the columns of¥, are linearly independent.

The partner Hamiltonian The asymptotic behavior of Eg. (14a) for positive

o (above all thresholds) provides the modification of the
Hy =AjAy + E (8) initial S matrix S into [15,16]
corresponds to a new effective potential S1(k) = (—ik — K)So(k) (ik — k)", (15)
— _ / .
Vilr) = Volr) = 2Uq(r). ©) Wher/ek is a diagonal matrix with elements’ = (E —

. I L : P AN)1/2 The pole atk = ik is suppressed, and henke
This _potent|al is Hermitian whenV, is self-conjugate has no bound state &. Moreover, since, (k) # So(k).
[16], i.e., when [18] . .

V1 is not phase equivalent .
WWo(E, r), ¥o(E,r)] = 0 (10) A _second fact(_)rizgtion Ieading to a new Hamiltonian
H, (i.e., a factorization off; with Egs. (5)—(7) where
for any r, where the Wronskian is defined 8§ ¥, ®] =  subscript “0" is replaced by subscript “1”) restores the
vip — ¢, matrix when [17]

This supersymmetric transformation removes the bound

state from the spectrum of the initial Hamiltonidfy if Sy(k) = (—ik + k)S1(k) (ik + )~ L. (16)
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Indeed, sincgki)? + (k)2 = E — ‘E for all channels, the othersy}' < v fori = 2,...,n. This is the case in
Egs. (15) and (16) imply phase equivalence the example treated below. With these assumptions, both
_ V1 andV, behave likeV, in Eq. (21) but with different
Sa(k) = So(k). A7) andthe corresponding systems of equations decouple near
Equation (16) is true for a self-conjugate factorizationthe origin. For example, the leading terms'j read

matrix ¥y, solution ofH; at energyZ and satisfying Wo(E,r) ~ (" b) b bl (22)
9 r_>0 9 LR b

\Pl(f, }") ~ exp(Kr)C1 s (18) )
i — ) . ) where theb; are constant column vectors. The first
where C; is a constant invertible matrix. A direct column of W, is regular at the origin, while the — 1

e “1t . . .

C = CO_IT. For constant matrice& andL with LTK = regularity of ¥, leads to Egs. (20).
KTL, other self-conjugate solutions read [18] Equations (7), (9), and (22) provide the behavior of
SRS ) IR b i i -
W\(E.r) = \P&”(f,r) V, at the originiv; = vy + landv) = vy — 1 (i

. 2,...,n). The behavior ofV, at the origin can be
% {K B {f W (E. W E. 1) dt:|L}, deduced from that of; and reads like in Eq. (21) with

ii

vy = p{' + 1 for all i. Combining these results allows
(19)  expressing th&, singularity in terms of the/, singularity
b

and satisfy (18) with invertible. y

_ Phase equivalence (17) implies tisathas a pole atk il =il + 2, (23a)
sinceH, has a bound state at eneryy However, as in B N
the single-channel case [19], this pole may be due to a vy = vy i=2,...,n). (23b)

pole of the Jost matrix in the lower hatf plane, and not ) ] ) ]
to a zero of the Jost matrix in the upper halplane as The lowest singularity parameter increases by two units

for a bound state [20]. Below, we show in a particular(@S in the single-channel case [3]), while all others remain
case that the second transformation does not reintroduce“®#changed. When one diagonal potential Vf is not

bound state at energ§ whenk andL are chosen as assumed to be Ies; singqlar than the. others, a more
By B complicated result is obtained: The increase of the
K'Y =6, LY = §;16;1. (20)  singularity is shared between the least singular channels,

and their coupling potentials also become singular.

We now apply the method to a neutron-profsh-3D,
potential. We start from thé-type Moscow potential
of Ref. [13], which has a nonphysical bound state at
—561 MeV, simulating a Pauli forbidden state. The

Using Egs. (19) and (20) to construgt = ¥|¥; ' and

V, = V; — 2Uj leads to Eq. (3). The thresholds are not
affected by the second transformation. Fort E, the
solutions of H; are expressed in terms of those 8§
with Eq. (14c) and the solutions @f, in terms of those
of H, with Eqg. (14a) (with subscripts increased by 1).
Combining these two results leads to Eq. (4).

At the factorization energy}’f” is solution ofH,. It
consists ofn eigenvectors exponentially decreasing and
linearly independent at infinity, as deduced from (18).
The new Hamiltonian, has thus no bound state %t
if these vectors are singular and linearly independent a
the origin, i.e., if the columns of¥, are regular and $
linearly independent at the origin. This behavior can2
be studied with a series expansion of Eq. (19), which
provides conditions ork and L. Such a study cannot -500
be performed in all generality in this Letter because it
requires assumptions on the behavior of the potential a 1000 |
the origin. We limit ourselves to a particular case which
simplifies calculations. However, Egs. (3) and (4) are -15000""' : : ' . '

1500

1000

Ly 0.5 1 1.5 2 25 3
valid in a more general context. r (fm)
For simplicity, the initial potentiaV, is assumed here |5 1 Neutron-proton 35,-*D, Moscow potential {,
to behave near the origin like dashed lines) of Ref. [13] with a Pauli forbidden bound state
) (FBS) at —561 MeV, and phase-equivalent shallow potential
Vo(r) 0 vo(vo + Dr7, (21) (V2, solid lines) obtained by removal of this bound state with

. i . Eq. (3). The effective potentials are represented with super-
where v is a real and diagonal matrix. Moreover, We scripts referring to the channel as in the text (1 fowave,

assume that the potential of channel 1 is less singular thahfor D wave).
3804



VOLUME 79, NUMBER 20 PHYSICAL REVIEW LETTERS 17 NVEMBER 1997

0.6 T T T T

case. Previous attempts to derive phase-equivalent poten-
05 - 1 tials by supersymmetry were unsuccessful because of a
04t ] too restricted choice of factorization solutions. The cen-
0a L | tral result of this Letter [Egs. (3) and (4)] is valid un-
w /i, der broader circumstances than the case for which the
« 2 ;= 1 proof is discussed. A systematic study of all supersym-
FCA metric transformations in the coupled-channel case should
! 2 lead, as in the single-channel case, (i) to arbitrary modi-
PO |  fications of the bound spectrum without modification of
! the S matrix [7], and (ii) to approximate solutions of the
o2r 1 inverse problem with rationa$-matrix expansions [21].
03| 1 This general study is under way.
.04 s . - s s J.-M. S. is supported by the National Fund for Scien-
° 05 ! r tim) 2 25 8 tific Research, Belgium. This text presents research re-

sults of the Belgian program on interuniversity attraction

FIG. 2. Deuteron normalized wave function of the deep,jag initiated by the Belgian-State Federal Services for
potential V (¢, dashed lines), and of its supersymmetncS ientific. Technical and Cultural Affai
shallow partnerV, (i,, solid lines), as obtained by Eq. (4) cientinic, Technical and Lultura ars.

(superscript 1 foiS wave, 2 forD wave).
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