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We study the classical thermodynamics of as1 1 1d-dimensional double-well sinh-Gordon theory.
Remarkably, the Schrödinger-like equation resulting from the transfer integral method is quasi-exact
solvable at several temperatures. This allows exact calculation of the partition function and som
correlation functions above and below the short-range order (“kink”) transition, in striking agreemen
with high resolution Langevin simulations. Interesting connections with the Landau-Ginzburg and
double sine-Gordon models are also established. [S0031-9007(97)04557-2]
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The statistical mechanics of nonlinear coherent str
tures in low dimensions has long attracted theoretical
tention, both for the intrinsic interest in such fundamen
problems as kink nucleation and dynamics, as well as
diverse applications, e.g., in conducting polymer phys
[1] and DNA denaturation [2]. Both analytic and nu
merical techniques have been applied to these proble
Well known among them are the (analytic) transfer in
gral method and the (numerical) Langevin method. T
transfer integral technique converts the problem of fin
ing the classical partition functionZcl to an eigenvalue
problem for a Schrödinger-like equation to which famili
approximation methods such as WKB can then be app
[3]. The advantage of Langevin methods is that (unli
Monte Carlo) real time quantities such as temporal cor
lation functions can be computed, and kinks and/or a
kinks tracked both in space and time.

In the past, applications of these methods have yiel
comparisons of approximate analytic results with nume
cal data to only rather low levels of accuracy, of ord
of tens of percent [4]. In this Letter we report su
stantial progress on both fronts. We discuss a n
integrable s1 1 1d-dimensional field theory for which
thermodynamic quantities can be computed exactly
several temperatures using techniques from quasi-exa
solvable (QES) potentials [5] in quantum mechanics. T
theory is in the same class as the more familiar Land
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Ginzburg model and also admits exactly known kink s
lutions [6]. We have carried out very high resolutio
Langevin simulations and find excellent agreement wi
the exact results at the checkpoint temperatures. T
high accuracy of the Langevin simulations allows th
use of the probability distribution function (PDF) to di
rectly compute thermodynamic quantities [7] thus pro
viding an alternative to conventional methods based
fluctuations.

In order to calculateZcl exactly at various temperatures
one has to solve a Schrödinger equation with a tempe
ture dependent mass. While completely solvable pote
tials are rare, in the last few years several double-w
QES models have been discovered for which the ex
classical partition function can be found at one given tem
perature. The drawback has been that the exact eig
states are known only for a given set of couplings, and
a result, it has not been possible to obtain the exactZcl
at more temperatures. In this Letter we show that for t
double sinh-Gordon (DSHG) QES problem, if the groun
state energy is known forn different values of coupling
constants, thenZcl can be evaluated for any of these theo
ries (with a given set of coupling constants) atn different
temperatures. This is also true for the triple wellf6 and
the double sine-Gordon (DSG) models, results for whic
will be reported elsewhere [8]. We conjecture that th
result holds for a large class of QES problems.
© 1997 The American Physical Society 3797
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The double-wellf4 model in 1 1 1 dimensions has
been extensively studied. However, in this case t
Schrödinger equation does not possess known exact s
tions. To overcome this problem we turn to the DSH
potential:

VDSHGsfd ­ sz cosh 2f 2 nd2, (1)

wherez is a positive parameter. In order to have a doubl
well potential,n . z , in which case the two minima are
located at cosh2f0 ­ nyz . Moreover, for the system to
be QES,n has to be a positive integer. This potential
the hyperbolic analog of the double sine-Gordon syste
Similar potentials arise in the context of the quantum th
ory of molecules (e.g., a homonuclear diatomic molecule
wave motion describing the normal modes of vibration
a stretched membrane of variable density, and as the
lution of a Fokker-Planck equation [9]. The hyperboli
analog of the sine-Gordon equation is a single-well pote
tial (sinh-Gordon) and thus uninteresting from the solito
statistical mechanics perspective.

The DSHG potential written in the form (1) has al
the generic features of a double-well potential such
Landau-Ginzburg, but allows for much greater analyt
progress. Below we find exact solutions for (1) a kink
(2) phonon dispersion, (3) a kink lattice, and (4) th
first few eigenvalues and eigenfunctions of the transf
operator at certain temperatures, allowing thereby analy
calculation of the PDF and correlation functions in th
thermodynamic limit.

We exhibit below the exact kink and kink lattice
solutions for the DSHG theory (details will be given
in Ref. [8]). A kink is a time independent solution
resulting from the minimization of the total energy densit
´sxd ­ VDSHGsfd 1 s gy2df2

x with the boundary con-
ditions f ! 6f0 as x ! 6`. The constantg is often
introduced in condensed matter treatments as a p
nomenological parameter and controls the kink size.
a field theoretic context, however,g ­ 1, and this is the
value we choose here. (All the solutions given below c
be written for arbitraryg.)

The kink-antikink solution located atx0 is sn . z d

fsxd ­ 6 tanh21

∑
tanh f0 tanh

µ
x 2 x0

j

∂∏
, (2)

where tanhf0 ­
p

sn 2 z dysn 1 z d, j ­ f2sn2 2

z 2dg21y2. The kink has topological chargeQ ­R
`

2`

≠f

≠x dx ­ 2f0. Traveling kink solutions are obtained
by boosting to velocityy via x ! s1 2 y2d21y2sx 2 ytd.
The statistical mechanics of kinks is governed largely b
the kink energy (or rest mass):

Es ­ 4jn
q

n2 2 z 2 tanh21

√s
n 2 z

n 1 z

!
2 2jsn2 2 z 2d .
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The phonon dispersion around the minima6f0 for this
model isv2

q ­ q2 1 8sn2 2 z 2d ­ q2 1 s2yjd2 and the
phonon contribution to the free energy per unit length is

Fvib ­
1

2pd
ln

µ
2p

db

∂
1

1
b

q
2sn2 2 z 2d , (3)

with d being the lattice constant andb ; 1ykBT .
In order to understand kink-antikink interactions, it is

very useful to construct kink lattice solutions (a kink-
antikink chain). For the DSHG theory, this solution is

fLsxd ­ 6 tanh21

∑
tanh f1 sn

µ
x 2 x0

jL
, k

∂∏
,

k ­
tanh f1

tanh f2
; (4)

jL ­
k

2
p

2 z sinh f1 cosh f2
; d ­ 4KjL ,

whered is the periodicity of the kink lattice,Kskd is the
complete elliptic integral of the first kind with modulusk,
snsx, kd is the Jacobi elliptic function, and with0 , V0 ,

V sf ­ 0d ­ sn 2 z d2,

cosh 2f1,2 ­
n
z

7

p
V0

z
;

k2 ­
n2 2 s

p
V0 1 z d2

n2 2 s
p

V0 2 z d2 .

(5)

The topological charge (per period) in the lattice problem
QL ­ 2fLsKd ­ 2f1 is smaller than the single kink
case. The kink size in the kink latticejL is also smaller
than the free kink sizej.

The energy of the kink lattice per period (i.e., energ
per kink-antikink pair plus the interaction energy) is

EL ­ 4jL

∑
sn 1 z d2K 1

j2

j
2
L

sn2 2 z 2d sK 2 Ed

2 4nz P

∏
,

where Eskd and Pstanh2 f1, kd are complete elliptic
integrals of second and third kind, respectively. In th
dilute limit sk ! 1, d ! `d the divergences inKskd and
Pstanh2 f1, kd exactly cancel out and we recover the
single kink resultEs. The interaction energy as a function
of separation (i.e.,k or d) is given byEin ­ EL 2 2Es.

Turning now to the computation ofZcl, we note that
this calculation can be divided into two parts: a trivia
Gaussian integration over the field momentum, and
computation of the configurational partition function,
which via the transfer integral method becomes equivale
to solving a Schrödinger-like equation [3]. The Hamilton
ian for the DSHG theory is

H ­
Z

dx

∑
1
2

p2 1
1
2

s≠xfd2 1 VDSHGsfd
∏

(6)
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and this leads to the Schrödinger equation for the eige
values and eigenfunctions of the transfer operator

2
1

2b2

≠2

≠f2
Ck 1 sz cosh 2f 2 nd2Ck ­ EkCk .

(7)

Remarkably, this equation is an example of a QES syste
Using results for a related potential from Ref. [5], a
2b2 ­ 1 the eigenstates of the firstn levels can be found
for n ­ 1, 2, 3, 4. (We have extended this to the case
n ­ 5, 6.) However, what one really wants is to conside
a given fixed-n theory and obtain eigenstates atdifferent
temperatures. It is easy to see from Eq. (7), by simp
rescaling, that solutions of a fixed-n theory at certain
values of b are the same as the solutions ofanother
theory (differentn and z ) at 2b2 ­ 1. Depending on
the chosen value ofn, exact solutions are available a
different fixed values ofb. Here, we restrict ourselves
to one such familysn ­ 2d which allows the exact
computation of the first few eigenstates at8b2 ­ m2

sm ­ 1, . . . , 6d. For illustration, two examples of the
(unnormalized) ground states are given below (see a
Fig. 1). The first (high temperature,b2 ­ 1y8) has an
eigenfunction with a single peak, while the second (low
temperature,b2 ­ 1y2) has a double peak:

C0sfdjb2­ 1

8
­ exp

µ
2

1
4

z cosh 2f

∂
,

C0sfdjb2­ 1

2
­ cosh f exp

µ
2

1
2

z cosh 2f

∂
,

(8)

with corresponding ground state energies,E0 ­ 4 1 z 2,
E0 ­ z 2 2 2z 1 3. The PDF for the field is the square
of the normalized ground state eigenfunctions. Solutio
at higher energies and other values ofb are given in
Ref. [8].

Once the eigenvalues of the transfer operator are know
they can be used to compute the correlation functio

FIG. 1. The numerically evaluated PDFs at three values
b2: 1y8 (triangles),1y2 (diamonds), and9y8 (squares). The
corresponding continuum exact solutions are the solid lines.
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C1sxd ­ kfs0dfsxdl andC2 ­ kdf2s0ddf2sxdl, using

C1sxd ­
X

k

jkCkjfjC0lj2 expf2bjxj sEk 2 E0dg , (9)

C2sxd ­
X

k

jkCkjdf2jC0lj2 expf2bjxj sEk 2 E0dg .

(10)

It is apparent that at large distances,C1 andC2 are domi-
nated by the lowest state with nonvanishing matrix ele
ments: the first excited state in the case ofC1 and the
second excited state in the case ofC2. Since E0, E1,
and E2 are known at certain temperatures, the large dis
tance behavior of these correlation functions can be foun
exactly and compared with the results from simulations
Static structure factors may also be calculated in much th
same way.

At this point, it is important to mention the connection
between the “quantum” calculations and kink physics
In the context of kink statistical mechanics, it is usual
to introduce a phenomenological description of kinks a
particles in a grand canonical ensemble. However, thi
is unnecessary, and all such thermodynamical informatio
can be extracted directly from the Schrödinger descriptio
of the transfer operator. For example, the kink density ha
been obtained in this way in Ref. [10]. Simpler quantities
like C1 and C2 have obvious natural interpretations in
terms of kinks. TheC1 correlation length is related to
the kink-antikink spacing and increases monotonically a
b increases (Fig. 2).

The behavior of theC2 correlation length requires a
little explanation, sinceC2 is not directly sensitive to do-
main size. At both high temperatures (no kinks) and low
temperatures (number of kinks exponentially suppressed
the correlation length is essentially that set by therma
phonons, and is therefore small. However, at tempera
tures close to the kink transition, nonlinear fluctuations on

FIG. 2. The numerically obtained inverse correlation lengths
from C1sxd for b2: 1y2 (diamonds), and9y8 (squares). The
large jxj continuum exact results are the solid lines.
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the kink length scale become important and can domina
C2. At these intermediate temperatures, one expects
C2 correlation length to rise to a maximum value, on th
order of the kink size, and this is indeed what we obser
numerically (Fig. 3). The Schottky anomaly in the spe
cific heat [10] arises for the very same reason.

The exact results described above can be compa
against those obtained from Langevin methods. The ad
tive noise Langevin equation for the DSHG theory is

≠2
ttf ­ ≠2

xxf 2 h≠tf 2 4z sz cosh 2f 2 2d sinh 2f

1 Fsx, td ,

where Fsx, td is a stochastic (Gaussian, white) externa
force which satisfies the fluctuation-dissipation relatio
linking the noise strength to the viscosityh,

kFsx, tdFsx0, t0dl ­ 2hb21dsx 2 x0ddst 2 t0d . (11)

This stochastic PDE can be solved by standard metho
[11] which we implemented on massively parallel com
puters. Typical choices for the lattice constant are ofte
dictated by memory limitations rather than by accurac
Comparisons with the exact results have led us to conclu
that errors up to 30% may be expected if lattice discretiz
tion is done as coarsely, as has been the norm so far
numerical calculations. The existence of nontrivial exa
continuum results has proven to be essential in carefully e
timating error and convergence in field theoretic Langev
simulations [12]. Our present simulations were typicall
performed on5 3 105 site lattices with a lattice constant
d ­ 0.025 and time stepe ­ 0.005.

Figure 1 shows the striking agreement between t
numerically obtained and the exact continuum PDFs
three temperatures: The worst case departure is at
level of parts per thousand. The comparisons for th

FIG. 3. The numerically obtained inverse correlation length
from C2sxd for the same three temperatures and symb
conventions as in Fig. 1. The solid line is the largejxj
continuum exact result forb2 ­ 9y8. The largest correlation
length is at the intermediate value ofb (diamonds).
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inverse correlation lengths are given in Figs. 2 and 3
DSHG system parameters aren ­ 2, z ­ 0.05. For
C1, the numerical values are1yl ­ 0.1425 sb2 ­ 1y2d
and 1yl ­ 0.012 sb2 ­ 9y8d as compared to the exact
values in the continuum theory of 0.14142 and 0.0105
respectively. The small offset between the continuum an
lattice calculations is due to the finite value of the lattic
constant and is consistent with estimates from highe
order contributions to the transfer integral [12].

The high quality of these numerical simulations implie
that the PDF can now be used directly to comput
thermodynamic quantities atany temperature. Since the
PDF is just the square of the ground state wave functio
of the Schrödinger equation (7), one can use it to compu
the ground state energyE0 numerically, from which the
internal energysU ­ ≠E0y≠bd, the free energysF ­
E0ybd, and the entropysS ­ b≠E0y≠b 2 E0d can all
be computed in a straightforward way [8]. The specifi
heat involves twob derivatives and is difficult to obtain
with good accuracy, but in this case, the standard ener
fluctuation method is quite effective. The use of the
PDF complements traditional techniques utilizing energ
fluctuations in Langevin simulations which are not suite
to free energy and entropy calculations.

The QES nature of the DSHG theory allows not only
the exact computations ofE0 at several temperatures, but
also of ≠E0y≠b, using first order perturbation theory:
≠E0y≠bjb­b0 ­ sC0, ≠2C0y≠f2d where b0 is one of
the special temperatures, e.g., Eq. (8). Thus the intern
energyU and the entropyS can also be found exactly at
these temperatures [8]. Once again, these quantities c
be used to validate numerical work over a broad range
temperatures.

As a final point, we consider the relationship of the
DSHG theory to the more familiar Landau-Ginzburg
model. Scrutiny of Eqs. (1)–(5) reveals the following
important connection between the kink (and kink lattice
solutions of thef4 model and the double sine-Gordon
(DSG) and DSHG models. Consider thef4 potential
V4sud ­ fsn 1 z du2 2 sn 2 z dg2. The substitutionu ­
tanh f takes the (static) equations of motion over to th
DSHG equations. The alternative substitutionu ­ tan f

leads to the DSG model. This means thatall known
solutions of thef4 theory can be directly taken over to
the DSHG and DSG theories (and vice versa). As on
use of this interesting relationship, the DSG kink lattice
solution (not known heretofore in the literature) can b
written down directly forVDSG ­ sz cos 2f 2 nd2:

fL ­ 6 tan21

∑
tan f1 sn

µ
x 2 x0

jL
, k

∂∏
, (12)

simply by using the substitution tanh! tan in Eq. (4).
This connection enables us to write down by inspectio

not just the kink solutions, but their total energy as wel
which is often a very tedious task. Moreover, since w
know that the DSHG model is an example of a QES
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system, and considering the very similar way in which
the DSG and DSHG models are related tof4, it is logical
to conjecture that the DSG model must also be a QE
system. Indeed, this is the case, and we have fou
several exact eigenvalues and eigenfunctions for ma
temperatures. The exact statistical mechanical results
the DSG model, similar to the DSHG results presente
here, will be reported later [8].
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