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We study the classical thermodynamics ofla+ 1)-dimensional double-well sinh-Gordon theory.
Remarkably, the Schrédinger-like equation resulting from the transfer integral method is quasi-exactly
solvable at several temperatures. This allows exact calculation of the partition function and some
correlation functions above and below the short-range order (“kink”) transition, in striking agreement
with high resolution Langevin simulations. Interesting connections with the Landau-Ginzburg and
double sine-Gordon models are also established. [S0031-9007(97)04557-2]

PACS numbers: 03.40.Kf, 05.20.-y, 05.70.—a, 64.60.Cn

The statistical mechanics of nonlinear coherent strucGinzburg model and also admits exactly known kink so-
tures in low dimensions has long attracted theoretical atutions [6]. We have carried out very high resolution
tention, both for the intrinsic interest in such fundamentalLangevin simulations and find excellent agreement with
problems as kink nucleation and dynamics, as well as ithe exact results at the checkpoint temperatures. The
diverse applications, e.g., in conducting polymer physicsiigh accuracy of the Langevin simulations allows the
[1] and DNA denaturation [2]. Both analytic and nu- use of the probability distribution function (PDF) to di-
merical techniques have been applied to these problemeectly compute thermodynamic quantities [7] thus pro-
Well known among them are the (analytic) transfer inte-viding an alternative to conventional methods based on
gral method and the (numerical) Langevin method. Thdluctuations.
transfer integral technique converts the problem of find- In order to calculat&,, exactly at various temperatures,
ing the classical partition functio,; to an eigenvalue one has to solve a Schrédinger equation with a tempera-
problem for a Schrédinger-like equation to which familiar ture dependent mass. While completely solvable poten-
approximation methods such as WKB can then be applietlals are rare, in the last few years several double-well
[3]. The advantage of Langevin methods is that (unlikeQES models have been discovered for which the exact
Monte Carlo) real time quantities such as temporal correelassical partition function can be found at one given tem-
lation functions can be computed, and kinks and/or antiperature. The drawback has been that the exact eigen-
kinks tracked both in space and time. states are known only for a given set of couplings, and as

In the past, applications of these methods have yielded result, it has not been possible to obtain the exact
comparisons of approximate analytic results with numeri-at more temperatures. In this Letter we show that for the
cal data to only rather low levels of accuracy, of orderdouble sinh-Gordon (DSHG) QES problem, if the ground
of tens of percent [4]. In this Letter we report sub- state energy is known fat different values of coupling
stantial progress on both fronts. We discuss a noneonstants, the# can be evaluated for any of these theo-
integrable (1 + 1)-dimensional field theory for which ries (with a given set of coupling constantsyadifferent
thermodynamic quantities can be computed exactly aiemperatures. This is also true for the triple wgfl and
several temperatures using techniques from quasi-exactthe double sine-Gordon (DSG) models, results for which
solvable (QES) potentials [5] in quantum mechanics. Thisvill be reported elsewhere [8]. We conjecture that this
theory is in the same class as the more familiar Landauwesult holds for a large class of QES problems.
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The double-well¢* model in1 + 1 dimensions has The phonon dispersion around the minitha, for this
been extensively studied. However, in this case thenodelisw] = ¢* + 8(n* — {?) = ¢*> + (2/£)* and the
Schradinger equation does not possess known exact solphonon contribution to the free energy per unit length is
tions. To overcome this problem we turn to the DSHG

il 1 27 1
potential: Fup = 3 |n<%> + 3 22 — ),  (3)

— _ 2
Vpsua(®) = (& cosh2¢ = n)7, @) with & being the lattice constant amgl= 1/kpT.

Whereé’ isa positive parameter' In order to have a double- In order to understand kink-antikink interactions, it is
well potential,n > ¢, in which case the two minima are Very useful to construct kink lattice solutions (a kink-
located at Cosm¢0 = n/é‘ Moreover, for the system to antikink Chain). For the DSHG theory, this solution is
be QES,» has to be a positive integer. This potential is X — Xo

the hyperbolic analog of the double sine-Gordon system. ¢.(x) = * tanh‘l[tanh b1 sr( kﬂ

Similar potentials arise in the context of the quantum the- §L

ory of molecules (e.g., a homonuclear diatomic molecule), _ tanh ¢ 4)
wave motion describing the normal modes of vibration of tanh ¢, ’
a stretched membrane of variable density, and as the so- k

lution of a Fokker-Planck equation [9]. The hyperbolic éL = d =4K¢;p,

analog of the sine-Gordon equation is a single-well poten- 2/2¢ sinh ¢, cosh ¢,

tial (sinh-Gordon) and thus uninteresting from the solitonyhere is the periodicity of the kink latticek (k) is the
statistical mechanics perspective. complete elliptic integral of the first kind with modulis

The DSHG potential written in the form (1) has all gy, k) is the Jacobi elliptic function, and with < V <
the generic features of a double-well potential such ag/(4 = 0) = (n — ¢)?,

Landau-Ginzburg, but allows for much greater analytic

progress. Below we find exact solutions for (1) a kink, cosh2¢, = n o ﬂ.

(2) phonon dispersion, (3) a kink lattice, and (4) the ’ 4 7

first few eigenvalues and eigenfunctions of the transfer , nt = (Vo + 0P ()
operator at certain temperatures, allowing thereby analytic k™= —— Vo — 02

calculation of the PDF and correlation functions in the " ¢

thermodynamic limit. The topological charge (per period) in the lattice problem

We exhibit below the exact kink and kink lattice Q; = 2¢,(K) = 2¢; is smaller than the single kink
solutions for the DSHG theory (details will be given case. The kink size in the kink latticg is also smaller
in Ref. [8]). A kink is a time independent solution than the free kink sizé&.
resulting from the minimization of the total energy density The energy of the kink lattice per period (i.e., energy
e(x) = Vpsua(¢) + (g/2)¢$? with the boundary con- per kink-antikink pair plus the interaction energy) is
ditions ¢ — *=¢y asx — *». The constang is often )
introduced in condensed matter treatments as a phe- g, = 4§L[(n + 0)P°K + 5_2(,12 - ) (K — E)
nomenological parameter and controls the kink size. In L

a field theoretic context, howeveg,= 1, and this is the
value we choose here. (All the solutions given below can — 4ndll }
be written for arbitraryg.)
The kink-antikink solution located a4 is (n > ¢) where E(k) and II(tant? ¢,,k) are complete elliptic

integrals of second and third kind, respectively. In the
_ 4 —1 X~ Xo dilute limit (k — 1,d — ) the divergences ik (k) and
¢(x) = xtanh [tanh %o tanl‘( ¢ ﬂ @) II(tank? ¢, k) exactly cancel out and we recover the
single kink resultE;. The interaction energy as a function
where tanhgy = +/(n — {)/(n + {), & =[2(n* — of separation (i.ek or d) is given byE;, = E; — 2E,.
H]7Y2. The kink has topological chargeQ = Turning now to the computation df.;, we note that
I, %dx = 2¢. Traveling kink solutions are obtained this calculation can be divided into two parts: a trivial
by boosting to velocity viax — (1 — v2)~/2(x — vr).  Gaussian integration over the field momentum, and a

The statistical mechanics of kinks is governed largely bycomputation of the configurational partition function,

the kink energy (or rest mass): which via the transfer integral method becomes equivalent
to solving a Schrédinger-like equation [3]. The Hamilton-
B — 4§n\/n2 ~ 2 tanh! n—{ ian for the DSHG theory is
: n+/{ 1, 1 )
_ e - ). H = f dx[zﬂ' + E(abe) + VDSHG(¢):| (6)
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and this leads to the Schrodinger equation for the eigenc;(x) = (¢(0)¢(x)) andCs> = (8 $»2(0)8 $>(x)), using
values and eigenfunctions of the transfer operator ,
2 Cix) = v 4 exg—Blx| (Ex — Eo)], (9
_2%238752\1”‘ (¢ cosh2d — m U, = B, . 1(x) %I( Kl 1Wo)l™ exd—Blx| (Ex — Eo)], (9)
(7) Ca(x) = Z|<‘I’k|5¢2|‘1’0>|2 exd—Blx| (Ex — Eo)].
Remarkably, this equation is an example of a QES system. k
Using results for a related potential from Ref. [5], at (10)
28% = 1 the eigenstates of the firstlevels can be found It is apparent that at large distancés,andC, are domi-
for n = 1,2,3,4. (We have extended this to the casesnated by the lowest state with nonvanishing matrix ele-
n = 5,6.) However, what one really wants is to considerments: the first excited state in the case@f and the
a given fixedn theory and obtain eigenstatesdifferent second excited state in the case ©f. Since E,, E;,
temperatures. It is easy to see from Eq. (7), by simpleand E, are known at certain temperatures, the large dis-
rescaling, that solutions of a fixed-theory at certain tance behavior of these correlation functions can be found
values of B are the same as the solutions @fother exactly and compared with the results from simulations.
theory (differentn and ¢) at 282 = 1. Depending on  Static structure factors may also be calculated in much the
the chosen value ofi, exact solutions are available at same way.
different fixed values of3. Here, we restrict ourselves At this point, it is important to mention the connection
to one such family(n = 2) which allows the exact between the “quantum” calculations and kink physics.
computation of the first few eigenstates 8> = m?>  In the context of kink statistical mechanics, it is usual
(m =1,...,6). For illustration, two examples of the to introduce a phenomenological description of kinks as
(unnormalized) ground states are given below (see alsparticles in a grand canonical ensemble. However, this
Fig. 1). The first (high temperaturgg®> = 1/8) has an is unnecessary, and all such thermodynamical information
eigenfunction with a single peak, while the second (lowercan be extracted directly from the Schrédinger description

temperature? = 1/2) has a double peak: of the transfer operator. For example, the kink density has
1 been obtained in this way in Ref. [10]. Simpler quantities
‘1'0(¢)|BZ=§ = ex;(— Zf cosh 2‘1’)’ like C; and C, have obvious natural interpretations in
(8) terms of kinks. TheC; correlation length is related to
Wo(¢) =1 = cosh ¢ ex;(— 1 £ cosh 2¢>, the kink-antikink spacing and increases monotonically as
: 2 B increases (Fig. 2).
with corresponding ground state energigs,= 4 + /2, The behavior of theC, correlation length requires a

Ey = {* — 27 + 3. The PDF for the field is the square little explanation, since, is not directly sensitive to do-

of the normalized ground state eigenfunctions. Solutiongnain size. At both high temperatures (no kinks) and low

at higher energies and other values @fare given in temperatures (number of kinks exponentially suppressed),

Ref. [8]. the correlation length is essentially that set by thermal
Once the eigenvalues of the transfer operator are knowiphonons, and is therefore small. However, at tempera-

they can be used to compute the correlation functionsures close to the kink transition, nonlinear fluctuations on
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FIG. 1. The numerically evaluated PDFs at three values oFIG. 2. The numerically obtained inverse correlation lengths
B?*: 1/8 (triangles),1/2 (diamonds), and/8 (squares). The from C;(x) for g2: 1/2 (diamonds), and)/8 (squares). The
corresponding continuum exact solutions are the solid lines. large|x| continuum exact results are the solid lines.
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the kink length scale become important and can dominativerse correlation lengths are given in Figs. 2 and 3.
C,. At these intermediate temperatures, one expects tHeSHG system parameters are= 2, ¢ = 0.05. For
C, correlation length to rise to a maximum value, on theC,, the numerical values are/A = 0.1425 (8% = 1/2)
order of the kink size, and this is indeed what we observand 1/A = 0.012 (8% = 9/8) as compared to the exact
numerically (Fig. 3). The Schottky anomaly in the spe-values in the continuum theory of 0.14142 and 0.0105,
cific heat [10] arises for the very same reason. respectively. The small offset between the continuum and

The exact results described above can be comparddttice calculations is due to the finite value of the lattice
against those obtained from Langevin methods. The addeéonstant and is consistent with estimates from higher-
tive noise Langevin equation for the DSHG theory is order contributions to the transfer integral [12].

. The high quality of these numerical simulations implies

Oid = 05 — Mdd — 4L cosh2¢ —2) sinh 2¢ that the PDF can now be used directly to compute
+ F(x,1), thermodynamic quantities any temperature. Since the
PDF is just the square of the ground state wave function
of the Schrédinger equation (7), one can use it to compute
Mthe ground state energl, numerically, from which the
internal energy(U = dEy/dB), the free energyF =

(Fx,)F(x', ")) = 29B7'8(x — x)8(t — ¢'). (11)  Eo/B), and the entropy(S = BdEy/dp — Eo) can all

) ) be computed in a straightforward way [8]. The specific
This stochastic PDE can be solved by standard methoqg,at involves twog derivatives and is difficult to obtain
[11] which we implemented on massively parallel com-yith good accuracy, but in this case, the standard energy
pgters. Typical ch0|c_es_ for the lattice constant are Oﬂe'?luctuation method is quite effective. The use of the
dictated by memory limitations rather than by accuracyppr complements traditional techniques utilizing energy

Comparisons with the exact results have led us to concludg,cyations in Langevin simulations which are not suited
that errors up to 30% may be expected if lattice discretizag, free energy and entropy calculations.

tion is done as coarsely, as has been the norm so far in The QES nature of the DSHG theory allows not only
numerical calculations. The existence of nontrivial exactne exact computations @, at several temperatures, but
continuum results has proven to be essential in carefully esyq of 9Eo/dB, using first order perturbation theory:
timating error and convergence in field theoretic LangevinaEO/amB:B — (Wy, 9*Wy/0¢2) where B, is one of
simulations [12]. Our present simulations were typically,q special toemperatures, e.g., Eq. (8). Thus the internal

pall. ) ; .
performed ord X 10° site lattices with a lattice constant energyU and the entropys can also be found exactly at
6 = 0.025 and time steg = 0.005. these temperatures [8]. Once again, these quantities can

Figure 1 shows the striking agreement between thge ysed to validate numerical work over a broad range of
numerically obtained and the exact continuum PDFs afemperatures.

three temperatures: The worst case departure is at the pq 5 final point, we consider the relationship of the

level of parts per thousand. The comparisons for theygyg theory to the more familiar Landau-Ginzburg

model. Scrutiny of Egs. (1)—(5) reveals the following
important connection between the kink (and kink lattice)
3.5 - - . , solutions of the¢* model and the double sine-Gordon
i (DSG) and DSHG models. Consider thg* potential
N ] Vi) =[(n + Ou? — (n — )J?. The substitution: =
. L tanh ¢ takes the (static) equations of motion over to the
" DSHG equations. The alternative substitutios= tan ¢
251 o 1 leads to the DSG model. This means tlait known
m |, solutions of the¢* theory can be directly taken over to
- Oounna.s o o] the DSHG and DSG theories (and vice versa). As one
: —e—2%a_ use of this interesting relationship, the DSG kink lattice
solution (not known heretofore in the literature) can be
written down directly forVpsg = (¢ cos 2¢ — n):
X — X0
L

)] e

_ ) _ ) simply by using the substitution tark tan in Eq. (4).
FIG. 3. The numerically obtained inverse correlation lengths This connection enables us to write down by inspection
from C,(x) for the same three temperatures and symbol . . . .
conventions as in Fig. 1. The solid line is the large not just the kink solutions, but their total energy as well,
continuum exact result fop2 = 9/8. The largest correlation Which is often a very tedious task. Moreover, since we

length is at the intermediate value Bf(diamonds). know that the DSHG model is an example of a QES

where F(x,t) is a stochastic (Gaussian, white) external
force which satisfies the fluctuation-dissipation relatio
linking the noise strength to the viscosiiy
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system, and considering the very similar way in which [2]
the DSG and DSHG models are relatedftd it is logical

to conjecture that the DSG model must also be a QESI3]
system. Indeed, this is the case, and we have found
several exact eigenvalues and eigenfunctions for many
temperatures. The exact statistical mechanical results fof]
the DSG model, similar to the DSHG results presented [5]
here, will be reported later [8].
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