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A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance
hyperfine couplings is presented. The electric-field effects are described in terms of perturbation
coefficients which can be used to probe the local symmetry as well as the strength of the electric
field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficient
describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O
atom and the OH radical. [S0031-9007(97)03633-8]
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In 1961 Bloembergen [1] predicted that a parama
netic site lacking inversion symmetry will experienc
linear shift in its electron spin resonance (ESR) spe
trum by a uniform external electric field. Using second
order perturbation theory, Bloembergen [2] also show
that the magnetic hyperfine interactions, either isotrop
or anisotropic, can be linear functions of the applied e
ternal field. Bloembergen’s predictions were soon ve
fied through independent experiments by Kushida a
Saiki [3], by Ludwig and Woodbury [4], and by Per-
shan and Bloembergen [5]. Since these early expe
ments, the Bloembergen effect or thelinear-electric-field
effect(LEFE) on hyperfine interactionhas been observed
in a number of crystalline materials [6,7]. The Bloem
bergen effect provides detailed information on local sym
metry [6] and can be also used to determine the stren
of electric field at paramagnetic centers in solids.

While attention to date has been focused on the LEF
there are also reports in the literature of nonlinear elect
field effects (NLEFE) on the hyperfine coupling (HFC) o
paramagnetic systems [8,9]. The NLEFE are consider
to be especially important for issues related to the atom
clock [10].

Theoretical treatments of the electric field effects o
the ESR HFC have been limited to phenomenolog
cal description [2,11,12] orad hoc quantum mechani-
cal approximations [13]. In view of the importance
and broad range of applications of the electric field e
fects on ESR hyperfine interaction, we present in th
Letter a general quantum mechanical theory of the e
fects of a uniform electric field on HFC within the
framework of the coupled perturbation approach [14
By treating the external electric field as a perturbatio
analytical expressions are derived to calculate the c
rections to HFC in terms of the matrix elements o
the hyperfine interaction operatorsS ? Id and electric-
field-perturbed spin density matrixfsrsEdg. The spin
density matrix formulation allows a self-consistent dete
mination of the perturbation coefficients from the groun
state wave function. Test results fromab initio calcula-
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tions are presented for the first-order coefficients desc
ing the Bloembergen effect for the O atom and the O
radical.

The Hamiltonian operator describing the hyperfin
interaction between the magnetic moments associa
with the electron spinS and nuclear spinI in a system
containingN magnetic nuclei is given by [15]

Hhf ­
X
N

S ? AN ? IN , (1)

whereA, a second-rank traceless tensor, is called the H
tensor. A can be resolved into anisotropic (scalar) part
aN and ananisotropic(tensor) partTN as [15]

AN ­ aN 1 TN , (2)

where aN describes the interaction of electron-sp
magnetic moment with nuclear-spin magnetic mome
at the site of the nucleus, andTN describes the inter-
action between electron-spin dipole and nuclear-s
dipole.

For a molecular wave functionC built up from one-
electron basis functionsfm, aN , andTN are obtained as
[16]

aN ­
4p

3
gebegNbN h̄kSzl21

X
mn

rmnkfmjdsrN djfnl ,

(3)

TNij ­
1
2

gebegNbN h̄kSzl21

3
X
mn

rmnkfmjr25
N s3rNi rNj 2 r2

Ndijdjfnl . (4)

In the above equations,ge is the electronicg factor, often
taken as the free electrong factor sg0 ­ 2.002 319 3d, be

is the Bohr magneton,gN is the nuclearg factor, bN

is the nuclear magneton,Sz is the eigenvalue of thez
component of the spin angular moment operator,rN is
the position vector of the spinning electron relative
nucleusN , and dsrNd is the Dirac delta function ofrN .
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Summation indicesm, n run over one-electron functions
and i, js­ x, y, zd represent the Cartesian coordinate
rmn is an element of the spin density matrix defined
a pointP in space as [16,17]

rsPd ­ kCj
X

k

2SzkdsrkdjCl . (5)

HereSzk is thez component of the spin angular momen
tum for electronk anddsrkd is the Dirac delta function of
the distancerk between electronk and pointP. For the
sake of brevity, we drop the subscriptN from aN andTN

henceforth and also use the following definition:

Gd ­ s1y2dgebegNbN kSzl21, Gc ­ s8py3dGd;

V c
mn ­ kfmjdsrNdjfnl ,

V ij
mn ­ kfmjr25

N s3rNi
rNj

2 r2
Ndijdjfnl .

Now we can write Eqs. (3) and (4) in a matrix form as

a ­ Gc trfVcrg , (6)

Tij ­ Gd trfV ijrg . (7)

Here, tr stands fortrace andr is the spin density matrix
defined by Eq. (5). In the above derivation it is assum
that the system is free from external perturbation.

Let us now assume that this system is placed in
uniform external electric field represented byEsr, td ­
Esrd cosvt. For the sake of generality, we have chose
an optical field of arbitrary frequency. Let us furthe
assume that this field is large enough to polarize t
unpaired electron spin distribution, so that its effec
can be treated as a perturbation to the hyperfine tens
The perturbation Hamiltonian in this case can be writte
as

H 0 ­ Esr, td ? sI.A0 ? Sd . (8)

Here, A0 represents the electric-field-perturbed hyperfin
(a summation of the operator over allN magnetic nuclei
is assumed). We can now write the hyperfine tens
AsEd ­ A 1 A0 as a Taylor series expansion in terms o
the perturbing fieldEsr, td as

AsEd ­ As0d 1 As1d ? E 1
1
2!

As2d:EE 1 . . . , (9)

where the arguments of the electric field have be
dropped for the sake of simplicity. In Eq. (9),As0d is the
hyperfine tensor in the absence of the external field, a
Asnd sn $ 1d represents thenth-order correction to it. The
nth-order coefficientAsnd is a tensor of rankm ­ sn 1 2d
and has, in general,3sn12d elements. From Eqs. (2) and
380
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(9), we can write

asEd ­ as0d 1
X

k

a
s1d
k Ek 1

1
2

X
k

X
l

a
s2d
kl EkEl 1 . . . ,

(10)

TijsEd ­ T
s0d
ij 1

X
k

T
s1d
ijkEk

1
1
2

X
k

X
l

T
s2d
ijklEkEl 1 . . . . (11)

Since the field-free isotropic HFCas0d is a scalar, its first-
order electric-field correctionas1d is a vector with com-
ponentsa

s1d
x , a

s1d
y , and as1d

z . The higher-order correction
terms asndsn . 1d are tensor quantities of rankn. Un-
like as0d, the zeroth-order dipolar termTs0d is a tensor of
rank 2. Therefore, thenth-order correction toT is a ten-
sor of rankm ­ sn 1 2d. The first-order termsas1d and
Ts1d together describe the Bloembergen effect [1,2] an
vanish for a paramagnetic center at a site with a cent
of inversion. It is important to note that it isthe symme-
try at the location of the individual nucleus that counts
rather than the symmetry of the entire system[18]. Thus,
from Eq. (2), for a nucleus located at a site with center o
inversion,

As1d ­ 0 . (12)

This is true for all odd rankA tensors (As1d, As3d, etc.)
in Eq. (9). The even rank tensorsAs0d, As2d, As4d, etc.,
on the other hand, do not have this inversion symmetr
restriction. However, the following trace relation [18]X

i

A
s0d
ii ­

X
i

A
s1d
iij ­

X
i

A
s2d
iijk ­ 0; i, j, k ­ x, y, z

(13)

exists for theA tensor in all orders.
The magnitude of the perturbation coefficientsasnd and

Tsnd will depend on the strength of the electric field,
the symmetry of charge distribution at the site of the
nucleus, and the “spin polarizability” of the system. We
wish to distinguish the term spin polarizability from
spin polarization: Spin polarization is used in the ESR
literature [15,16] to describe a preferential alignment o
the spin vectors in an otherwise perfectly paired she
due to the magnetic field of unpaired electron(s). Thu
spin polarization is an intrinsic effect in a paramagneti
system. Spin polarizability, on the other hand, is th
electrical polarizability of individual spins induced by an
external field.

The expansion coefficientsasnd andTsnd [Eqs. (10) and
(11)] describing the effects of electric field on HFC can
be evaluated from a perturbative treatment of Eqs. (6) an
(7), respectively. A Taylor series expansion of Eq. (6) in
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terms of the electric fieldE and collection of the terms
with same coefficients yield, to second order,

as0d ­ Gc trfVcrs0dg , a
s1d
i ­ Gc trfVcr

s1d
i g ,

a
s2d
ij ­ Gc trfVcr

s2d
ij g .

(14)

A similar treatment to Eq. (7) yields

T
s0d
ij ­ Gd trfV ijrs0dg , T

s1d
ijk ­ Gd trfV ijr

s1d
k g ,

T
s2d
ijkl ­ Gd trfV ijr

s2d
kl g .

(15)

Expressions for coefficient withsn . 2d can be derived
in an analogous manner. In deriving Eqs. (14) and (15
use has been made of the fact that the matrix eleme
V c

mn and V
ij
mn of the Dirac delta operator and electric

field gradient operator, respectively, are not affected
the external electric field.

Equations (14) and (15) provide a means to analytica
calculateasnd and Tsnd from a knowledge of the matrix
elements of the HFC operators andnth-order spin density
matrix rsnd. Matrix elementsV c

mn and V
ij
mn can be

calculated in a trivial manner from a number of th
state-of-the-artab initio quantum mechanical software
packages [19]. However, evaluation of the electric-fie
perturbed spin density matrixrsnd is somewhat less trivial.
One way to simplify the calculation ofrsnd is to express
it in terms of the density matrix ofa- and b-spin
electrons. In the notation of the spin-unrestricted Hartre
Fock (UHF) theory [20], thenth-order spin density matrix
rsnd can be written as

rsnd ­ Pasnd 2 Pbsnd, (16)

where Pasnd sPbsndd represents thenth-order perturbed
density matrix forasbd-spin electrons. Use of Eq. (16)
in Eqs. (14) and (15) yields expressions forasnd andTsnd

in terms of Pssndss ­ a, bd that can be conveniently
calculated in a self-consistent manner from a recen
developed time-dependent (TD) UHF technique [21].

As a test of the present formulation, we performe
ab initio calculations of zeroth-order hyperfine termsas0d,
T

s0d
ij , and their first-order corrections,a

s1d
i and T

s1d
ijk , re-

spectively, for O atom and OH radical. The matrix
elements ofVc and Vij operates were evaluated ac
cording to Chandra and Buenker [22]. The perturbe
spin-dependent density matrix,Pssndss ­ a, bd, was cal-
culated by theab initio TDUHF method as described in
Ref. [21]. The atomic basis sets used in the calculatio
were taken from the work of Sadlej [23]. Calculation
on OH radical were performed at an internuclear distan
RsOHd ­ 1.95 bohr. The first-order perturbation coeffi-
cients were calculated at a dc electric fieldsh̄v ­ 0d and
also at the ruby laser wavelengthsl ­ 694.3 nm, h̄v ­
1.786 eVd. Results of the calculations are listed in
Table I.
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TABLE I. Hyperfine coupling coefficients for O atom and
OH radical. The unit of zero-order coefficientsas0d and T

s0d
ii

is gauss. For the first-order coefficientsa
s1d
i and T

s1d
ijk , the

unit is gaussyEs5.142 3 1013 volts meter21). The first-order
coefficients are calculated at static-electric field and atl ­
649.3 nm (listed inside parentheses).

Nucleus 17O 1H
system O OH OH

as0d 214.57 230.30 244.57
as1d

x 0 0 0

as1d
y 0 0 0

as1d
z 0 228.43 s229.34d 18.45 (19.41)

T s0d
xx 49.50 296.20 29.07

T s0d
yy 224.75 49.27 223.74

T s0d
zz 224.75 46.93 32.82

T s1d
xxz 0 2.00 (1.99) 1.34 (1.45)

T s1d
yyz 0 24.49 s24.68d 4.26 (4.37)

T s1d
zxx 0 10.98 (13.64) 24.87 s24.35d

T s1d
zyy 0 0.77 (0.99) 2.52 (2.60)

T s1d
zzz 0 2.49 (2.69) 25.61 s25.82d

As predicted by Bloembergen [1,2], the first-order cor
rections to the HFC tensor (Table I) vanish for the O ato
but have nonzero values for the OH radical. The forme
has a center of inversion while the latter does not. In th
respect,as1d andTs1d have properties similar to the dipole
moment vectorm and the electric hyperpolarizability ten-
sorb, respectively. Both these latter quantities vanish fo
a system with centrosymmetric charge distribution [24
However, these is an important distinction between th
hyperfine properties and the electrical properties in the
requirements of the spatial symmetry of the charge dist
bution. The electrical propertiesm andb are determined
by the overall symmetry of the charge distribution in th
system. The hyperfine propertiesas1d andTs1d, on the other
hand, depend on thelocal symmetry at the site of the para-
magnetic nucleus. Another important distinction betwee
Ts1d tensor andb tensor is in the permutational symmetry
of their components. In the static-field limitsh̄v ! 0d the
elements ofb tensor can be freely interchanged [25], i.e
bijk ­ bjik ­ bjki, and so on. The same is not true fo
the elements ofTs1d. We note from Table I that in the case
of OH radical,T

s1d
xxz fi T

s1d
zxx andT

s1d
yyz fi T

s1d
zyy. The calcu-

lated components ofTs0d andTs1d (Table I), however, fol-
low the trace relation given in Eq. (13).

The magnitude ofas1d
z is calculated to be much larger

than those of the elements ofTs1d at both magnetic nuclei
in OH. An important aspect of the electric field effects
on the hyperfine couplings is reflected in the relative sig
of as0d and as1d

z . In OH radical,as0d and as1d have the
same sign at the O nucleus, but different signs at H. A
a consequence, while the magnitude of hyperfine splittin
at the O nucleus will experience an increase, that at the
381
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nucleus will experience a decrease in the presence o
external electric field.

The nonzero elements ofas1d and Ts1d also exhibit
substantial dispersion due to the frequency of the exte
optical field. For example, the value ofas1d

z s17Od in
OH radical increases by about 3% in going from a
electric fieldsh̄v ­ 0d to the ruby laser frequencysh̄v ­
1.786 eVd. For the same frequency change, the va
of as1d

z s1Hd in the OH radical increases by about 5%
The T

s1d
ijk terms do not exhibit a systematic change d

to frequency, although generally their magnitude sho
an increase with the frequency of the optical field. T
largest dispersion in going from a dc electric fieldsh̄v ­
0d to that corresponding to a ruby laser frequencysh̄v ­
1.786 eVd is exhibited byT

s1d
zxxs17Od, which increases by

about 24%, followed byT s1d
zzzs17Od showing an increase o

about 8%. Corresponding changes at the1H nucleus are
much smaller.

It is important to note that, for the first-row element
the UHF method generally overestimates the spin d
sity at the site of the nucleus [26]. Therefore, the r
sults for as0d and as1d

z presented here may be somewh
overestimated. Indeed, the calculatedas0ds1Hd is about
twice the experimental value of222.7 G reported by
Toriyama and Iwasaki [27] and about 1.6 times the va
s226.7 Gd reported by Radford [28]. However, the ra
tio sas1dyas0dd, which describes the Bloembergen shift
the isotropic hyperfine splitting, should be reasona
accurate.

The UHF method generally gives quite accurate
sults for the dipolar termT [26], as is also noted here
from a good agreement between the calculated value
T

s0d
ii s1Hd (Table I) and the corresponding experimental r

sults sTxx ­ 26.25 G, Tyy ­ 221.52 G, Tzz ­ 27.67 Gd
obtained by Toriyama and Iwasaki [27]. A similar a
curacy is expected in the calculated results forTs1d.
Currently, however, we are more concerned about a qu
tative description of the electric field effects on hyperfi
couplings than the accuracy of the results, which is
subject of a more detailed study [29].

In summary, we have presented a perturbation the
treatment of the effects of electric field on ESR HFC. W
have derived quantum mechanical expressions for the
pectation values of the perturbation coefficientsa

s1d
i , a

s2d
ij ,

T
s1d
ijk , and T

s2d
ijkl in terms of electric-field-perturbed spin

density matrix. The first-order coefficients describing t
Bloembergen effect [1,2] provide information about th
local symmetry of a paramagnetic center and can be a
used to estimate the strength of electric field at a pa
magnetic site in solids. We have shown the applicabi
of the theory by calculating the first-order coefficients
two simple cases, O atom and OH radical. The cal
382
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lated results follow the symmetry relations predicted b
Bloembergen [1,18]. The first-order coefficients also e
hibit substantial dispersion due to optical electric field.
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