VOLUME 79, NUMBER 19 PHYSICAL REVIEW LETTERS 10 NVEMBER 1997

Coding, Channel Capacity, and Noise Resistance in Communicating with Chaos

Erik Bollt,! Ying-Cheng La? and Celso Grebogi
'Department of Mathematics, United States Naval Academy, 572 Holloway Road, Annapolis, Maryland 21402-5002
2Departments of Physics and Astronomy and of Mathematics, The University of Kansas, Lawrence, Kansas 66045

3Institit for Theoretische Physik, Universitat Potsdam, PF 601553, D-14415 Potsdam, Germany
(Received 15 May 1997

Recent work has considered the possibility of utilizing symbolic representations of controlled chaotic
orbits for digital communication. We argue that dynamically a coding scheme usually leads to
trajectories that live on a nonattracting but noise-resisting chaotic saddle embedded in the chaotic
attractor. We present analyses and numerical computation which indicate that the channel capacity of
the chaotic saddle has a devil-staircase-like behavior as a function of the noise-resisting strength. The
implication is that nonlinear digital communication using chaos can yield a substantial channel capacity
even in a noisy environment. [S0031-9007(97)04462-1]

PACS numbers: 89.70.+c, 05.45.+b

Recently, it has been demonstrated that chaotic systenis utilized. Since all the allowed symbol sequences
can be manipulated, via arbitrarily small time-dependentorrespond to the original chaotic attractor in the phase
perturbations, to generate controlled chaotic orbits whosspace, the symbol sequences only allowed by the code
symbolic representation corresponds to the encoding aforresponds to a chaotic saddle embedded in the attractor.
a desirable message [1]. Specifically, imagine a chaotic To illustrate how to design a code and to understand its
power oscillator that generates a large amplitude signatonsequence for the corresponding dynamics, we consider
consisting of an apparently random sequence of positivéhe Lorenz systemk = 10(y — x),y = x(28 — z) — y,
and negative peaks. By associating a positive peak with = xy — (8/3)z, which can be physically realized by an
a l, and a negative peak with @ one obtains a signal electric circuit [3]. Letz, be a maximum of the state
that yields a binary sequence. It was shown how the useariable z(r). Then the successive maxima can be de-
of small controls could cause the signal to follow an orbitscribed by a one-dimensional, single maximum, nondif-
whose binary sequence encodes an arbitrary message [1,®8rentiable mapz,+; = f(z,). The chaotic attractor in
An advantage of this type of communication strategy ishe three-dimensional phase spde€), y(z), z(z)} corre-
that the nonlinear chaotic oscillator that generates the wav&onds to a one-dimensional chaotic attractor in the phase
form for transmission can remain simple and efficient,space of the discrete mafiz). The natural partition for
while all the necessary electronics controlling encoding oflefining a good symbolic dynamics is the critical paipt
the signal remain at the low-powered microelectronic levelwheref(z.) is maximum. A trajectory point witlh < z,.
Moreover, since the chaotic dynamics can be recoverett > z.) bears symboD (1). Now suppose we choose a
from a chaotic signal, which in principle can be noisy, code in which foul’s in a row are forbidden in any-bit
by using standard dynamical data analysis techniquesequence, where > 4. This restriction may be imposed
communicating with chaos is also more robust and bettely the dynamics. In the symbol space, the code removes
behaved against channel noise [2]. all n-bit sequences that have four or md¥s in any lo-

A critical issue in communicating with chaos is how to cation. In thez phase space of the mgjfz), the restric-
select a proper coding scheme by which any message céion imposed by the code corresponds to forbidden gaps.
be encoded in the chaotic signal. Imagine the two-symbadin fact, the forbidden infinite-bit sequences with no more
(0 and1) case and consider-bit symbol sequences. For than threed’s in a row correspond to gaps in thespace
a nonlinear oscillator that generates a chaotic attractomyhich are forbidden by the code. These gaps are open and
if the dynamics corresponds to a Bernoulli shift, theredense. This means that the symbol sequences allowed by
are then2” possible symbol sequences. The number othe code correspond to a dynamics restricted to a Cantor
allowed symbol sequences, however, in most naturallget in thez space, as shown in Fig. 1. This Cantor set cor-
occurring chaotic oscillators is less thaf: the rules responds to an invariant chaotic saddle embedded in the
allowing for specific ones form the grammar of the original chaotic attractor in théx, y, z} space. Note that,
particular dynamics, meaning that there are forbiddernn general, it is in fact advantageous to utilize the chaotic
symbol sequences. Since the grammar of a natural chaotsaddle such as the one shown in Fig. 1 for communication
oscillator is quite complicated, it is difficult to design a because the symbolic encoding (and decoding) is immune
code which takes a full advantage of the dynamics byto small noise. Say the system is in a noisy environment.
excluding only the forbidden symbol sequences. Thus, idf no code restriction is used to encode messages, a bit er-
practice, one chooses a code that restricts the grammar sar (i.e.,0 becomesl or vice versa) could occur when the
that only a subset of all the allowed symbol sequencetrajectory comes close to the partition poigtsince noise
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44 Since more buffer bits are needed, the transmission rate
I will be slower, but the code is more immune to noise as
42 [\ the noise-resisting gap is wider.
/ \\ By overrestricting the code, one does not take full ad-
404 / \ vantage of the natural chaotic dynamics produced by the
3 \ power oscillator, resulting in a communication system with
NT gl y. redL_Jce_d chann_e_l capacity. Dynamically, the channel_ ca-
/ \ pacity is quantified by the topological entropy of the in-
36. N variant set in which the message-carrying trajectory lies
N [4]. Thus, in order to optimize the channel capacity, one
34 must design a_code that_maximizes_ the topological entropy.
31 3'6 3'8 4'0 4‘2 44 Since a chaotic saddle is an invariant subset embedded in

Z

the original chaotic attractor, the topological entropy of the

n

saddle is generally smaller than that of the attractor. While
FIG. 1. A 10000 point trajectory of the Lorenz map on a a larger size of the noise gap about the partition renders the
noise-resisting chaotic saddle embedded in the c.haotic“attractcgymbonc dynamics more robust against noise, the result-
gpsrritre]sg?g‘(livlgg to imposing the grammatical restriction, “no foufin o' ohatic’ saddle possesses smaller topological entropy.
' This is due to the fact that widening the noise gap cor-
could kick the trajectory across. The possibility for bit ~ responds to increasing the grammatical restrictions on the
error due to noise can be substantially reduced when permissible codes in the symbol dynamics representation.
code such as the one yielding Fig. 1 is chosen since therehus, the purpose of this Letter is to argue that chaotic
is a noise gap about the partition point saddles embedded in a chaotic attractor can be noise re-
To give some illustrative examples of an encodingSiSting but also rich information sources for communi-
message in the restricted chaotic signals, say we wispation. Furthermore, we show that there is a trade-off
to communicate the message “BEAT ARMY!” in the between noise resistance and channel capacity when de-

following ASCII format by using the Lorenz attractor: signing a code for communication applications. In particu-
B E A T space lar, an appropriate code restriction exists which generates

10000101100101 1100001 1110100 0100000 a nois_e resisting chaotic_saddle_ that optimizes the channel
A R Iy v | capacity versus the noise resistance. We also present
N N strong evidence indicating that the topological entropy of
1000901 1110010 1101101 _1 1110010100001 . _the chaotic saddle is a nonincreasing, devil's-staircase-like
To transmit the message subject to the “no four zeros ifynction of the noise-gap size.
a row” code, a simple way is for the transmitter to insert To facilitate a systematic numerical computation and
a buffer bit “1” after three zeros in a row, regardless of gnalysis of the topological entropy of chaotic saddles, we
the message bit that follows. Thus, the encoded messaggake use of the logistic mafix) = rx(1 — x) which cap-
becomes tures the essential dynamics of the single-maximum maps
B £ 4 A ! arising in physical situations such as the Lorenz system.
100010101100101 11000101 111010001000100 Consider the case where the map exhibits a chaotic at-
A R M Y ! tractor. We assign a symbd@ (1) to the trajectory of
10001001 1110010 1101101 7111001 01000107 . x < 1/2 (x > 1/2) (the critical pointr, = 1/2 s the par

Furthermore, if the original message contains the bloclytlon)' For a chaotic saddle with a primary gap of size

. . o - ' centered atx., its topological entropyar is less than
0001, with three ZEr0S In a row, the mod|f|§:d block is that of the chaotic attractor. Asincreases, the number of
00011. Thus, the receiver can recover the original messag

simply by stripping a one after every block of three zerosguowed symbol sequences cannot increase. Figure 2(a)

Since for the Lorenz attractor, its intrinsic grammar isShOWShT versuss for r = 4. To generate this figure,
: : ’ 9 we compute, for eack, a long trajectory o0’ points on
already included in the rule no four zeros in a row, the

. . “the chaotic saddle by using the PIM-triple (proper interior
message BE.AT.ARMY! can now be transmitted USIngmaximum) algorithm [5] and then coumt(n), the number
the Lorenz circuit [3] by utilizing small control methods

outlined in Ref. [1]. One may also consider a moremc possible symbol sequences of leﬁ%‘({]) The topologi-

o . . + . .cal entropy is given byiy = lim,_. In practice
severe restriction such as “no three zeros in a row,” which Py IS 9 Vi o P '

corresponds to a larger gap across the partition line. e plot lnN(”? versu5n'for n up 1o, say, 2.0' The slope
this case, the encoded binary sequence looks like of such_a plotis approxmatel_y the topological entragy
5 E A T space From Fig. 2(a), we see that- is apparently a nonincreas-

— P N ing function ofs. A striking phenomenon is that there
100100110'11001101110010011 11101001010010010 seem to be numerous plateau regions of which a7 re-
A R M Y !

X mains approximately constant. We find numerically that
—N . .
10010010111100110110110111110011010010011 . these plateau regions appear to exist on all scales the
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() 0.7 bolic dynamics corresponding to the chaotic map, using
a sequence dfansition matrices For a one-dimensional
single-maximum map of the form,+; = f(x,), a good
symbolic dynamics can be defined by dividing the phase
space into two disjoint but dynamically connected subsets
0.5 So and S; by using a Markov partition [7]. The orbit
{xi}i—o of an initial conditionx, defines an itinerary se-
quence{o;};—, through the partitiong; = g(x;) = 0 if
0.4+ x; € Soando; = g(x;) = 1if x; € §;. Let be the set
of all possible infinite symbol sequences of the symlfiols
and1. An initial conditionxy has an itinerary sequence
0 0.05 01 0.15 0.2 025 03 written aso = oy.010205... € 3. The Bernoulli-shift
s mapB: % — 3, defined byB(o) = B(oy.010205...) =
01.000304. .., evolves symbol sequencesdn Thus, the
(b) 0.7 dynamics on the chaotic attractor can be represented by the
dynamics ofB|s/ (the Bernoulli shift map restricted to a
subshiftY’), whereX’ C X, is a closed and invariant sub-
set of 3. A finite n-bit symbol sequencey.o;...0,—
identifies all points in% which agree in their first bits.
0.5 Then-bit symbol sequence corresponds to a neighborhood,
or bin, in the phase space by a change of variable.n As
is increased, these bins become increasingly refined.
0.4- The grammar of the subshift’ can be defined by
the collection of all permissible (or alternatively, forbid-
den) transitions betweembit words, under the action of
o 1600 3200 4800 6400 the Bernoulli-shift map restricted t&’. The n-bit bins
k are generated by the sequence of preimages of the criti-

. . . cal pointx.: {xe, ' (xe), £ 2(xe), ..., £~ V(x.)}. Note
FIG. 2. (a) Numerical computation of the topological entropy -
hr versus the size of the noise-resisting gafor the logistic that when the map is not everywhere two onto one, some

map atr = 4. (b) Theoretical prediction using 14-bit symbol f~ ' (xc) Will not exist, and consequently, there is an ille-
sequences. Some details of the theoretical calculation diffegal i-bit word. A subshiftY’ of finite type has a gram-
from the numerical result in (a), due to the fact that only 14-bitmar which is representable by a finite list of forbidden
sequences are used. The theory nonetheless predicts correci\hit words. In this case, the grammar is represented by
the devil's staircase structure. a 2" node directed graph, or equivalently, by2%a x 2"
transition matrix,A,, [7]. The Bernoulli-shift map per-

set of s values at whichiy changes seems to have arbi- mits at most two arrows into and two arrows out of each
trarily small Lesbegue measure in the parameteSimi-  n-bit node, corresponding to the choice of shifting in a
lar behavior is also observed for other parameter values & or a 1 bit from any state. For the case of the full-
the logistic map with well developed chaos. These resultshift grammarB|s in which there are no forbidden-bit
thus strongly suggest that the function/gf versuss is a  words, each row and each columnAf has at most two
devil's staircase. nonzero entries. The topological entropy of a subshift of

A feature of thehr-versuss function, which is com- finite type can be computed directly as the natural loga-
mon to chaotic parameter values of[exemplified by rithm of spectral radius of the generating transition matrix
Fig. 2(a)] and of practical importance, is that decreases [8], 47 = In[p(A,)]. Hence, the topological entropy of
only slightly in a wide region when the noise-gap size in-a subshift of infinite type (corresponding #0— %) can
creases from zero initially. In Fig. 2(a), for example, thethen be computed in terms of the limit of spectral radii of
topological entropy of the chaotic attractor il 0.69.  a sequence of transition matricgs,}, which generate a
As s is increased from 0 t6.1, hr decreases from hto  sequence of approximating subshif$s, } to %/,
about 0.62, a ra}ther sma_II decrease. Bu%_ 0.1 means h(3') = lim In[p(A;)]. 1)
that the symbolic dynamics on the chaotic saddle is ro- i—o
bust against noise of amplitude abdut<x 10-2. Thus, This is the basis of our direct calculation /of (M (s)), for
with only incremental loss in the channel capacity, thewhichwe knowthe form of the continuously varying sub-
symbolic dynamics on the chaotic saddle is immune tashifts of M (s), whereM (s) denotes the chaotic saddle with
external noise of relatively large amplitude [6]. gap sizes, embedded in the chaotic attracidi(0) = M.

We now give the theoretical justification for the devil Given a single-maximum map, such as the logistic
staircases seen in Fig. 2(a). Our analysis is based amap, the key feature which allows us to apply Eqg. (1)
successive approximations of the grammar of the symto calculate the topological entropy as a function of gap
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width s is the fact that we know the ordering of the that can generate chaotic saddles with gap sizes in
n-bit itinerary bins (“Gray code” ordering) [9]. When (As/10,As). From the standpoint of channel capacity
formulating ann-bit word approximation of the subshift and noise resistance, these codes are therefore optimal.
3/, we construct the” X 2" transition matrices ordered Similar results appear to hold for high-dimensional chaotic
according to increasing Gray codes. For eacibit  systems.
approximation of the fullshift grammaBy, each of In conclusion, we have presented an analysis and nu-
the 2" nodes has two entering arrows and two exitingmerical results which imply that practical coding schemes
arrows. Therefore the transition matri, has exactly in communicating with chaos yield the utilization of
two ones in each row and column, and it follows thatchaotic saddles embedded in a chaotic attractor. This has
hr = In(p(A,)) = In(2). A restriction on the grammar several advantages: (i) Chaotic saddles can be noise resist-
of 24, corresponds to a forbiddenbit word. If the jth  ing, (ii) the loss in the channel capacity is only incremen-
n-bit word is forbidden, then all transitions into and out of tal, and (iii) the specification of symbolic partition may be
the jth node are also forbidden to preserve the invariancsignificantly simplified (particularly for high-dimensional
of the resulting subshift with respect to the Bernoulli shift. systems). These advantages may make practically
Hence, the corresponding transition mattixhas all zero feasible communicating with chaos.
entries in thejth row andthe jth column. We thank S. Hayes for discussions. Y.C.L. was sup-
Widening the gap is discretely approximated in terms ported by NSF Grant No. PHY-9722156 and by AFOSR
of restricting the grammar of the correspondingbit  Grant No. F49620-96-1-0066. This work was also sup-
subshift. Although, in general, we do not kn@priori ported by DOE (Mathematical, Information and Compu-
the locations and widths of eaokbit itinerary bin, in  tational Sciences Division, High Performance Computing
the case of single-maximum maps, we do know the ordeand Communication Program). E. M. B. was supported by
in which they are eliminated. Thus, we can compute theéhe NSF under Grant No. DMS-9704639.
spectral radius of the transition matrices starting with the
full shift grammar>,,. We eliminate pairs of-bit words
(by zeroing corresponding rows and columns), starting *Permanent Address: Institute for Plasma Research, The
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