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Coding, Channel Capacity, and Noise Resistance in Communicating with Chaos
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Recent work has considered the possibility of utilizing symbolic representations of controlled chaotic
orbits for digital communication. We argue that dynamically a coding scheme usually leads to
trajectories that live on a nonattracting but noise-resisting chaotic saddle embedded in the chaotic
attractor. We present analyses and numerical computation which indicate that the channel capacity o
the chaotic saddle has a devil-staircase-like behavior as a function of the noise-resisting strength. The
implication is that nonlinear digital communication using chaos can yield a substantial channel capacity
even in a noisy environment. [S0031-9007(97)04462-1]
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Recently, it has been demonstrated that chaotic syste
can be manipulated, via arbitrarily small time-depende
perturbations, to generate controlled chaotic orbits who
symbolic representation corresponds to the encoding
a desirable message [1]. Specifically, imagine a chao
power oscillator that generates a large amplitude sign
consisting of an apparently random sequence of posit
and negative peaks. By associating a positive peak w
a 1, and a negative peak with a0, one obtains a signal
that yields a binary sequence. It was shown how the u
of small controls could cause the signal to follow an orb
whose binary sequence encodes an arbitrary message [
An advantage of this type of communication strategy
that the nonlinear chaotic oscillator that generates the wa
form for transmission can remain simple and efficien
while all the necessary electronics controlling encoding
the signal remain at the low-powered microelectronic lev
Moreover, since the chaotic dynamics can be recove
from a chaotic signal, which in principle can be noisy
by using standard dynamical data analysis techniqu
communicating with chaos is also more robust and bet
behaved against channel noise [2].

A critical issue in communicating with chaos is how t
select a proper coding scheme by which any message
be encoded in the chaotic signal. Imagine the two-symb
(0 and1) case and considern-bit symbol sequences. For
a nonlinear oscillator that generates a chaotic attract
if the dynamics corresponds to a Bernoulli shift, ther
are then2n possible symbol sequences. The number
allowed symbol sequences, however, in most natura
occurring chaotic oscillators is less than2n: the rules
allowing for specific ones form the grammar of th
particular dynamics, meaning that there are forbidd
symbol sequences. Since the grammar of a natural cha
oscillator is quite complicated, it is difficult to design a
code which takes a full advantage of the dynamics
excluding only the forbidden symbol sequences. Thus,
practice, one chooses a code that restricts the gramma
that only a subset of all the allowed symbol sequenc
0031-9007y97y79(19)y3787(4)$10.00
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is utilized. Since all the allowed symbol sequenc
correspond to the original chaotic attractor in the pha
space, the symbol sequences only allowed by the c
corresponds to a chaotic saddle embedded in the attra

To illustrate how to design a code and to understand
consequence for the corresponding dynamics, we cons
the Lorenz system:Ùx ­ 10s y 2 xd, Ùy ­ xs28 2 zd 2 y,
Ùz ­ xy 2 s8y3dz, which can be physically realized by a
electric circuit [3]. Let zn be a maximum of the state
variable zstd. Then the successive maxima can be d
scribed by a one-dimensional, single maximum, nond
ferentiable mapzn11 ­ fsznd. The chaotic attractor in
the three-dimensional phase spacehxstd, ystd, zstdj corre-
sponds to a one-dimensional chaotic attractor in the ph
space of the discrete mapfszd. The natural partition for
defining a good symbolic dynamics is the critical pointzc

wherefszcd is maximum. A trajectory point withz , zc

(z . zc) bears symbol0 (1). Now suppose we choose
code in which four0’s in a row are forbidden in anyn-bit
sequence, wheren . 4. This restriction may be imposed
by the dynamics. In the symbol space, the code remo
all n-bit sequences that have four or more0’s in any lo-
cation. In thez phase space of the mapfszd, the restric-
tion imposed by the code corresponds to forbidden ga
In fact, the forbidden infinite-bit sequences with no mo
than three0’s in a row correspond to gaps in thez space
which are forbidden by the code. These gaps are open
dense. This means that the symbol sequences allowe
the code correspond to a dynamics restricted to a Ca
set in thez space, as shown in Fig. 1. This Cantor set co
responds to an invariant chaotic saddle embedded in
original chaotic attractor in thehx, y, zj space. Note that,
in general, it is in fact advantageous to utilize the chao
saddle such as the one shown in Fig. 1 for communicat
because the symbolic encoding (and decoding) is imm
to small noise. Say the system is in a noisy environme
If no code restriction is used to encode messages, a bi
ror (i.e.,0 becomes1 or vice versa) could occur when th
trajectory comes close to the partition pointzc since noise
© 1997 The American Physical Society 3787



VOLUME 79, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 10 NOVEMBER 1997

ate
as

d-
he
th
a-
-
es
e

py.
d in
e
ile
the
lt-
py.
r-

the
on.
tic
re-

i-
ff
de-

u-
tes
nel
ent
of
ike

d
e

ps
m.
at-

e

f
(a)

r

at
FIG. 1. A 10 000 point trajectory of the Lorenz map on
noise-resisting chaotic saddle embedded in the chaotic attra
corresponding to imposing the grammatical restriction, “no fo
0’s in a row.”

could kick the trajectory acrosszc. The possibility for bit
error due to noise can be substantially reduced whe
code such as the one yielding Fig. 1 is chosen since th
is a noise gap about the partition pointzc.

To give some illustrative examples of an encodi
message in the restricted chaotic signals, say we w
to communicate the message “BEAT ARMY!” in th
following ASCII format by using the Lorenz attractor:

Bz }| {
1000010

Ez }| {
1100101

Az }| {
1100001

Tz }| {
1110100

spacez }| {
0100000

Az }| {
1000001

Rz }| {
1110010

Mz }| {
1101101

Yz }| {
1111001

!z }| {
0100001 .

To transmit the message subject to the “no four zeros
a row” code, a simple way is for the transmitter to inse
a buffer bit “1” after three zeros in a row, regardless
the message bit that follows. Thus, the encoded mess
becomes

Bz }| {
10001010

Ez }| {
1100101

Az }| {
11000101

Tz }| {
1110100

spacez }| {
01000100

Az }| {
10001001

Rz }| {
1110010

Mz }| {
1101101

Yz }| {
1111001

!z }| {
01000101 .

Furthermore, if the original message contains the blo
0001, with three zeros in a row, the modified block
00011. Thus, the receiver can recover the original mess
simply by stripping a one after every block of three zero
Since for the Lorenz attractor, its intrinsic grammar
already included in the rule no four zeros in a row, t
message BEAT ARMY! can now be transmitted usin
the Lorenz circuit [3] by utilizing small control method
outlined in Ref. [1]. One may also consider a mo
severe restriction such as “no three zeros in a row,” wh
corresponds to a larger gap across the partition line.
this case, the encoded binary sequence looks like

Bz }| {
100100110

Ez }| {
11001101

Az }| {
110010011

Tz }| {
11101001

spacez }| {
010010010

Az }| {
100100101

Rz }| {
11100110

Mz }| {
1101101

Yz }| {
11110011

!z }| {
010010011 .
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Since more buffer bits are needed, the transmission r
will be slower, but the code is more immune to noise
the noise-resisting gap is wider.

By overrestricting the code, one does not take full a
vantage of the natural chaotic dynamics produced by t
power oscillator, resulting in a communication system wi
reduced channel capacity. Dynamically, the channel c
pacity is quantified by the topological entropy of the in
variant set in which the message-carrying trajectory li
[4]. Thus, in order to optimize the channel capacity, on
must design a code that maximizes the topological entro
Since a chaotic saddle is an invariant subset embedde
the original chaotic attractor, the topological entropy of th
saddle is generally smaller than that of the attractor. Wh
a larger size of the noise gap about the partition renders
symbolic dynamics more robust against noise, the resu
ing chaotic saddle possesses smaller topological entro
This is due to the fact that widening the noise gap co
responds to increasing the grammatical restrictions on
permissible codes in the symbol dynamics representati
Thus, the purpose of this Letter is to argue that chao
saddles embedded in a chaotic attractor can be noise
sisting but also rich information sources for commun
cation. Furthermore, we show that there is a trade-o
between noise resistance and channel capacity when
signing a code for communication applications. In partic
lar, an appropriate code restriction exists which genera
a noise resisting chaotic saddle that optimizes the chan
capacity versus the noise resistance. We also pres
strong evidence indicating that the topological entropy
the chaotic saddle is a nonincreasing, devil’s-staircase-l
function of the noise-gap size.

To facilitate a systematic numerical computation an
analysis of the topological entropy of chaotic saddles, w
make use of the logistic mapfsxd ­ rxs1 2 xd which cap-
tures the essential dynamics of the single-maximum ma
arising in physical situations such as the Lorenz syste
Consider the case where the map exhibits a chaotic
tractor. We assign a symbol0 (1) to the trajectory of
x , 1y2 (x . 1y2) (the critical pointxc ­ 1y2 is the par-
tition). For a chaotic saddle with a primary gap of siz
s centered atxc, its topological entropyhT is less than
that of the chaotic attractor. Ass increases, the number o
allowed symbol sequences cannot increase. Figure 2
showshT versuss for r ­ 4. To generate this figure,
we compute, for eachs, a long trajectory of107 points on
the chaotic saddle by using the PIM-triple (proper interio
maximum) algorithm [5] and then countNsnd, the number
of possible symbol sequences of lengthn. The topologi-
cal entropy is given byhT ­ limn!`

ln Nsnd
n . In practice,

we plot lnNsnd versusn for n up to, say, 20. The slope
of such a plot is approximately the topological entropyhT .
From Fig. 2(a), we see thathT is apparently a nonincreas-
ing function of s. A striking phenomenon is that there
seem to be numerous plateau regions ofs in which hT re-
mains approximately constant. We find numerically th
these plateau regions appear to exist on all scales ins. The
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FIG. 2. (a) Numerical computation of the topological entrop
hT versus the size of the noise-resisting gaps for the logistic
map atr ­ 4. (b) Theoretical prediction using 14-bit symbo
sequences. Some details of the theoretical calculation dif
from the numerical result in (a), due to the fact that only 14-b
sequences are used. The theory nonetheless predicts corr
the devil’s staircase structure.

set of s values at whichhT changes seems to have arb
trarily small Lesbegue measure in the parameters. Simi-
lar behavior is also observed for other parameter values
the logistic map with well developed chaos. These resu
thus strongly suggest that the function ofhT versuss is a
devil’s staircase.

A feature of thehT -versus-s function, which is com-
mon to chaotic parameter values ofr [exemplified by
Fig. 2(a)] and of practical importance, is thathT decreases
only slightly in a wide region when the noise-gap size in
creases from zero initially. In Fig. 2(a), for example, th
topological entropy of the chaotic attractor is ln2 ø 0.69.
As s is increased from 0 to0.1, hT decreases from ln2 to
about 0.62, a rather small decrease. Buts ­ 0.1 means
that the symbolic dynamics on the chaotic saddle is r
bust against noise of amplitude about5 3 1022. Thus,
with only incremental loss in the channel capacity, th
symbolic dynamics on the chaotic saddle is immune
external noise of relatively large amplitude [6].

We now give the theoretical justification for the dev
staircases seen in Fig. 2(a). Our analysis is based
successive approximations of the grammar of the sy
y
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bolic dynamics corresponding to the chaotic map, usin
a sequence oftransition matrices. For a one-dimensional
single-maximum map of the formxn11 ­ fsxnd, a good
symbolic dynamics can be defined by dividing the phas
space into two disjoint but dynamically connected subse
S0 and S1 by using a Markov partition [7]. The orbit
hxij`

i­0 of an initial conditionx0 defines an itinerary se-
quencehsij`

i­0 through the partition,si ­ gsxid ­ 0 if
xi [ S0 andsi ­ gsxid ­ 1 if xi [ S1. Let S be the set
of all possible infinite symbol sequences of the symbols0
and 1. An initial condition x0 has an itinerary sequence
written ass ­ s0.s1s2s3 . . . [ S. The Bernoulli-shift
mapB: S ! S, defined byBssd ­ Bss0.s1s2s3 . . .d ­
s1.s2s3s4 . . . , evolves symbol sequences inS. Thus, the
dynamics on the chaotic attractor can be represented by
dynamics ofBjS0 (the Bernoulli shift map restricted to a
subshiftS0), whereS0 , S, is a closed and invariant sub-
set ofS. A finite n-bit symbol sequences0.s1 . . . sn21
identifies all points inS which agree in their firstn bits.
Then-bit symbol sequence corresponds to a neighborhoo
or bin, in the phase space by a change of variable. Asn
is increased, these bins become increasingly refined.

The grammar of the subshiftS0 can be defined by
the collection of all permissible (or alternatively, forbid-
den) transitions betweenn-bit words, under the action of
the Bernoulli-shift map restricted toS0. The n-bit bins
are generated by the sequence of preimages of the cr
cal pointxc: hxc, f21sxcd, f22sxcd, . . . , f2sn21dsxcdj. Note
that when the map is not everywhere two onto one, som
f2isxcd will not exist, and consequently, there is an ille-
gal i-bit word. A subshiftS0 of finite type has a gram-
mar which is representable by a finite list of forbidden
n-bit words. In this case, the grammar is represented b
a 2n node directed graph, or equivalently, by a2n 3 2n

transition matrix,An [7]. The Bernoulli-shift map per-
mits at most two arrows into and two arrows out of eac
n-bit node, corresponding to the choice of shifting in a
0 or a 1 bit from any state. For the case of the full-
shift grammarBjS in which there are no forbiddenn-bit
words, each row and each column ofAn has at most two
nonzero entries. The topological entropy of a subshift o
finite type can be computed directly as the natural loga
rithm of spectral radius of the generating transition matri
[8], hT ­ lnfrsAndg. Hence, the topological entropy of
a subshift of infinite type (corresponding ton ! `) can
then be computed in terms of the limit of spectral radii o
a sequence of transition matriceshAnj, which generate a
sequence of approximating subshiftshSAn

j to S0,

hT sS0d ­ lim
i!`

lnfrsAidg . (1)

This is the basis of our direct calculation ofhT sssMssdddd, for
which we knowthe form of the continuously varying sub-
shifts ofMssd, whereMssd denotes the chaotic saddle with
gap sizes, embedded in the chaotic attractorMs0d ; M.

Given a single-maximum map, such as the logisti
map, the key feature which allows us to apply Eq. (1
to calculate the topological entropy as a function of ga
3789
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width s is the fact that we know the ordering of the
n-bit itinerary bins (“Gray code” ordering) [9]. When
formulating ann-bit word approximation of the subshift
S0, we construct the2n 3 2n transition matrices ordered
according to increasing Gray codes. For eachn-bit
approximation of the fullshift grammarBS, each of
the 2n nodes has two entering arrows and two exitin
arrows. Therefore the transition matrixAn has exactly
two ones in each row and column, and it follows tha
hT ­ ln sssrsAndddd ­ lns2d. A restriction on the grammar
of SAn

corresponds to a forbiddenn-bit word. If the jth
n-bit word is forbidden, then all transitions into and out o
the jth node are also forbidden to preserve the invarian
of the resulting subshift with respect to the Bernoulli shift
Hence, the corresponding transition matrixA0

n has all zero
entries in thejth row and thejth column.

Widening the gaps is discretely approximated in terms
of restricting the grammar of the correspondingn-bit
subshift. Although, in general, we do not knowa priori
the locations and widths of eachn-bit itinerary bin, in
the case of single-maximum maps, we do know the ord
in which they are eliminated. Thus, we can compute th
spectral radius of the transition matrices starting with th
full shift grammarSAn

. We eliminate pairs ofn-bit words
(by zeroing corresponding rows and columns), startin
from the middle. At each step, we computehT of the
evolving subshift directly from the spectral radius of th
current transition matrix. Letk be the number of bins
eliminated which scales monotonically to the gap widt
s. We expect topological entropy to be a monotonicall
nonincreasing function ofk. Increased restrictions on the
grammar leads to decreased channel capacity. Increas
n, the word size considered, better approximates the effe
of continuously increasing the gap sizes from s ­ 0; a
small increase ins requiresn large to account for a whole
(small) bin which is eliminated. Figure 2(b) reveals a
devil’s-staircase-like functionhT skd for n ­ 14. As n
is increased, more constant intervals, or “flat spots,” a
revealed; the invariance of the subshift has required us
eliminate all transitions away from an eliminated node
and often this may effectively eliminate other nearb
nodes. In such a case, further widening of the gap, a
hence elimination of the next node in the Gray ordering
causes no change because that node may have alre
been dynamically eliminated in a previous step. Th
devil’s staircase structure arises from the fact that th
mechanism occurs on all scales, to2n node directed graph
representations of the symbol dynamics of the chao
saddlesMssd, for all n, and the larger then-bit word size
considered, the smaller the flat spot will be.

The fact that the topological entropy of the chaoti
saddle decreases only slightly in a range of gap siz
s0, Dsd has important practical implications. Say the nois
amplitude isDsy10. Then the chaotic saddles with gap
sizes insDsy10, Dsd are immune to noise, yet their channe
capacity is only slightly less than that of the origina
chaotic attractor. There are an infinite number of code
3790
g

t

f
ce
.

er
e
e

g

e

h
y

ing
ct

re
to
,

y
nd
,
ady
e
is

tic

c
es
e

l
l
s

that can generate chaotic saddles with gap sizes
sDsy10, Dsd. From the standpoint of channel capacit
and noise resistance, these codes are therefore opti
Similar results appear to hold for high-dimensional chao
systems.

In conclusion, we have presented an analysis and
merical results which imply that practical coding schem
in communicating with chaos yield the utilization o
chaotic saddles embedded in a chaotic attractor. This
several advantages: (i) Chaotic saddles can be noise re
ing, (ii) the loss in the channel capacity is only increme
tal, and (iii) the specification of symbolic partition may b
significantly simplified (particularly for high-dimensiona
systems). These advantages may make practic
feasible communicating with chaos.

We thank S. Hayes for discussions. Y. C. L. was su
ported by NSF Grant No. PHY-9722156 and by AFOS
Grant No. F49620-96-1-0066. This work was also su
ported by DOE (Mathematical, Information and Compu
tational Sciences Division, High Performance Computin
and Communication Program). E. M. B. was supported
the NSF under Grant No. DMS-9704639.

*Permanent Address: Institute for Plasma Research, T
University of Maryland, College Park, MD 20742.

[1] S. Hayes, C. Grebogi, and E. Ott, Phys. Rev. Lett.70,
3031 (1993); S. Hayes, C. Grebogi, E. Ott, and A. Mar
Phys. Rev. Lett.73, 1781 (1994); E. Bollt and M. Dolnik,
Phys. Rev. E55, 6404 (1997).

[2] E. Rosa, S. Hayes, and C. Grebogi, Phys. Rev. Lett.78,
1247 (1997).

[3] K. Cuomo and A. V. Oppenheim, Phys. Rev. Lett.71, 65
(1993).

[4] From the viewpoint of information theory, the topologica
entropy is the rate at which information is generate
when one observes the system. In communication,
topological entropy is the channel capacity because t
entropy defines the “amount” of information that ca
be transmitted through a communication channel [R.
Blahut, Principles and Practice of Information Theory
(Addison-Wesley, Reading, MA, 1988)].

[5] H. E. Nusse and J. A. Yorke, Physica (Amsterdam)36D,
137 (1989).

[6] Strictly speaking, this consideration applies only t
bounded noise with smooth probability distribution, e.g
uniform random noise. For unbounded noise such
those with Gaussian probability distribution, ambiguit
in symbolic dynamics occurs when the instantaneo
noise amplitude is larger than the noise-gap size. T
ambiguity can, however, be easily removed by usin
embedding of the deterministic chaotic signal in som
proper Euclidean space.

[7] J. Guckenheimer and P. Holmes,Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Vector Field
(Springer-Verlag, New York, 1983).

[8] C. Robinson, Dynamical Systems: Stability, Symboli
Dynamics, and Chaos(CRC Press, Ann Arbor, 1995).
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