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Lifshitz Tail in the Density of States of a Superconductor with Magnetic Impurities
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(Received 9 May 1997)

We argue thatany superconductor with magnetic impurities is gapless due to a Lifshitz tail in the
density of states extending to zero energy. At low energy the density of statesnsE ! 0d remains finite.
We show that fluctuations in the impurity distribution produce regions of suppressed superconductivity
which are responsible for the low energy density of states. [S0031-9007(97)04452-9]
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The role of impurities in superconductors is a rich su
ject, going back to the pioneering papers by Abrikoso
and Gor’kov [1] and by Anderson [2]. However, the
majority of work has been concentrated so far on th
“mean-field” treatment of the impurity problem in super
conductors. Here we will address the role of the flu
tuations of the distribution of magnetic impurities in a
s-wave superconductor.

It has been experimentally known for some time th
the density of states (DOS) in a superconductor wi
magnetic impurities is far greater at low energies than o
would expect from Abrikosov-Gor’kov theory [3]. Using
the suppression of the critical temperature to infer the p
breaking parameter, one typically arrives at a substantia
lower DOS at E ø D0 than is observed. (D0 is the
superconducting gap in the spectrum.) We suggest h
that theobserved deviations from the Abrikosov-Gor’ko
theory at small E are caused by fluctuations in the
impurity distribution and the Lifshitz tail in the DOS o
an impure superconductor.

We observe that for any, no matter how small, conce
trationn of magnetic impurities in a superconductor ther
are fluctuations in the distribution of impurities across th
sample. There are finite regions of high impurity conce
tration, where the superconducting state is suppressed
to scattering. These large regions of essentially norm
metal produce low lying,E ø D0 single particle states in
the averaged density of states of the superconductor. I
clear that any unique singularity in the DOS, if one oc
curs, should be atE ­ 0 due to the particle-hole symme-
try of the superconducting state, which we assume h
and which is preserved even with magnetic impuritie
We find that at low energyE ø D0 the DOS is

nsEd ~ s1yDL0 d exps2const3 Ld
0 d , (1)

wherensEd is scaled with the normal state DOS,d is the
dimensionality of space,DL0 is the mean level spacing in
the fluctuation region of the size of lengthL0 ­ sj0ld1y2,
where j0 ­ pyfyD0 is the T ­ 0 superconducting co-
herence length, andl is the mean free path. The constan
in the exponent will be given below. The tail in the DOS
of a superconductor is similar to the tail in the DOS of
semiconductor, the so-called Lifshitz tail [4].
0031-9007y97y79(19)y3767(4)$10.00
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For any particular model of impurity scattering (e.g
Born versus unitary scattering), we assume that th
exists a critical concentrationnc at which a thermo-
dynamic superconducting sample will become norm
due to the pairbreaking effect of impurities. The sp
cific value of nc obviously depends on the mode
For the case of the Born scattering limit of magne
impurities, within the Abrikosov-Gor’kov theory,nc ­
Os1dD0N0yfJ2N2

0 SsS 1 1dg, where N0 is the normal
metal DOS,J is the magnetic exchange between condu
tion electrons and the impurity, andS is the magnitude of
the impurity spin [1]. This specific value is not importan
for our subsequent considerations. We will usenc as a
model-dependent input to our final answer. All conce
trations are given in terms of the dimensionless conc
tration per unit cell of linear sizea.

Here we will consider the case of arbitrary impurit
exchange strength. It is known that magnetic impuriti
induce intragap states [5]. The energy of these sta
for large S is approximatelyv0 ­ D0f1 2 J2N2

0 SsS 1

1dgyf1 1 J2N2
0 SsS 1 1dg. These impurity states have

a wave functionCsrd , exps2ryjv0 d of size jv0 ­
j0f1 2 sv0yD0d2g21y2 $ j0, where j0 is the zero tem-
perature superconducting coherence length. For s
sequent consideration we assume thatncsj0yadd ¿ 1,
generally true for realistic systems, so that intragap sta
are strongly overlapping in the region where the imp
rity concentration isnc. Impurity states form an impurity
band, centered aroundv0 [5]. Fluctuations in the distri-
bution of impurities lead to tails in this impurity band
which extend to zero energy.

Consider a fluctuation in the impurity distribution
such that inside a regionV sLd ­ Ld [6], the local
concentration of impurities isnc (averaged over distance
much greater thanjv0 but smaller thanL), as shown in
Fig. 1. We assume thatL ¿ l $ jv0 , where l is the
mean free path at the critical impurity concentrationnc.

The low energy single particle spectrum in the fluctu
tion region will be normal, since the local concentratio
is nc. The proximity coupling to the superconductin
reservoir at the boundary cannot open up a gap at la
distances,L ¿ j0 due to pair breaking scattering. W
ignore the region of sizej0 from the boundary where the
© 1997 The American Physical Society 3767
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FIG. 1. Fluctuation region of sizeL, with concentration of im-
purities nc inside the superconductor, is shown schematical
The equilibrium concentration isn , nc. The fluctuation re-
gion has a metallic spectrum. Andreev reflection modifies t
spectrum of quasiparticles [7]. In any local probe of the DO
e.g., an STM, one would find that theI-V characteristics have
a gap in the outer region, but are gapless if measured at
point inside the fluctuation region. The average DOS of a s
perconductor asE ! 0 hence will be the sample average of th
DOS of the fluctuation regions.

gap is decaying. The single particle spectrum insideV sLd
will be equivalent to the spectrum of a normal metallic re
gion with magnetic impurities in tunneling contact with
bulk superconductor.

To verify that the spectrum of the fluctuation regio
is indeed gapless we have numerically calculated t
spectrum of a random superconductor in the mean-fie
approximation. Specifically, we considered the 1D BC
superconductor with the Hamiltonian

H ­ 2t
X

ki,jl,s
c

y
i,scj,s 1

X
i

Dp
i ci,"ci,# 1 H.c.

1 J
X

i[V sLd,a,b

$Si ? c
y
i,a $sa,bci,b , (2)

wherei labels the sites of 1D chain,V sLd are the impurity
sites,t is the nearest-neighbor electron hopping,Di is the
pairing amplitude on the sitei, J is the exchange coupling
between the conduction electron and impurity spin, andSi

is a randomclassical Heisenberg impurity spin on the sit
i. The last term in Eq. (2) describes the impurity scatterin
effects of the fluctuation region, which we assume to be
the middle of the superconducting region.

We consider a superconducting system of 40 sites w
impurity spins present at a high concentrationx on 10
of these sites. This approximation was chosen to mim
the high impurity density fluctuation region, which is
responsible for the low energy DOS. For classical spin
the couplingJ and impurity spin magnitude enter into the
answer in the combinationJS, hence the specific values
of each of them separately does not matter. We ha
calculated the spectrum of quasiparticles in the mean-fi
3768
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approximation, ignoring the self-consistency condition fo
the gap [8]. The DOS for this model is shown in Fig. 2.

SinceD ­ 0 in the impurity region, there are intragap
states even forJS ­ 0. (There is only one such state
for the parameters of Fig. 2.) We find that the intraga
state evolves into an impurity band, and gradually fills th
entire gap as the concentration or the coupling constantJS
increases. This evolution of the impurity band is simila
to the evolution of the band in doped semiconductor
The calculation confirms all the basic features one mig
expect: the appearance of impurity states inside the g
region, the growth of the impurity band, and finally the
filling of states at low energies with nonzerons0d.

A similar calculation is shown in Fig. 3, but with
the mean-field superconducting gapD ­ 0.5 everywhere,
including the impurity region. In this case, there are n
intragap states forJS ­ 0. For smallJS, intragap states
first appear atv0, which is just below the energyD of the
uniform gap. AsJS increases, the gap gradually fills in.
A larger value ofJS is required to completely close the
gap than in Fig. 2, because the density must spread do
from D rather than from the intragap levels that alread
exist in Fig. 2 atJS ­ 0.

To illustrate the importance of the clustering of impu
rities for the DOS at low energies, we have numericall
calculated the spectrum for a random distribution of im
purities, and compared it to the case where the impuri
distribution is constrained to be uniform; i.e., the Lifshitz
tail is artificially suppressed (see Fig. 4). This approac
is more accurate than the Abrikosov-Gor’kov calculation
where only the averaged scattering rate was consider
The first calculation in Fig. 4 allows for any distribution
of impurities across the sample with the appropriate st
tistical weight, including clusters of high density. Com
parison of these results clearly shows that the moment

FIG. 2. The density of states is plotted for a 1D BCS
superconductor with 40 sites. There is an impurity region of 1
sites, in which the superconducting gapD is taken to be zero.
Classical Heisenberg impurity spins with random orientatio
occupy the impurity region with concentrationx ­ 0.5. The
solid line is for couplingJS ­ 0.1, and the dotted line is
JS ­ 1.0. Other parameters aret ­ 1 andD ­ 0.5. The DOS
is averaged over 1500 realizations. The fine-scale roughness
the middle of the band is due to finite size effects.
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FIG. 3. Same as Fig. 2, but with the superconducting g
D ­ 0.5 throughout the sample, including the impurity region

allow high density clusters to appear, the DOS at low e
ergies is dramatically increased due to Lifshitz tails.

A similar problem for a metallic grain in the presenc
of time reversal violating fields (e.g., impurity spins) in
contact with a superconductor was considered by Altlan
and Zirnbauer [9]. At energies small compared to th
Thouless energyET ­ DyL2, one can ignore the spatially
inhomogeneous solutions of the nonlinear-s model. In
this limit the spectrum of the grain is given by random
matrix theory. The single particle DOS in Ref. [9] is
nLsEd ­ 1yDLs1 1

sins2pEyDLd
2pEyDL

d, which goes to constant
asE ! 0. HereDL (not to be confused with the gapD0)
is the mean level spacing of the grain of linear sizeL,
andnLsEd is averaged over all realizations of the random
spectrum for grains of sizeL. We are interested in
E ø v0, where the constraintE ø ET is not important
sinceET yv0 , sD0yv0d sj0lyL2d and this ratio is small
except in the limitv0 ! 0, where special care should be

FIG. 4. The density of states is calculated numerically for
homogeneous superconductor with 40 sites,D ­ 0.5 through-
out the sample, and randomly oriented Heisenberg magne
impurities with couplingJS ­ 1.0. The heavy line is the DOS
for magnetic impurities that occupy each site with probabilit
0.2, averaged over 4000 realizations. The light line is the DO
for the same impurity concentration, but with all density fluc
tuations suppressed; a magnetic impurity is placed on eve
fifth site. When the spontaneous statistical fluctuations in t
local density (Lifshitz tails) are suppressed, the density of sta
at zero energy vanishes.
ap
.

n-

e

d
e

a

tic

y
S
-
ry

he
tes

taken. We will not address this limit here. We believ
that the resultnsEd , const will still hold.

If we make the assumption that the spectrum of th
fluctuation region in Fig. 1 is equivalent to the spectrum
of a normal metal grain, it is easy to estimate the avera
DOS nsEd from the distributionPLsnc; nd in the size of
the fluctuation regions,

nsEd ,
Z

dV sLdPLsnc; ndnLsEd . (3)

We now consider the probability distribution for a nor
mal region of volumeV sLd with linear sizeL ¿ j0 to
occur. This question is equivalent to finding the probabi
ity PLsnc; nd of a fluctuation region of diameterL, taken
to be spherical ind dimensions, with a concentration of
impurities in this region equal to or greater thannc, while
the average concentration isn. This probability can be
easily evaluated, following, for example, the arguments
Refs. [4,10]. We find

lnfPLsnc; ndg ­ ds ­ 2V sLdfsnc; nd

fsnc; nd . nc lnsncynd 2 nc 1 n , (4)

where ds is the change in entropy due to a fluctuatio
with homogeneous concentrationnc in the regionV sLd,
and fsnc; nd is the entropy density for the discussed
fluctuation, which is model dependent. Equation (4
applies for smalln andnc [11]. Strictly speaking, Eq. (4)
gives the probability of a fluctuation with a concentratio
equal to nc. In principle one should integrate this
probability over the rangen $ nc to obtain the total
probability that the normal regionV sLd will occur.
Taking into account this effect will only change the
coefficient infsnc; nd and the prefactor in Eq. (1).

The ratio of the mean level spacing to the superco
ducting gap is given byDLyD0 ­ ksnc, J, N0dL2d, where
ksnc, J, N0d is a model–dependent dimensionless functio
of nc, J, N0 [12]. With the aid of Eq. (4) and usingDL

we find

nsEd ­
Z

V sL0d
dV sLdPLsnc; ndnLsEd

, D21
L0

expf2Ld
0 fsnc; ndg . (5)

This is our main result. In writing Eq. (5) the lower
limit of the volume integration was taken atL ­ L0 ­
sj0ld1y2, whenET , D0, because at smaller distances th
gap acquires a nonzero mean value due to strong coupl
to the bulk superconductor.

The fact thatnsEd is nonzero at arbitrarily small energy
implies that a superconductor with magnetic impurities
always gapless. This does not, however, mean that t
system is not superconducting. A dc current can flo
through the system (around the impurity regions) with n
dissipation, i.e., there is a condensate. The dissipation
nonzero for essentially any ac current due to dissipatio
in the normal metal regions.
3769
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A few comments are in order here. (i) It should b
noted that there is a qualitative difference between t
DOS in the tails for a superconductor as compared to
semiconductor. In the case of a high impurity concentr
tion region of sizeL in a semiconductor, the energy ha
a quadratic dispersionE 2 E0 ­ p2y2mL2, whereE0 is
the lowest energy of the crystal composed of only the im
purity atoms. This results in ansEd ~ expf2constysE 2

E0ddy2g for the Lifshitz tail in a semiconductor. The
difference comes from the fact that in a semiconduc
tails are formed near the bottom of the band, where
in our case the destruction of the superconducting g
leads to disordered normal regions. (ii) The suppress
of superconductivity occurs at quite a low concentratio
nc , 1%. This allows for substantial fluctuations of th
impurity distribution insideV sLd. However, it is clear
that the most important configuration responsible for t
low lying states is the one with a nearly homogeneous d
tribution with local concentration close tonc. Any fluc-
tuations with localnsrd # nc are ineffective fornsE !
0d. We expect any improvement of the above conside
tion will lead to corrections tofsnc; nd. (iii) We have
ignored the possible interactions between impurity spin
This does not have to be the case in real systems, wh
in order to suppress superconductivity one has to ha
many impurities in regions of the size of the cohe
ence length:ncsj0yadd ¿ 1. Interactions between spins
in this situation may be important, as was pointed o
by Larkin et al. [13]. (iv) Similar considerations should
apply to any system with a spontaneously induced gap d
to interactions, i.e., charge density wave and spin de
sity wave systems and to unconventional, e.g.,d-wave,
superconductors.

The present work is related to that of Larkin an
Ovchinnikov [14]. They considered the DOS fluctuation
for a disordered superconductor due to fluctuations of
gapD0srd, and also found that the DOS is finite at sma
energies due to this process. We have considered he
different mechanism for generating a nonzero DOS.
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We are grateful to G. Aeppli for bringing Refs. [3
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