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We study the Kondo effect due to the nonmagnetic impurity, e.g., Zn, in high-Tc cuprates based
on the spin-change separated state. In the optimal or overdoped case with the Kondo screening
resistivity is given byrsT d ­

4 h̄

e2

nimp

12x
1

aT

x
(x: hole concentration,nimp : impurity concentration,a:

constant), which is in agreement with experiments. In the underdoped region with the pseudospin
an SU(2) formulation predicts that the holon phase shift is related to the formation of the local sp
moment, and hence the residual resistivity is given byrres ­

4 h̄

e2

nimp

x
, which is also consistent with the

experiments. The magnetic impurity case, e.g., Ni, is also discussed. [S0031-9007(97)04488-8]

PACS numbers: 74.25.Fy, 74.25.Ha, 74.72.–h, 75.20.Hr
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A Kondo effect is a phenomenon shown by a magne
impurity put into a metal [1]. High-Tc cuprates offer a
unique opportunity to study the Kondo effect in a strong
correlated metal. In the undoped high-Tc cuprates, the
valency of a Cu atom is Cu21 sd9d and the system is a Mott
insulator. By the hole doping, the system becomes meta
and shows superconductivity with highTc. We believe
that the Kondo effect in this system is actually observed
thenonmagneticimpurity, e.g., Zn, replacing the Cu atom
in the conducting plane. The valency of Zn is Zn21 sd10d
and compared with the Cu21 case, one electron is trappe
by one additional positive charge of the nucleus, whi
forms a singlet on the Zn site. In the underdoped cupra
with spin gap, it is found experimentally that a loca
moment ofS ­ 1y2 appears on neighboring Cu sites [2
8]. We believe this localized spin is not screened by t
conduction electron spins because of the reduced den
of states for spins at the Fermi energyEF in the presence
of the spin gap [9,10]. Once the spin gap collapses w
the increased hole concentration, the density of states
spins atEF recovers and also the Kondo screening, i.e., t
singlet formation between localized spin and conducti
spins, occurs. Associated with the formation of loc
moments, it is found that the residual resistivityrres is
very large in high-Tc cuprates. For example,rres at
1% Zn doping in La22xSrxCuO4 sx ­ 0.15d amounts to
,100 mV cmy%. This value should be compared with
rres ­ 0.32 mV cmy% for Zn doping in the Cu metal [11].

The single bandt-J model is believed to be the low
energy effective model of high-Tc cuprates [12], and the
s-waves, ­ 0d scattering is expected to dominate. The
the Friedel sum rule [13] relates the phase shiftds for
the s-wave scattering to the difference of the valenceZ
between the host and impurity atoms and the spin of
impurity S as

Z ­
1
p

sd" 1 d#d , (1)
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2S ­
1
p

sd" 2 d#d . (2)

The residual resistivity in the limit of smallnimp is given
in two dimensions as

rres ­
2h̄
e2

nimp

n
ssin2 d" 1 sin2 d#d , (3)

wherenimp is the impurity concentration andn is the car-
rier concentration [6,11]. Theoretically, it is not a trivia
problem whether the carriers are the electrons with t
concentrationn ­ 1 2 x or the doped holes withn ­ x.
The experimentally observed values ofrres in the under-
doped region are quantitatively fitted by Eq. (3) by puttin
the carrier concentrationn ­ x, and the phase shiftds ­
py2 ( unitarity limit) [6–8]. Note that this is the larges
value theoretically expected from Eq. (3). As the dopin
proceeds to the optimal and overdoped regions, the resid
resistivity decreases and fits the formula Eq. (3) withn
being increased to1 2 x with ds ­ py2 unchanged [8].
This crossover seems to correspond to the disappeara
of the local moment. It is noted thatrres in the optimal
and overdoped regions is consistent with the Fermi liqu
picture, whereS ­ 0 andZ ­ 1 in Eqs. (1)–(3). How-
ever, considering the fact that the conductivity without th
impurities is proportional tox and hence is dominated by
the hole carriers in the optimal doping region, the residu
resistivity corresponding ton ­ 1 2 x is a mystery. Even
more unconventional is the underdoped case, where the
perimental observation thatn > x in Eq. (3) means that
the phase shift cannot be associated with the electro
Can one associate the phase shift with the holes? T
what determines that phase shift? These are the quest
to which we give solutions below.

As mentioned earlier, the interpretation of carrier co
centration asx or 1 2 x is a complicated issue in high-Tc

cuprates. It is commonly agreed that, in optimally dop
samples, a large Fermi surface of area1 2 x exists. Even
© 1997 The American Physical Society 3755
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in underdoped samples there is evidence that the pseu
gap is formed out of an underlying large Fermi surfa
[14]. Nevertheless, the dc conductivity is consistent wi
x carriers with a scattering rate of2kT . This is supported
by the analysis of the Drude partsv , 2kT d of the opti-
cal conductivity [15,16] and by the fact that the superflu
density scales withx. The optical conductivity for higher
frequency is not Drude-like, and has been fitted byv211a

[17]. The spectral weight when integrated over a lar
frequency range of order1 eV becomes insensitive tox.
These observations indicate that the carriers are not Fe
liquid, as emphasized by Anderson [18]. The dichotom
between a large Fermi surface of area1 2 x and a low
energy spectral weight ofx is readily accounted for in
the resonating valence bond (RVB) theory, using the co
cept of spin-charge separation [19]. In this view the d
conductivity is dominated by the holons. The formal im
plementation of these ideas is the slave boson mean fi
theory and gauge fluctuations [20–22]. Even though A
derson and co-workers have abandoned this approac
favor of the tomographic Luttinger liquid [18], we believe
that this line of investigation still has merits, especial
in view of recent refinements [23], and we shall base o
discussion on this method. Let us first consider the U(
theory which is applicable to optimally doped and ove
doped regions. In this formalism the electronsCy

isd is
described as the composite particle of spinons f

y
isd and

holon sbid, i.e.,C
y
is ­ f

y
isbi with the constraintX

s

f
y
isfis 1 b

y
i bi ­ 1 . (4)

This constraint is taken care of by introducing the gau
potentiala0 which couples to the left-hand side of Eq. (4
We recall that the resistivity is given by the Ioffe-Larkin
composition ruler ­ rspinon 1 rholon [20]. For the
clean case it is dominated byrholon which is inversely
proportional tox. The residual resistivityrres is given as

rres ­ rspinon
res 1 rholon

res

­
4h̄
e2 nimp

"
sin2 dspinon

1 2 x
1

sin2 dholon

x

#
. (5)

Now we calculate the phase shift for spinons an
holons. Our discussion is based on the mean field
proximation. In the presence of a Zn the static config
ration of a0, together with the Coulomb potentialA0,
is determined self-consistently to satisfy both the char
neutrality condition and Eq. (4) on average for each s
i, except the Zn site. The spinons and holons feel t
potentiala0 1 A0 anda0, respectively, and each particle
has its one-particle states which are characterized by th
phase shifts. We can relate the phase shifts to the cha
DNspinon, DNholon in the number of particles inside a larg
sphere including Zn by applying the Friedel sum ru
to the spinons and holons separately. We shall see
DNspinon, DNholon are determined by the charge neutrali
condition and the constraint Eq. (4). The fluctuating pa
of the gauge field gives an inelastic contribution to th
3756
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resistivity, which is simply added to the residual one
which we are now interested in.

In order to determineDNspinon and DNholon, we first
write down a specific model for the Zn impurity. Rela-
tive to Cusd9d, it has an additional nuclear charge and a
additional electron, making it charge neutral and a sp
singlet. Thus we can simply remove it from the con
sideration and treat it as a vacancy in the Cusd9d lat-
tice. We model this vacancy by introducing a strong
local repulsive potential for spinons and holons, i.e
HZn ­ V0s

P
s f

y
0sf0s 1 b

y
0 b0d with the limit V0 ! `.

Note that on the Zn sitei ­ 0, the right-hand side of
Eq. (4) is zero. The introduction of Zn creates a viola
tion of the constraint on a single site and we immediate
find that, within a large sphere,

DNholon 1 DNspinon ­ 21 . (6)

Next we observe that the number of holes within a larg
sphere containingN sites is fixed by charge neutrality,
i.e., it is fixed to be Nx by the background charge
introduced by doping which lies off the Cusd9d plane.
The introduction of the Zn impurity only excludes the
hole from the Zn site but cannot change the total ho
number within the large sphere. We then conclude th
DNholon ­ 0 and, using Eq. (6),DNspinon ­ 21. For
dspinon we can apply Eq. (1) withZ ­ DNspinon ­ 21.
In the optimally doped and overdoped cases, no loc
moment appears so that the impurity is nonmagnetic, a
we putS ­ 0 in Eq. (2). This givesdspinon ­ d0 ­ py2
as the nonmagnetic potential scatterer in a Fermi liqui
and r

spinon
res ­

4 h̄
e2

nimp

12x . For holons, on the other hand,
dholon cannot be replaced by the value at a representati
energy such as the Fermi energy. However, the holons a
hard-core bosons interacting strongly with the gauge fiel
which might behave like fermions. This givesdholon ­
pDNholon ­ 0 andrholon

res ­ 0. In summary, the residual
resistivityrres is given by

rres ­ rspinon
res ­

4h̄
e2

nimp

1 2 x
, (7)

in agreement with the experiments. As noted befor
the appearance of1 2 x in rres when x appears in the
T -dependent part ofr is highly nontrivial and may be
regarded as an important test of the Ioffe-Larkin rule.

Next, we discuss the underdoped regime. From our di
cussion up to now, it is very difficult to explain the experi-
mental observation. Since the resistivity is proportiona
to x, we need the holon scattering to be unitary. How
ever, since there is no spin label on the holon, the nat
ral values fordholon is 0 or p , and in either caserholon

res
is zero. We also observe that unlike the overdoped cas
where the Kondo scattering is smoothly connected to th
strongly overdoped Fermi liquid limit, in the underdoped
case we cannot recover the experimental value even if w
extrapolate to the zero doping limit, i.e., Néel state. In thi
case, the unit cell is doubled, and the doped holes for
two nonequivalent Fermi pockets nearspy2, 6py2d. Let
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us assume that a local moment is formed, an assump
which is by no means obvious. By extending Eqs. (1) a
(2) to include two pockets and settingZ ­ 1, S ­ 1y2,
we find d" ­ py2 and d# ­ 0. From Eq. (3) we find
rres ­

2 h̄
e2

nimp

x , which is still small compared with the ex-
periment by a factor of 2. On the other hand, if no loc
moment is formed, we findd" ­ d# ­ py4 and rres is
even smaller. Thus it is apparent that the experimen
observation is highly nontrivial to explain.

Recently, it was pointed out that the traditional formu
lation of thet-J model [which we shall call the U(1) for-
mulation] is inadequate for small doping, because it do
not include low lying excitations connected to the SU(
symmetry which is known to exist exactly at half filling
[22]. A new formulation was introduced which include
these fluctuations, and it is believed to be a better sta
ing point for the underdoped region [23]. A feature o
the SU(2) formulation is that two bosonssb1, b2d which
form a SU(2) doublet is introduced. Instead of Eq. (5
the constraint is given by

X
s

f
y
isfis 1 b

y
1ib1i 2 b

y
2ib2i ­ 1 , (8)

and the number of vacancy is given byb
y
1ib1i 1 b

y
2ib2i .

We recover the U(1) formulation if the boson isosp
doublet sb1i , b2id is polarized in thez direction, giving
sbi , 0d. In contrast, in the SU(2) mean field theor
[23], the underdoped normal state is represented by
staggered flux phase, where the constraint is satisfied
kby

1 b1l ­ kby
2 b2l, i.e., the isospin is strongly fluctuating

We shall argue that the experiment may be explain
using this new formulation. As in the U(1) case, we tre
the Zn site as a vacancy byHZn ­ V0s

P
s f

y
0sf0s 1P

a­1,2 b
y
a0ba0d with V0 ! `. Now we treat all the Cu

sites using the SU(2) formulation. Then the discussi
on the charge neutrality applies similarly toDNholon as
before, andDNholon ­ D

P
isb

y
1ib1i 1 b

y
2ib2id ­ 0. On

the other hand,DNspinon ­ Ds
P

i:in the sphere f
y
isfisd is

no longer related to the charge. We then argue th
the potential will form a spinon bound state, which
responsible for the local moment. This has been sho
to be the case in the spin gap phase if the spin
spectrum has point nodes and a linear density of sta
[9,10]. Within a large sphere, the formation of the loc
spin means that, excluding the Zn site, the number
r
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spinons has increased by one. This compensates
spinon repelled from the Zn site so thatDNspinon ­ 0.
We also note that, in analogy with Eq. (6),DNspinon 1

D
P

i sby
1ib1i 2 b

y
2ib2id ­ 21. Thus we conclude that

D
P

isb
y
1ib1i 2 b

y
2ib2id ­ 21. From these considerations

we conclude that

D
X

i

sby
1ib1id ­ 2D

X
i

sby
2ib2id ­ 2

1
2

. (9)

In terms of phase shift, we havedb2 ­ 2db1 ­ py2,
leading to a residual resistivity of

rres ­
4h̄
e2

nimp

x
, (10)

in agreement with experiment.
We note that our argument so far applies to a

divalent nonmagnetic impurity, such as Zn, Mg. Let u
now consider a magnetic impurity such as Ni. In th
case, the Ni is in ad8 configuration withS ­ 1. In
the underdoped case, the argument proceeds as be
except that the additionalS ­ 1y2 on the bound state will
have strong antiferromagnetic exchange with theS ­ 1,
leading to anS ­ 1y2 local moment. The boson counting
is the same as before, and we predict Eq. (10) to ho
This is, in fact, the experimental situation [24,25]. I
the optimal or overdoped case, we believe theS ­ 1
moment will be partially screened, so that anS ­ 1y2
local moment remains. This can be viewed also as
ferromagnetic Kondo problem, as shown by Khaliulli
et al. [10]. In this case we findd" ­ p, d# ­ 0 or vice
versa, and the spinon scattering should be very we
Indeed, experimentalrres is much smaller that the Zn
doped case in the optimally doped or overdoped case [2

Finally we discuss the case of a trivalent impurity suc
as Al. An extra mobile electron is donated to the laye
leaving a positive charge on the impurity site relative
the Cusd9d. In the U(1) formulation we findDNholon ­
21 andDNspinon ­ 0. Thus we expect the scattering o
the spinon to be nonunitary in general. In the underdop
case, we expect the formation of theS ­ 1y2 local mo-
ment. In the SU(2) formulation we findDNspinon ­ 0 and

D
P

i sby
1ib1i 2 b

y
2ib2id ­ 21 by the constraint. Com-

bined with D
P

i sby
1ib1i 1 b

y
2ib2id ­ 21, we conclude

that the holon scattering is also nonunitary.
To complete the discussion, we have to argue that i

plausible to assign a phase shift to theb1 and b2 bosons
as if they were fermions. In the SU(2) formulation, th
effective Lagrangian describing the holonshi ­ fb1i, b2ig
in the underdoped spin gap region is given by [23]
L ­
Z

drhysr , td

"
≠t 1 ia3

0t3 1 iA0 1
1

2m
s2i= 1 $a3t3 1 $Ad2 2 m

#
hsr, td

1
X
q,v

a3
msq, vdPSmnsq, vda3

ns2q, 2vd , (11)
fe-
e

where the spinons have been integrated over to give
polarization functionPS in the effective action for the
gauge field. Because the gauge symmetry is broken f
the

om

SU(2) to U(1) in the staggered flux state, only thea3

gauge field remains massless. Note also that the Iof
Larkin composition rule no longer applies because th
3757
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external vector potentialAm is coupled tohi with the unit
matrix and not witht3. The conductivity is then totally
determined by that of the holon system. Here we ha
the two problems, i.e., the strong gauge field fluctuati
and the hard-core condition for the holons. We belie
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that these two are resolved simultaneously by introduci
the statistical transmutation ofb1,b2 to fermions. This is
accomplished by introducing the Chern-Simons gauge fie
a0 coupled tob1,b2 with the s1d and s2d gauge charges,
respectively [26],
L ­
Z

drhysr , td
∑

≠t 1 isa3
0 1 a0

0dt3 1 iA0 1
1

2m
s2i= 1 s $a3 1 $a0dt3 1 $Ad2 2 m

∏
hsr , td 1 a3PSa3

1 sa3 1 a0dPHsa3 1 a0d 1 a0PCSa0. (12)
p-

ed
In the Coulomb gauge, the gauge field has two compone
asa0 anda1 ­ atransverse. In this representation,PCS is
given bysPCSd01 ­ sPCSd10 ­ cq ­

q
2u , with the diago-

nal components being zero. Hereu is the statistical angle
and the bosons are transformed into fermions whenu ­
s2m 1 1dp (m: an integer). We take this choice becau
the hard-core condition is automatically taken into acco
t
i
a

v

h

i

nts

e
nt

even for the noninteracting fermions. Because of the o
posite charges ofb1 and b2, the system remains gauge
neutral and also the time reversal symmetry is preserv
at the mean field level. Now the holonhi is coupled
to sa3 1 a0dt3, and we obtain the effective action fora ­
a3 1 a0 by integrating overa3 2 a0. Then the gauge flux
fluctuation D ­ ks= 3 ad ? s= 3 adl is given by D ­

1
PH11PS1

f with the factorf being
f ­
c2q2sPH0 1 PS0d 2 PH0PS0PS1

c2q2sPH0 1 PS0d 2 PH0PH1PS0PS1ysPH0 1 PS0d
. (13)
t.

.

.

t

Pa0 andPa1 are the diagonal longitudinal and transver
components of the spinonsa ­ Sd and holonsa ­ Hd
polarization function. It is easy to see thatf , 1, and this
factor represents the reduction of the gauge field fluct
tion. The physical picture is that a large part of the origin
gauge field is canceled by the Chern-Simons gauge fi
attached to the fermions by an appropriate choice of
integerm. Then it is expected that the hard-core potent
and the strong gauge field fluctuations are taken into
count in terms of the two-component free fermion theo
and this may justify the phase shift argument given abo

In summary, we have analyzed the Kondo effect in hig
Tc cuprates based on the spin-change separated state.
change of the phase shiftsdholon and dspinon for holons
and spinons due to the Kondo screening, together w
the crossover from SU(2) to U(1) theory, explains t
change of the residual resistivity fromrres ­

4 h̄
e2

nimp

x to
rres ­

4 h̄
e2

nimp

12x as the hole concentration increases and
local moment disappears. Lastly, we comment on
bipolaronic model for the underdoped cuprates. In t
model the charge of the carrier is2e andn ­ xy2 in the
underdoped region. This givesrres ­

2 h̄
e2

nimp

x , which is
half of that expected above. Then the experiments sup
the existence of the carrier not with change2e but with e.
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