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Superconducting Quantum Critical Point
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We study the properties of a quantum critical point which develops in a BCS superconductor when
pair breaking suppresses the transition temperature to zero. The pair fluctuations are characterized by
a dynamical critical exponent = 2. Except for very low temperatures, anomalous contribution to
the conductivity is proportional te/T in three dimensions, but tb/7 in two dimensions. At lowest
temperatures, the conductivity correction variesTa§' in three dimensions, and as(IfiT) in two.
[S0031-9007(97)04458-X]

PACS numbers: 74.20.Fg, 71.10.Hf, 71.27.+a

The possibility of quantum critical behavior in itinerant Matsubara frequency, is momentumy is the Fermi ve-
magnets has attracted great attention in recent years, lacity, andéx is the deviation of the control parameter
part, because quantum criticality affords the possibility offrom its critical valuex.., where the transition temperature
a controlled study of non-Fermi-liquid behavior [1]. At turns into zero.

a quantum critical point, order parameter fluctuations de- We obtained this action by repeating the Abrikosov-
velop an infinite correlation range in both spaeltime  Gorkov calculation [5] for an-wave BCS superconductor
[2,3]. The coupling between these fluctuations and condoped with magnetic impurities. Apart from the original
ducting electron fluid is able, under certain circumstances;alculation [5], the frequency and momentum dependence
to eliminate the formation of well-defined quasiparticlesof the disorder-averaged pair propagator was kept and
in the electron liquid, giving rise to a new kind of metallic at the end both the pair field and the momentum were
behavior. rescaled to give (1),(2).

In this paper we discuss the possibility of quantum criti- The quantityT, is the only characteristic energy scale
cal behavior in superconductors. A quantum critical pointof the effective action (1),(2). In a BCS superconductor
implies a finite value of the electron interaction strengthsit is of the order of the pair-breaking rate, which at the
At first sight, this would appear to rule out the possibility critical point is of the order of the transition temperature
of a superconducting quantum critical point, for conven-in the clean system. Both quantities are much less than
tional superconductivity develops for an arbitrarily smallthe Fermi energyr. However, in a strongly correlated
pair interaction. If the transition temperature is driven tomaterial,7y, may, in principle, be of the order efz.
zero in a pure BCS superconductor, the pairing interac- These two limiting cases correspond to different
tion and the pair fluctuations are completely eliminatedphysics. In the BCS case, the quartic term in (1) can be
Fortunately, this is not the case in the presence of paineglected at all experimentally relevant temperatufes
breaking, which cuts off the logarithmic singularity in the well below T,. By contrast, ifTy ~ er, the feedback of
pair susceptibility, requiring that the pairing interactionthe quartic term dominates &t < Ty. In the latter case,
reach a critical strength before superconductivity develone has to regard, as a phenomenological parameter,
ops. In this paper we characterize the quantum criticatesulting from a strong coupling, or non-BCS-pairing
behavior which develops at this special point. Our resultsnechanism.
can be tested experimentally on conventional supercon- With (1),(2) at hand, one can calculate various ther-
ductors, such as Ce-doped La [4]. They may also providenodynamic and transport properties of interest. Table |
a useful diagnostic tool for the understanding of unconpresents the results for the zero-temperature quasiparticle

ventional, e.g., heavy fermion, superconductors. decay rate due to scattering by thdield, and for the lead-
We begin with writing down the effective action of the ing corrections to low-temperature thermodynamics and

pair field A in the vicinity of a quantum critical point: transport atf,. = 0. In the BCS limit, corrections to the
NO)T? specific heat coefficient come from Gaussian fluctuations

Sert[A] = TZA*)(HA + 3 Z Afatasa,, of the pair field [6]. The correction for a strong coupling
vk 0 123 case was found in [3] using renormalization group meth-
(1) ods. The quasiparticle decay rate due to scattering off pair
TV |yl vrq\? fluctuations is estimated by the diagram in Fig. 1(a). It
<—> + — + <—> } , (2) is essential for the calculation of conductivity and of the
To To To quasiparticle decay rate that the electron vertex corrections
which is valid forT, vq, |v| < Ty. HereT is tempera- are not singular, since pair breaking makes the lifetime of
ture, N(0) is the density of states at the Fermi surfacés  a Cooper pair finite. The leading conductivity correction

= N(O)[@ N
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TABLE I. Order of magnitude and leading temperature de-and to itself (see Ref. [3] for details of the renormalization
pendences of the imaginary part of the electron self-energyroup equations).

3(w;p = pr;T = 0) due to scattering by the fluctuations of ; ; ;
A, the specific heat coefficient correctiahC(T)/T, and the As a result, one arrives a_t the foIIo.W|r.1g transformation
law for the Aslamazov-Larkin correction:

conductivity correctionso(T) in the weak coupling (BCS)
limit (Tp < €r) and in the strong coupling limit7y ~ €f). _ 12-D /
The value of oy corresponds to the residual normal state AalJ]=1b AalJT]+ InbfLI],

conductivity. where J denotes the mass term, the temperature, and

Electron Specific heat Conductivity the quartic coefficient,J’ denotes their renormalized
self-energy coefficient correction  values, andD is the dimensionality of the sample. The

ImX(w) 8C(1)/T 8a(T) precise form off[J] can be easily obtained using the

Ty < €r, above renormalization procedure. However, only two

d=3: (Tow)”? TS/ZZI/Z o0 TS/ZZT”Z features off[J] are important: (a) as long as the running

Ty ~ €r. “ F F value of T is smaller t'han the cutofff[J_] has rather

d =3 %/22 % 00(1)1/“ weak dependence on its arguments; th|§ correspon(_js to

T < €5 €r €r €r the quantum renorr_nahzaﬂon region; (b) in the classical

d=2 Ty @In<@) oo T renormallgatlon region, whefi exceeds.the cutofff[J]

T r e \T 0Ter is proportional toI'. ThusAo can be written as

0~ €F,

-2 v Sh(f)  oon($)

Inb*
Aoc = ] dx f[J(e*)]e® P, 4
0

where b* is the value of the rescaling factor at which

is given by the Aslamazov-Larkin diagram [7] shown in the mass term reaches the cutoff and the scaling process
Fig. 1(b), which can be regarded as conductivity of parstops. It is of the order of ~¥* in three dimensions
ticles with the inverse propagator given by (2)pat= 0.  and of the order of/In(1/T)/T in two [3]. To evaluate

The calculation was done by renormalization group(4), one also needs the value bf such thatT'(b;) ~ 1,
analysis of the expression for the Aslamazov-Larkinwhich is b; ~ T~!/2 independent of the dimensionality.
correction in Fig. 1(b). After transforming the Matsubarawith these prerequisites, the answers in Table | follow as
sum into a contour integral and going to dimensionlessoon as one neglects the dependence bfe*)] on all the
variables, it reads [8] couplings except temperature:

Ao = flqde‘Ifl 7 %['mx(q,z +i0)P, fU(eN] = fTe].
T sintt a7 In three dimensions, the same result can be obtained
(3) just by replacing the “bare’T?> mass term in (2) by

where both the energy and the momentum cutoff hav#ls renormalized value7*?, and then calculating the
been set to unity. When renormalizing, we will use theconductivity correction as per (3).
following steps [3]: first integrate out a thin outer shell Scaling analysis also allows us to show that the vertex
in the momentum space betweérand1 — 1/b. Then Corrections are _neghglple. . Their inclusion reduces to
rescale the momentuny (— ¢b) to restore the cutoff, Putting into the diagram in Fig. 1(b) extra bubbles such as
then rescale the energy  zb2), the mass term, and theoneinFig. 1(c). Each bubble contributes two Green’s
the temperatureT{ — Th?), and, finally, integrate out an functions plus an integral over the energy and momentum.
energy shell to restore the energy cutoff. At each step thA&fter an infinitesimal scaling transformation, this gives

LT . . . 2—-D i H H
quartic interaction induces corrections to the mass terr@n extra factor ofb="". Thus, in three dimensions,
vertex corrections are irrelevant. In two dimensions,

they appear marginal yet do not introduce any extra
corrections. This can be established by using the Ward

identity and writing the renormalization equation directly

for the current vertex (see Fig. 2), and then inserting

(a) (b) (©) g:)endsuogt:\t/ii(:n into the corresponding expression for the

y.

FIG. 1. (a) Graph for the quasiparticle self-energy due to We discuss theoretical and experimental implications
scattering by pair fluctuations. Solid lines denote the pairof the results. As envisaged by Hertz [2], under quite
propagator; thin line denotes the quasiparticle Green f”nCt'ongeneraI circumstances the superconducting quantum criti-

b)-(c) Graphs for the conductivity correction: (b) the ; . : .
,(A\S)Iar§1;zov-Lgrkin graph; (c) an ex;ymple of a gra(pr)l with €@l point falls into the; = 2 universality class. Although

vertex corrections. Scaling dimension of all such graphs is adl principle different behavior cannot be ruled out, it ap-
integer multiple of 2 — D). pears to require additional tuning of parameters, as well as
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T D=3: T D=2:
(a) (b)
FIG. 2. (a) Graph for the conductivity, including the current
vertex, denoted by the dark triangle. (b) Contribution to the SC FL SC 2DM
free energy in the second order in the quartic term, which gives
rise to renormalization of the current vertex. X X

FIG. 3. Schematic phase diagram in thr&e< 3) and in two
rather unusual features of the pairing phenomenon itself? = 2) spatial dimensions. Shaded regions correspond to the

o : . superconducting (SC) phase. The normal phase corresponds
such as the gap vanishing at the entire Fermi surface [9] F;he Fermi Iigui(d (%L';’ in three dimensionsp, and o a t\zo_

In a weakly interacting disordered metdl, in (2) is  dimensional disordered metal (2DM) in two.
of the order of the impurity scattering rate. In this case

anomalous corrections due to quantum criticality in the

Landau-Ginzburg regime are of the order of the weak lo-

calization corrections [10]. Therefore, in two dimensionsa@ BCS superconductor at experimentally accessible low
our results are fully consistent only as long as all correctemperatures, the singular contribution to the conductivity
tions are small and additive. Moreover, in two dimen-is proportional toyT in three dimensions, but tb/7 in
sions, the electron-electron interaction is known to leadwo dimensions. In a superconductor with the character-
to the linear temperature dependence of the quasiparticigtic energy scale of the order ef at the quantum critical
decay rate [10,11], regardless of closeness to the quafoint, the contribution to the conductivity varies a4

tum critical point. Thus, for a weakly interacting two- in three dimensions, and as(1{7) in two.

dimensional system, the entire normal region corresponds We are indebted to E. Abrahams, I. Aleiner, L. Glaz-
to the two-dimensional disordered metallic regime (seénan, G. Kotliar, A. Larkin, A. Millis, M. Stephen, and

Fig. 3) with the quasiparticle decay rate proportional toA. Tsvelik for discussions related to this work, which
the quasiparticle energy. was supported by the National Science Foundation un-

However, we expect that in a strongly correlated Sys.der Grant No. DMR-96-14999. We thank the Theoretical

tem with suppressed weak localization effects, the supelPhysics group at Oxford for the kind hospitality during
conducting quantum critical point still falls into the= 2 the period when this work was completed.
universality class and Table | may describe the actual state
of affairs for all dimensionalities. In this case, Fermi lig-
uid turns marginal only af. = 0 and crosses over to the
normal-Fermi-liquid behavior as the system is driven awa
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