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Superconducting Quantum Critical Point

R. Ramazashvili and P. Coleman
Serin Laboratory, Rutgers University, P.O. Box 849, Piscataway, New Jersey 08855-0849

(Received 23 May 1997)

We study the properties of a quantum critical point which develops in a BCS superconductor wh
pair breaking suppresses the transition temperature to zero. The pair fluctuations are characterize
a dynamical critical exponentz ­ 2. Except for very low temperatures, anomalous contribution to
the conductivity is proportional to

p
T in three dimensions, but to1yT in two dimensions. At lowest

temperatures, the conductivity correction varies asT 1y4 in three dimensions, and as lns1yTd in two.
[S0031-9007(97)04458-X]

PACS numbers: 74.20.Fg, 71.10.Hf, 71.27.+a
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The possibility of quantum critical behavior in itineran
magnets has attracted great attention in recent years
part, because quantum criticality affords the possibility
a controlled study of non-Fermi-liquid behavior [1]. A
a quantum critical point, order parameter fluctuations d
velop an infinite correlation range in both spaceand time
[2,3]. The coupling between these fluctuations and co
ducting electron fluid is able, under certain circumstanc
to eliminate the formation of well-defined quasiparticle
in the electron liquid, giving rise to a new kind of metalli
behavior.

In this paper we discuss the possibility of quantum cri
cal behavior in superconductors. A quantum critical poi
implies a finite value of the electron interaction strength
At first sight, this would appear to rule out the possibilit
of a superconducting quantum critical point, for conve
tional superconductivity develops for an arbitrarily sma
pair interaction. If the transition temperature is driven
zero in a pure BCS superconductor, the pairing intera
tion and the pair fluctuations are completely eliminate
Fortunately, this is not the case in the presence of p
breaking, which cuts off the logarithmic singularity in th
pair susceptibility, requiring that the pairing interactio
reach a critical strength before superconductivity dev
ops. In this paper we characterize the quantum critic
behavior which develops at this special point. Our resu
can be tested experimentally on conventional superc
ductors, such as Ce-doped La [4]. They may also prov
a useful diagnostic tool for the understanding of unco
ventional, e.g., heavy fermion, superconductors.

We begin with writing down the effective action of the
pair fieldD in the vicinity of a quantum critical point:
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which is valid forT , yq, jnj ø T0. HereT is tempera-
ture,Ns0d is the density of states at the Fermi surface,n is
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Matsubara frequency,q is momentum,yF is the Fermi ve-
locity, anddx is the deviation of the control parameterx
from its critical valuexc, where the transition temperature
turns into zero.

We obtained this action by repeating the Abrikosov
Gorkov calculation [5] for ans-wave BCS superconductor
doped with magnetic impurities. Apart from the origina
calculation [5], the frequency and momentum dependen
of the disorder-averaged pair propagator was kept a
at the end both the pair field and the momentum we
rescaled to give (1),(2).

The quantityT0 is the only characteristic energy scal
of the effective action (1),(2). In a BCS superconduct
it is of the order of the pair-breaking rate, which at th
critical point is of the order of the transition temperatur
in the clean system. Both quantities are much less th
the Fermi energyeF . However, in a strongly correlated
material,T0 may, in principle, be of the order ofeF .

These two limiting cases correspond to differen
physics. In the BCS case, the quartic term in (1) can
neglected at all experimentally relevant temperaturesT
well below T0. By contrast, ifT0 , eF , the feedback of
the quartic term dominates atT ø T0. In the latter case,
one has to regardT0 as a phenomenological paramete
resulting from a strong coupling, or non-BCS-pairin
mechanism.

With (1),(2) at hand, one can calculate various the
modynamic and transport properties of interest. Table
presents the results for the zero-temperature quasipart
decay rate due to scattering by theD field, and for the lead-
ing corrections to low-temperature thermodynamics a
transport atTc ­ 0. In the BCS limit, corrections to the
specific heat coefficient come from Gaussian fluctuatio
of the pair field [6]. The correction for a strong couplin
case was found in [3] using renormalization group met
ods. The quasiparticle decay rate due to scattering off p
fluctuations is estimated by the diagram in Fig. 1(a).
is essential for the calculation of conductivity and of th
quasiparticle decay rate that the electron vertex correctio
are not singular, since pair breaking makes the lifetime
a Cooper pair finite. The leading conductivity correctio
© 1997 The American Physical Society
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TABLE I. Order of magnitude and leading temperature de
pendences of the imaginary part of the electron self-ener
Ssv; p ­ pF ; T ­ 0d due to scattering by the fluctuations of
D, the specific heat coefficient correctiondCsTdyT , and the
conductivity correctiondssTd in the weak coupling (BCS)
limit (T0 ø eF) and in the strong coupling limit (T0 , eF).
The value of s0 corresponds to the residual normal stat
conductivity.

Electron Specific heat Conductivity
self-energy coefficient correction

ImSsvd dCsTdyT dssTd

T0 ø eF ,
d ­ 3: sT0vd3y2

e
2
F

T
3y2
0 T 1y2

e
3
F

s0
T

3y2
0 T 1y2

e
2
F

T0 , eF ,
d ­ 3: v3y2

e
1y2
F

T 1y2

e
3y2
F

s0

≥
T
eF

¥1y4

T0 ø eF ,
d ­ 2: vT0

eF

T0

e
2
F

ln
≥

T0

T

¥
s0

T 2
0

TeF

T0 , eF ,
d ­ 2: v 1

eF
ln

°
eF
T

¢
s0 ln

°
eF
T

¢

is given by the Aslamazov-Larkin diagram [7] shown in
Fig. 1(b), which can be regarded as conductivity of pa
ticles with the inverse propagator given by (2), atdx ­ 0.

The calculation was done by renormalization grou
analysis of the expression for the Aslamazov-Larki
correction in Fig. 1(b). After transforming the Matsubar
sum into a contour integral and going to dimensionles
variables, it reads [8]

Ds ­
Z 1

q2dDq
Z 1 dz

T
1

sinh2 z
2T

fImxsq, z 1 i0dg2,

(3)

where both the energy and the momentum cutoff ha
been set to unity. When renormalizing, we will use th
following steps [3]: first integrate out a thin outer shel
in the momentum space between1 and 1 2 1yb. Then
rescale the momentum (q ! qb) to restore the cutoff,
then rescale the energy (z ! zb2), the mass term, and
the temperature (T ! Tb2), and, finally, integrate out an
energy shell to restore the energy cutoff. At each step t
quartic interaction induces corrections to the mass ter

FIG. 1. (a) Graph for the quasiparticle self-energy due t
scattering by pair fluctuations. Solid lines denote the pa
propagator; thin line denotes the quasiparticle Green functio
(b)–(c) Graphs for the conductivity correction: (b) the
Aslamazov-Larkin graph; (c) an example of a graph wit
vertex corrections. Scaling dimension of all such graphs is a
integer multiple of (2 2 D).
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and to itself (see Ref. [3] for details of the renormalizatio
group equations).

As a result, one arrives at the following transformatio
law for the Aslamazov-Larkin correction:

DsfJg ­ b22DDsfJ 0g 1 ln bffJg ,

where J denotes the mass term, the temperature, a
the quartic coefficient,J 0 denotes their renormalized
values, andD is the dimensionality of the sample. The
precise form offfJg can be easily obtained using the
above renormalization procedure. However, only tw
features offfJg are important: (a) as long as the running
value of T is smaller than the cutoff,ffJg has rather
weak dependence on its arguments; this corresponds
the quantum renormalization region; (b) in the classic
renormalization region, whenT exceeds the cutoff,ffJg
is proportional toT . ThusDs can be written as

Ds ­
Z ln bp

0
dx ffJsexdges22Ddx , (4)

where bp is the value of the rescaling factor at which
the mass term reaches the cutoff and the scaling proc
stops. It is of the order ofT 23y4 in three dimensions
and of the order of

p
lns1yTdyT in two [3]. To evaluate

(4), one also needs the value ofb1 such thatTsb1d , 1,
which is b1 , T 21y2 independent of the dimensionality.
With these prerequisites, the answers in Table I follow a
soon as one neglects the dependence offfJsexdg on all the
couplings except temperature:

ffJsexdg ­ ffTe2xg .

In three dimensions, the same result can be obtain
just by replacing the “bare”T 2 mass term in (2) by
its renormalized valueT3y2, and then calculating the
conductivity correction as per (3).

Scaling analysis also allows us to show that the verte
corrections are negligible. Their inclusion reduces t
putting into the diagram in Fig. 1(b) extra bubbles such a
the one in Fig. 1(c). Each bubble contributes two Green
functions plus an integral over the energy and momentu
After an infinitesimal scaling transformation, this gives
an extra factor ofb22D . Thus, in three dimensions,
vertex corrections are irrelevant. In two dimensions
they appear marginal yet do not introduce any ext
corrections. This can be established by using the Wa
identity and writing the renormalization equation directly
for the current vertex (see Fig. 2), and then insertin
the solution into the corresponding expression for th
conductivity.

We discuss theoretical and experimental implication
of the results. As envisaged by Hertz [2], under quit
general circumstances the superconducting quantum cr
cal point falls into thez ­ 2 universality class. Although
in principle different behavior cannot be ruled out, it ap
pears to require additional tuning of parameters, as well
3753
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FIG. 2. (a) Graph for the conductivity, including the curren
vertex, denoted by the dark triangle. (b) Contribution to th
free energy in the second order in the quartic term, which giv
rise to renormalization of the current vertex.

rather unusual features of the pairing phenomenon itse
such as the gap vanishing at the entire Fermi surface [9

In a weakly interacting disordered metal,T0 in (2) is
of the order of the impurity scattering rate. In this cas
anomalous corrections due to quantum criticality in th
Landau-Ginzburg regime are of the order of the weak l
calization corrections [10]. Therefore, in two dimension
our results are fully consistent only as long as all corre
tions are small and additive. Moreover, in two dimen
sions, the electron-electron interaction is known to lea
to the linear temperature dependence of the quasiparti
decay rate [10,11], regardless of closeness to the qu
tum critical point. Thus, for a weakly interacting two-
dimensional system, the entire normal region correspon
to the two-dimensional disordered metallic regime (se
Fig. 3) with the quasiparticle decay rate proportional t
the quasiparticle energy.

However, we expect that in a strongly correlated sy
tem with suppressed weak localization effects, the sup
conducting quantum critical point still falls into thez ­ 2
universality class and Table I may describe the actual st
of affairs for all dimensionalities. In this case, Fermi liq
uid turns marginal only atTc ­ 0 and crosses over to the
normal-Fermi-liquid behavior as the system is driven awa
from the quantum critical point into the metallic phase.

Finally, we comment on the diagnostic opportunities
furnished by measurements at a superconducting quan
critical point. In light of the discussion in the beginning
of the paper, one is led to conclude that in aclean time
reversal invariant system, observation of singular behav
at the superconducting quantum critical point woul
mark a very peculiar phenomenon, as in a clean BC
superconductor suppression ofTc completely eliminates
pair fluctuations. Since any sample contains impurities,
reality the above conclusion refers to temperatures abo
the elastic scattering rate:T . t21. The latter can be
extracted from the residual resistivity measurements of t
sample.

To summarize, we studied the properties of a s
perconductor near a quantum critical point driven b
pair-breaking disorder. Superconducting fluctuations a
characterized by a dynamical critical exponentz ­ 2. In
3754
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FIG. 3. Schematic phase diagram in three (D ­ 3) and in two
(D ­ 2) spatial dimensions. Shaded regions correspond to
superconducting (SC) phase. The normal phase correspo
to the Fermi liquid (FL) in three dimensions, and to a two
dimensional disordered metal (2DM) in two.

a BCS superconductor at experimentally accessible l
temperatures, the singular contribution to the conductiv
is proportional to

p
T in three dimensions, but to1yT in

two dimensions. In a superconductor with the charact
istic energy scale of the order ofeF at the quantum critical
point, the contribution to the conductivity varies asT1y4

in three dimensions, and as lns1yT d in two.
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