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Dephasing and the Orthogonality Catastrophe in Tunneling through a Quantum Dot:
The “Which Path?” Interferometer
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The “Which Path?” interferometer consists of an Aharonov-Bohm ring with a quantum dot (QD) built
in one of its arms, and an additional quantum point contact (QPC) located close to the QD. The trans-
mission coefficient of the QPC depends on the charge state of the QD. Hence the point contact acts as
a controllable measurement device for which path an electron takes through the ring. We calculate the
suppression of the Aharonov-Bohm oscillations which is caused by both measurement dephasing and the
orthogonality catastrophe, i.e., respectively, by real and virtual electron-hole pair creation at the QPC.
[S0031-9007(97)04496-7]
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The interference between different trajectories of a p
ticle is one of the central postulates of quantum m
chanics. The transition between classical and quant
behavior depends on when and whether this interfere
is realized. With the advent of mesoscopic conducti
structures, it has become possible to study directly t
coherence between different trajectories of an electron
a metal or semiconductor Aharonov-Bohm ring. Amon
the phenomena observed in these systems are Unive
conductance fluctuations, weak localization, and inelas
dephasing by electron-electron and electron-phonon s
tering [1]. Recently, a set of elegant Aharonov-Bohm rin
experiments was performed to detect the phase shift
electrons passing through a quantum dot (QD) built in o
arm of the ring [2,3]. These experiments were the first
demonstrate the coherent propagation of electrons thro
a quantum dot.

The observation of phase coherence in transp
through a QD presents an opportunity to study the orig
of decoherencein mesoscopic structures. Recent wor
in atomic physics has measured decoherence rates of
electromagnetic field in a cavity [4]. These experimen
however, did not control the rate of dephasing. A
Aharonov-Bohm ring with a QD in one of its arms offer
the ability not only to measure dephasing rates, but also
directly control these rates by modifying the environme
of the quantum system. The proposed experimental
up for this “Which Path?” interferometer [5] is shown in
Fig. 1. An electron traversing the ring may follow th
upper or the lower arm. In the latter case, the electr
must pass through a QD located in the lower arm.
the proposed experiment, an additional wire containing
quantum point contact (QPC) is placed close to the Q
The electrostatic field of an extra electron on the Q
changes the transmission coefficientT of the nearby
QPC, and hence changes the conductance of the w
The change in the current in the wire “measures” whi
path the electron took around the ring, causes the pa
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to decohere, and so suppresses the Aharonov-Bo
oscillations. Loss of interference due to the trace left
the environment by an interacting particle was conside
in detail in Ref. [7]. Rate equations describing decoh
ence in multiple dot systems were derived in Ref. [8
however, they are not suitable for the present problem.

To estimate the rate of decoherence induced by
current in the wire, consider the following argumen
Adding an electron to the dot changes the conducta
of the QPC by2se2yhdDT . Detection of this electron
requires a timetd such that the change in the number
electrons crossing the QPC exceeds the typical quan
shot noise,

td
V
e

2e2

h
DT $

s
td

V
e

2e2

h
T s1 2 T d , (1)

whereV is the bias voltage in the wire, and the right han
side reflects the quantum shot noise across the QPC

FIG. 1. Schematic view of the “Which Path?” interferomet
[5]. The quantum dot (QD) is built in the lower arm of a
Aharonov-Bohm ring, as shown. The transmission coefficie
of the nearby quantum point contact (QPC) depends
the occupation number of the dot because of electrost
interactions. (Four-terminal measurement is implied, so t
closed orbits in the ring are not important.)
© 1997 The American Physical Society
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The decoherence rate, therefore, depends on both the
across the QPC and its transmission coefficient:

1
td

ø
eV
h

sDT d2

T s1 2 T d
. (2)

In this paper, we calculate nonperturbatively the su
pression of the Aharonov-Bohm oscillations in a ring wit
a QD due to the close proximity of a wire containin
a QPC. Our results support the simple argument giv
above, and explicitly show that1ytd is the rate of real
electron-hole pair creation in the wire. The simple es
mate (2), however, neglects the effect of virtual electro
hole pairs. The latter do not directly cause decoheren
but they decrease the transmission amplitude through
QD. These virtual processes result inpower-law suppres-
sion of the Aharonov-Bohm oscillations. This is an ex
ample of the orthogonality catastrophe [10,11], and is
inevitable consequence of “measurement” by local inte
action with a many-body system. (We neglect the add
tional orthogonality catastrophe due to ring electrons [1
because it cannot be externally controlled.)

In the proposed experiment, the transmission coefficie
across the ringTring can be obtained from the appropri
ate combination of measurements in a multiprobe geom
try [3]. According to the Aharonov-Bohm effect, i.e., the
phase difference of2pFyF0 between electron trajecto-
ries which encompass a magnetic fluxF, one has

Tring ­ T
s0d

ring 1 RehtptQDe2piFyF0 j 1 . . . , (3)

where the dots indicate higher harmonics ofF, andF0 ­
hcye is the flux quantum. The magnetic-flux independe
term T

s0d
ring and the amplitudetp are sensitive to the

geometry of the system (e.g., the structure of the lea
lengths of the arms, etc.). The amplitudetQD for coherent
transmission through the dot reflects only the properties
the dot and its immediate environment; this quantity w
be discussed in the remainder of this paper.

We are interested in the Aharonov-Bohm oscillation
in the vicinity of Coulomb blockade peaks, i.e., near th
charge degeneracy point of the QD. This means that o
two charging states of the dot,N andN 1 1, are relevant
to transport [13]. We neglect energy dependence of t
phase from propagation down the arms of the ring [14
so that tQD ­

R
des2≠fy≠ed tQD sed, wherefsed is the

Fermi distribution function (all energies are counted fro
the Fermi level) andtQDsed is the transmission amplitude
for an electron with energye through the QD.

In the Coulomb-blockade regime the broadening
levels is smaller than the level spacing in the dot [13
Thus, it is natural to consider only a single resonant lev
in the dot. The amplitudetQDsed can then be expressed in
terms of the exact retarded Green’s function of this leve

tQDsed ­ 2i
p

4GLGR

Z
dt eietG r

QDstd , (4)

where GL,R are the half-widths of the level with re-
spect to tunneling to the left or to the right. Th
retarded Green’s function is defined asG r

QDstd ­
bias
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2iustd kĉstdĉys0d 1 ĉys0dĉstdl, whereĉstd is the Heisen-
berg operator which removes an electron from t
resonant level (we put̄h ­ 1).

The electrons in the dot interact with the electrons
the wire. Only the local scattering potential of the QP
is significantly affected by this electrostatic interactio
We use the standard description of a QPC as a
noninteracting electron system, and choose the basis
scattering eigenstates corresponding to the potential in
QPC when exactlyN electrons occupy the QD:

ĤN ­
Z dk

2p
kfcy

L skdcL skd 1 c
y
RskdcRskdg . (5)

cL ,R are the fermionic operators for the scatterin
states moving from the left and right, respectively, wi
summation over spin indices implied. We linearize th
spectrum and put the Fermi velocity in the wireyF ­ 1.
The electrostatic field of an additional (N 1 1st) electron
on the QD changes the wire Hamiltonian tôHN11 ­
ĤN 1 V̂ :

V̂ std ­ V̂LL std 1 V̂RRstd 1 V̂LRstd ;

V̂LL sRRdstd ­ l
Z dk1dk2

2p
c

y
L sRdsk1, tdcL sRdsk2, td ,

V̂LRstd ­ lLR

Z dk1dk2

2p

(6)

3 fcy
L sk1, tdcRsk2, tdeieVt 1 H.c.g ,

where theĉstd ­ eiĤ0tĉe2iĤ0t are electron operators in
the interaction representation, andl andlLR are scatter-
ing matrix elements. The operatorsV̂LL std and V̂RRstd
each mix scattering states propagating in a single dir
tion, and only produce a change in the phase of the tra
mission amplitude of the QPC. The mixing betwee
scattering states which are incident from opposite dire
tions is given byV̂LRstd, and corresponds to a change
the transmission coefficientT of the QPC. The explicit
oscillatory time dependence of̂VLRstd describes a finite
bias in the wire, i.e.,eV corresponds to the chemical po
tential difference betweenL andR scattering states.

The Green’s function of the resonant level in the d
interacting with the wire can be approximated as

G r
QDstd ­ 2iustde2ie0t2GtfPN11A2std 1 PN A1stdg ,

(7)

where e0 is the single-electron energy of the level, an
Pn is the probability of the corresponding charging sta
of the dot, PN 1 PN11 ­ 1. The total tunneling half-
width G of the level is given byG ­ GL 1 GR, and the
coherence factorsA6std account for the response of th
wire to the addition (removal) of an electron from the do

A1std ­ keiĤN te2iĤN11tlHN
, (8a)

A2std ­ keiĤN te2iĤN11tlHN11 . (8b)

The expectation values are taken with respect to an e
librium ensemble in the wire with the Hamiltonian,HN
3741
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or HN11, indicated as a subscript. It is easy to se
that Eq. (7) is exact in two important limiting cases
In the absence of the interactionA6std ­ 1 and Eq. (7)
reduces to the retarded Green’s function for a noni
teracting resonant level, and Eq. (4) becomes a sim
Breit-Wigner formula. Also, in the absence of tunne
ing, G ­ 0, Eqs. (7) and (8) are exact expressions for a
isolated level coupled to the wire. For the intermedia
regimeG . 0, Eq. (7) is not exact. Physically, it neglect
interaction induced correlations between consecutive tu
neling events of different electrons into the dot. Howeve
such events are rare in the case of weak tunneling, a
Eq. (7) is expected to be a good approximation even
G fi 0.

Let us now turn to the calculation of the coherenc
factorsA6std. For zero current in the wire, Eq. (8) cor-
responds to the well-known “orthogonality catastrophe
[10], i.e., the response of an equilibrium noninteractin
electron system to a sudden perturbation. Exact results
this problem were first obtained in Ref. [15]. The long
time behavior (eVt ¿ 1) of the nonequilibrium orthogo-
nality catastrophe was recently considered by Ng [16].
order to find the dependence oftQDsed on biaseV , we
need to knowA6std at all times. For the case of nonequi
librium in the wire we were not able to obtain exact re
sults for arbitrary constantsl, lL R. Instead, we restrict
ourselves to the case where the mixing between scatter
states is small,lL R ø 1, but l is arbitrary.

We begin by rewriting the coherence factorA 1 std as

A1std ­
D
Tte

2i
Rt

0
V̂ st1d dt1

E
HN

­ AstdALRstd , (9)

whereAstd describes the orthogonality catastrophe in th
absence of mixing between the scattering states:

Astd ­
D
Tte

2i
Rt

0
dt1fV̂LL st1d1V̂RRst1dg

E
HN

, (10)

and can be evaluated exactly. The results for the coh
ence factor (10) are well known [15]. One has

Astd ­

µ
ipT

j0 sinhpTt

∂4sdypd2

, d ­ arctanpl , (11)

where j0 is the high-energy cutoff, the smaller of the
Fermi energy in the wire or the inverse rise time o
the perturbation of the QPC. The factor of 4 in th
exponent in (11) corresponds to the number of affect
channels (two scattering states multiplied by the sp
degeneracy in the wire). Equation (11) is identical to th
expression describing the “shake up” effect in the x-ra
absorption spectra in metals [15], which results in powe
law suppressione4sdypd2

of the absorption at low energies
The factor ALRstd in (9) describes the mixing of

the scattering states in the wire and we evaluate it
the linked-cluster approximation, keeping terms to ord
l

2
LR:

ALRstd ­ e
22l

2
LR

RRt

0
dt1dt2 cosfeV st12t2dggst1,t2dgst2,t1d

, (12)

where the Green’s functiongst1, t2d is defined as
3742
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gst1, t2d ­ 2iAstd21
Z dk1dk2

2p

3 kTtc1sk1, t1dcy
1 sk2, t2d

3 e
2i

Rt

0
dtfV̂LL std1V̂RRstdgl . (13)

The factor of 2 in the exponent in Eq. (12) comes from th
summation over spin directions in the wire. The Green
function is given by [15]

gst1, t2d ­

µ
sinhpT st 2 t1d
sinhpT st 2 t2d

sinhpTt2

sinhpTt1

∂dyp

3

Ω
P

pT cos2 d

sinhpTst2 2 t1d

2
p

2
dst1 2 t2d sin2d

æ
, (14)

whereP stands for the principal value, and0 # t1,2 # t.
Substitutinggst1, t2d from Eq. (14) into Eq. (12), we

obtain with the help of Eq. (9)

A1std ­

µ
ipT

j0 sinhpTt

∂a1g

e2Gdt1ghst,T ,eV d, (15)

where the exponents are related to the scattering consta
l, lL R from Eq. (6) by

a ­ 4

µ
d

p

∂2

, g ­ 4l
2
L R cos4 d , (16)

and the dephasing rate is given by

Gd ­ pgjeV j . (17)

The crossover functionh in Eq. (15) is

hst, T , eV d ­
Z t

0
dt ts1 2 coseVtd

p2T2

sinh2 pTt
.

Let us now reexpress the exponents (16) in terms
the physical characteristics of the QPC: the transmissi
probabilityT and the phase of the transmission amplitud
u. In order to do so, we notice that switching on
the perturbation (6) by adding an electron to the do
corresponds to changing the phase shiftsde,o for the even
sed and oddsod channels in the wire:

dsN11d
e,o ­ dsNd

e,o 1 Dde,o, Dde,o ­ arctanpsl 6 lL Rd.

The transmission probability of the QPC is related to the
phase shifts byT ­ cos2sde 2 dod, and the phase of the
transmission amplitude is given byu ­ de 1 do. We
obtain from Eq. (16)

a ­

µ
Du

p

∂2

1 Osl 2
LRd, g ­

sDT d2

8p2T s1 2 T d
.

(18)

The dephasing rateGd ­ jeV jsDT d2yf8ph̄T s1 2 T dg
given by Eqs. (17) and (18) agrees up to a constant fac
with the estimate for1ytd obtained earlier in Eq. (2).

The physical meaning of the dephasing rateGd deserves
some additional discussion. Indeed,Gd reflects the effi-
ciency with which the QPC measures the charge state
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the quantum dot. One can rigorously define this measu
ment using the basis of scattering eigenstates of the w
before an electron is added to the dot. If the added el
tron creates a single excitation in this basis, the passag
the electron through the QD is “detected” and interferen
with the other, remote path through the Aharonov-Boh
ring is destroyed. The dephasing rateGd is the rate at
which such excitations are created. Using the golden ru
for the simplest cased ­ 0, we obtain

Gd ­ 2pl
2
LR 3 2

Z 0

2`

dki

Z `

0
dkfdski 2 kf 2 jeV jd

­ 4pl
2
LRjeV j ,

which agrees with (17), and which can easily be gener
ized tod fi 0.

Note the symmetry in the expressions forg and
Gd between the transmission probabilityT and the
reflection probability 1 2 T in the wire. An extra
electron transmitted through a normally reflecting QP
provides the same measurement of the charge state
the QD as an extra electron reflected by a norma
transmitting point contact. For the case of a parabo
potential barrier in the QPC,DT , T s1 2 T dDVQPC,
whereDVQPC is the change in the height of the potentia
caused by adding an electron to the dot. One then fin
Gd ~ T s1 2 T d, with the maximum dephasing rate a
T ­ 1y2.

The calculation of the coherence factorA2std from
Eq. (8) is performed analogously, starting from the diag
nalization of the HamiltonianĤN11std in the basis of
scattering states. The result isA2std ­ A1stdp. Because
A2std fi A1std, the probability PN for the occupation
of the dot does not cancel from the result. For th
general position of the levele0, the probability PN

can be found from the thermodynamic formulaPN ­
2

R
sdeypdfsed Im G r

QDsed. However, at the peak of
the Coulomb blockade,e0 ­ 0, it is obvious thatPN ­
PN11 ­ 1y2. The total transmission amplitude throug
the quantum dot can then be obtained (4) as a Four
transform ofG r

QDstd. We find that the result can be wel
approximated by the simple formula

tQD .
2
p

GLGR

4Typ 1 Gtot

µ
T 1 Gtot

j0

∂
a
µ

T 1 Gtot 1 jeV j

j0

∂
g

,

(19)

where the total half-width is given byGtot ­ GL 1 GR 1

Gd . Equation (19) is the central result of our study.
describes the anomalous scaling of the amplitude of t
Aharonov-Bohm oscillations with the temperature or wit
the current flowing through the quantum wire. Whil
in general observation of thecoherenttransmission am-
plitude tQD requires the Aharonov-Bohm geometry, th
ordinary conductance through a quantum dot is,jtQDj2

at T ­ V ­ 0. Hence we expect a suppression of co
ductance by the orthogonality catastrophe even witho
the Aharonov-Bohm geometry, though only the cohere
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part of the transmission will be suppressed by dephasin
asV is increased.

In conclusion, we have analyzed theoretically electro
transport through the “Which Path?” interferometer [5]:
an Aharonov-Bohm ring with a quantum dot in one
arm, and an additional wire containing a quantum poin
contact located close to the dot. The presence of th
wire suppresses the Aharonov-Bohm oscillations in th
ring in two ways. First, real electron-hole-pair creation
in the wire measures which path the electron too
around the ring, and so causes the paths to decohe
Second, virtual electron-hole-pair creation in the wire
decreases the transmission amplitude through the Q
leading to power-law dependence of the Aharonov-Bohm
oscillations on the temperature or the current through th
wire. Unfortunately, in the experimental setup in Ref. [6]
the exponents in Eq. (19) appear to be rather small.
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Note added.—After this paper was submitted, Levin-
son [17] independently obtained our Eq. (17) using a dif
ferent approach. However, he neglected the orthogonali
catastrophe which leads to scaling in Eq. (19).
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