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Dephasing and the Orthogonality Catastrophe in Tunneling through a Quantum Dot:
The “Which Path?” Interferometer
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The “Which Path?” interferometer consists of an Aharonov-Bohm ring with a quantum dot (QD) built
in one of its arms, and an additional quantum point contact (QPC) located close to the QD. The trans-
mission coefficient of the QPC depends on the charge state of the QD. Hence the point contact acts as
a controllable measurement device for which path an electron takes through the ring. We calculate the
suppression of the Aharonov-Bohm oscillations which is caused by both measurement dephasing and the
orthogonality catastrophe, i.e., respectively, by real and virtual electron-hole pair creation at the QPC.
[S0031-9007(97)04496-7]

PACS numbers: 73.23.Hk, 03.65.Bz, 73.23.Ad

The interference between different trajectories of a parto decohere, and so suppresses the Aharonov-Bohm
ticle is one of the central postulates of quantum me-oscillations. Loss of interference due to the trace left in
chanics. The transition between classical and quanturthe environment by an interacting particle was considered
behavior depends on when and whether this interferende detail in Ref. [7]. Rate equations describing decoher-
is realized. With the advent of mesoscopic conductingence in multiple dot systems were derived in Ref. [8],
structures, it has become possible to study directly théaowever, they are not suitable for the present problem.
coherence between different trajectories of an electron in To estimate the rate of decoherence induced by the
a metal or semiconductor Aharonov-Bohm ring. Amongcurrent in the wire, consider the following argument:
the phenomena observed in these systems are Universatiding an electron to the dot changes the conductance
conductance fluctuations, weak localization, and inelastiof the QPC by2(e?/h)AT . Detection of this electron
dephasing by electron-electron and electron-phonon scatequires a time, such that the change in the number of
tering [1]. Recently, a set of elegant Aharonov-Bohm ringelectrons crossing the QPC exceeds the typical quantum
experiments was performed to detect the phase shift afhot noise,

electrons passing through a quantum dot (QD) built in one V 22 V 22

arm of the ring [2,3]. These experiments were the first to ti— —AT =4|ty;——T (1 —-T), @
demonstrate the coherent propagation of electrons through e h e h

a quantum dot. whereV is the bias voltage in the wire, and the right hand

The observation of phase coherence in transporide reflects the quantum shot noise across the QPC [9].
through a QD presents an opportunity to study the origins
of decoherencen mesoscopic structures. Recent work
in atomic physics has measured decoherence rates of the
electromagnetic field in a cavity [4]. These experiments,
however, did not control the rate of dephasing. An
Aharonov-Bohm ring with a QD in one of its arms offers
the ability not only to measure dephasing rates, but also to
directly control these rates by modifying the environment
of the quantum system. The proposed experimental set
up for this “Which Path?” interferometer [5] is shown in
Fig. 1. An electron traversing the ring may follow the
upper or the lower arm. In the latter case, the electron
must pass through a QD located in the lower arm. In
the proposed experiment, an additional wire containing a
quantum point contact (QPC) is placed close to the QDFIG. 1. Schematic view of the “Which Path?” interferometer
The electrostatic field of an extra electron on the QDIS]. The quantum dot (QD) is built in the lower arm of an
changes the transmission coefficiefit of the nearby Aharonov-Bohm ring, as shown. The transmission coefficient

. of the nearby quantum point contact (QPC) depends on
QPC, and hence changes the conductance of the Wirthe occupation number of the dot because of electrostatic

The change in the current in the wire “measures” whichinteractions. (Four-terminal measurement is implied, so that
path the electron took around the ring, causes the pathgosed orbits in the ring are not important.)
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The decoherence rate, therefore, depends on both the biasé(r) (¢(r)ét(0) + ¢1(0)é(r)), whereé(¢) is the Heisen-

across the QPC and its transmission coefficient: berg operator which removes an electron from the
1 eV (AT)? resonant level (we put = 1).
PR~ (2) The electrons in the dot interact with the electrons in
ta  h T —-T)

) ) the wire. Only the local scattering potential of the QPC

In this paper, we calculate nonperturbatively the Sup;s gignificantly affected by this electrostatic interaction.
pression of the Aharonov-Bohm oscillations in a ring with\ya \;se the standard description of a QPC as a 1D
a QD due to the close proximity of a wire containing ohinteracting electron system, and choose the basis of

a QPC. Our results support the simple argument giveR 4tering eigenstates corresponding to the potential in the
above, and explicitly show thait/z, is the rate of real QPC when exactiyv electrons occupy the QD:
electron-hole pair creation in the wire. The simple esti- '

mate (2), however, neglects the effect of virtual electron- 7 _ dk T T
hole p(ai)rs. The Iatter%o not directly cause decoherence, H f 27 K 0 () + dr(R)yr (K] (5)
but they decrease the transmission amplitude through the » are the fermionic operators for the scattering
QD. These virtual processes resulfiower-law suppres-  states moving from the left and right, respectively, with
sion of the Aharonov-Bohm oscillations. This is an ex- symmation over spin indices implied. We linearize the
ample of the orthogonality catastrophe [10,11], and is apectrum and put the Fermi velocity in the wisg = 1.
inevitable consequence of “measurement” by local interThe electrostatic field of an additionaV (+ 1st) electron

action with a many-body system. (We neglect the addinn the QD changes the wire Hamiltonian iy =
tional orthogonality catastrophe due to ring electrons [12][:1N + 7

because it cannot be externally controlled.) R R R R

In the proposed experiment, the transmission coefficient V(t) = V() + Vrer(t) + Ver(t);
across the ringT,, can be obtained from the appropri- dk\dky 1
ate combination of measurements in a multiprobe geomeY££ (R®) (1) = )\f a2 SR IACIC R

try [3]. According to the Aharonov-Bohm effect, i.e., the (6)
phase difference o27® /P, between electron trajecto- V() = ALR[ dkidky
ries which encompass a magnetic flix one has 2w

Tring = 7;1(;(1);; + Re{t*1gpe®™ ™} + .., (3) X Wz (k1, t)pr (ka, 1)e®"" + H.c.],
where the dots indicate h|gher harmoniCSIQfandq)o = where thelz/(t) = eiﬁot&eflf]ol are electron Operators in

he/e is the flux quantum. The magnetic-flux independenthe interaction representation, anchnd A sz are scatter-
term ’I}i(,?)g and the amplituder* are sensitive to the ing matrix elements. The operatovs r (r) and Vzz (1)
geometry of the system (e.g., the structure of the leadgach mix scattering states propagating in a single direc-
lengths of the arms, etc.). The amplitugg, for coherent tion, and only produce a change in the phase of the trans-
transmission through the dot reflects only the properties ofmission amplitude of the QPC. The mixing between
the dot and its immediate environment; this quantity will scattering states which are incident from opposite direc-
be discussed in the remainder of this paper. tions is given byV z (1), and corresponds to a change in
We are interested in the Aharonov-Bohm oscillationsthe transmission coefficierf of the QPC. The explicit
in the vicinity of Coulomb blockade peaks, i.e., near theoscillatory time dependence &f,z () describes a finite
charge degeneracy point of the QD. This means that onliias in the wire, i.e.eV corresponds to the chemical po-
two charging states of the da¥, andN + 1, are relevant tential difference betweeff andR scattering states.
to transport [13]. We neglect energy dependence of the The Green’s function of the resonant level in the dot
phase from propagation down the arms of the ring [14]interacting with the wire can be approximated as

so thattop = [de(—df/d€)ton(e), where f(e) is the P . —ieyt—T1

Fermi distribution function (all energies are counted from Gan () i6(1)e [Pr+1A- (1) + PyA+ (1],

the Fermi level) andgp(e€) is the transmission amplitude (7)
for an electron with energy through the QD. where ¢, is the single-electron energy of the level, and

In the Coulomb-blockade regime the broadening ofp, is the probability of the corresponding charging state
levels is smaller than the level spacing in the dot [13].of the dot, Py + Py+; = 1. The total tunneling half-
Thus, it is natural to consider only a single resonant levelvidth I" of the level is given byl" = I'; + T, and the
in the dot. The amplitude,p (e) can then be expressed in coherence factord - (r) account for the response of the
terms of the exact retarded Green’s function of this level:wire to the addition (removal) of an electron from the dot,

top(€) = —i/4T' Tk [ dt "' G4 (1), (4) Ay (r) = (el vty (8a)

_ g iHyt —iHy. 1
where I', z are the half-widths of the level with re- A-(1) = (e (8b)
spect to tunneling to the left or to the right. The The expectation values are taken with respect to an equi-
retarded Green's function is defined aSgp(t) = librium ensemble in the wire with the Hamiltoniafy
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or Hy4, indicated as a subscript. It is easy to see gt 1) = _l.A(t)ﬂ]dkldkz

that Eq. (7) is exact in two important limiting cases. b 27

In the absence of the interactioh-(r) = 1 and Eq. (7) < AT (kv 10 (o 1

reduces to the retarded Green’'s function for a nonin- < tlpl_(ilf’,dltg‘;pl ((t)i’f/z) 0]
teracting resonant level, and Eq. (4) becomes a simple X e " JoTHE L (13)

Breit-Wigner formula. Also, in the absence of tunnel-rpq tactor of 2 in the exponent in Eq. (12) comes from the

ing, I' = 0, Egs. (7) and (8) are exact expressions for any,nmation over spin directions in the wire. The Green'’s
isolated level coupled to the wire. For the intermediate,nction is given by [15]

regimel’ > 0, Eq. (7) is not exact. Physically, it neglects

interaction induced correlations between consecutive tun- g(t1, 1) = (S'nhTFT(t — 1) S|nh7-th2> /
neling events of different electrons into the dot. However, ’ sinh7wT (¢t — 1) sinhar Tt
such events are rare in the case of weak tunneling, and 7T cog s
Eq;&(g) is expected to be a good approximation even for { SinhaT(t, — 1)

Let us now turn to the caICL_JIation o_f the coherence _ 1501 _ tz)sinzé}, (14)
factorsA+(r). For zero current in the wire, Eq. (8) cor- 2

reSpondS to the We”'knOWn “OrthOgonality CataStrOphe"Wherep Stands for the pr|nc|pa| Value’ aMS tio = t.

[10], i.e., the response of an equilibrium noninteracting supstituting g(#,, o) from Eq. (14) into Eqg. (12), we
electron system to a sudden perturbation. Exact results fgfhtain with the help of Eq. (9)

this problem were first obtained in Ref. [15]. The long- .
time behavior ¢Vt > 1) of the nonequilibrium orthogo- A(t) = <L
nality catastrophe was recently considered by Ng [16]. In &osinhar Tt
order to find the dependence gfp(e) on biaseV, we  where the exponents are related to the scattering constants
need to knowA + (¢) at all times. For the case of nonequi- ), A, z from Eq. (6) by

librium in the wire we were not able to obtain exact re-

aty
> e—th-F'yh(t,T,eV)’ (15)

2
sults for arbitrary constants, Ay . Instead, we restrict a = 4<£> , y = 4)\%7{ cos s, (16)
ourselves to the case where the mixing between scattering ™
states is small r g < 1, but A is arbitrary. and the dephasing rate is given by

We begin by rewriting the coherence factbr+ (¢) as T, = mylev]. (17)

Ay(r) = <Tz6’7if° v >HN = A(t)Arr(t), (9) The crossover functioh in Eq. (15) is

whereA(r) describes the orthogonality catastrophe in the h(t.T.eV) = f’ dr (1 — coseVr) w?T?
absence of mixing between the scattering states: T sint 7Tt

Ar) = <T 71‘f;dz,[\A/ﬁE(r,)+\7RR(t1)]> (10) Let us now reexpress the exponents (16) in terr_ns_of
1€ Hy’ the physical characteristics of the QPC: the transmission
and can be evaluated exactly. The results for the coheRrobability T and the phase of the transmission amplitude
ence factor (10) are well known [15]. One has 6. In order to do so, we notice that switching on
. 45/ )’ the perturbation (6) by adding an electron to the dot
Alf) = <L> 8 — arctanmA, (11)  corresponds to changing the phase shifts for the even
§osinhar Tt (e) and odd(o) channels in the wire:
where &, is the high-energy cutoff, the smaller of the sW+D) — s™) 4 A5,
Fermi energy in the wire or the inverse rise time of ‘ o i ]
the perturbation of the QPC. The factor of 4 in the The transmission probability of the QPC is related to these
exponent in (11) corresponds to the number of affecte@h@se shifts byI” = cos(, — 3,), and the phase of the
channels (two scattering states multiplied by the spirff@nsmission amplitude is given by = 5. + §,. We
degeneracy in the wire). Equation (11) is identical to thePPtain from Eq. (16)

>

Aéb,, = arctanm(A £ ArR).

expression describing the “shake up” effect in the x-ray A6 ? ) (AT)?
absorption spectra in metals [15], which results in power- ¢ — <7> + 0(AzR), YT T - T)
law suppressior*®/7)" of the absorption at low energies. (18)

The factor Arx(z) in (9) describes the mixing of _
the scattering states in the wire and we evaluate it ifhe dephasing rat€, = |eVI(AT)*/[87AT (1 — T)]
the linked-cluster approximation, keeping terms to ordegiven by Egs. (17) and (18) agrees up to a constant factor

e with the estimate foll /¢, obtained earlier in Eq. (2).
A _2Mig ffo dtydt, codeV (11 —1)]g(11,02)g (12,11 12 The physical meaning of the dephasing rBjedeserves
rr(1) = e . (12)  some additional discussion. Indedd; reflects the effi-
where the Green'’s functiog(z,, ;) is defined as ciency with which the QPC measures the charge state of
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the quantum dot. One can rigorously define this measurgpart of the transmission will be suppressed by dephasing
ment using the basis of scattering eigenstates of the wirasV is increased.
before an electron is added to the dot. If the added elec- In conclusion, we have analyzed theoretically electron
tron creates a single excitation in this basis, the passage thnsport through the “Which Path?” interferometer [5]:
the electron through the QD is “detected” and interferenc&an Aharonov-Bohm ring with a quantum dot in one
with the other, remote path through the Aharonov-Bohmarm, and an additional wire containing a quantum point
ring is destroyed. The dephasing rdfg is the rate at contact located close to the dot. The presence of the
which such excitations are created. Using the golden rulayire suppresses the Aharonov-Bohm oscillations in the
for the simplest casé = 0, we obtain ring in two ways. First, real electron-hole-pair creation
0 % in the wire measures which path the electron took
I, = ZwA%R X 2[ dki[ dks8(ki — kp — leV]) around the ring, and so causes the paths to decohere.
- 0 Second, virtual electron-hole-pair creation in the wire
= 4WA_2CR|€V|, decreases the transmission amplitude through the QD,
leading to power-law dependence of the Aharonov-Bohm

which agrees with (17), and which can easily be generalagjjjations on the temperature or the current through the

ized 106 :: 0. i , f 4 Wire. Unfortunately, in the experimental setup in Ref. [6]
Note the symmetry in the expressions for and .o oynonents in Eq. (19) appear to be rather small.
Iy between the transmission probability” and the o are thankful to L. Glazman, A. Larkin, A. Stern,

reflection probability 1 — 7" in the wire. An extra .4 A “yacoby for valuable discussions. We also thank
electron transmitted through a normally reflecting QPCz g ,ks and M. Heiblum. who informed us of their
provides the same measurement of the charge state pf . '

dependent experiment [6]. One of us (Y.M.) was
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whereAVqpc is the change in the height of the potential ¢ t h. H h lected the orth lit
caused by adding an electron to the dot. One then find Srent approach. FOWEVer, nie negiecied the orthogonality

I, = T(1 — T), with the maximum dephasing rate at Catastrophe which leads to scaling in Eq. (19).
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