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Has a Josephson-Plasma Mode Been Observed in Layered Superconductors
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The plasma mode in layered superconductors is analyzed using the continuous approach fo
anisotropic superconductor and the Lawrence-Doniach model. The analysis predicts, for the pla
frequency, a magnetic field dependence different from that of magnetoabsorption resonances rec
observed in various materials and conditions. This puts in doubt their Josephson-plasma-m
interpretation commonly accepted by experimentalists. [S0031-9007(97)04517-1]

PACS numbers: 72.30.+q, 74.60.Ec, 74.60.Ge
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Collective modes of vortex arrays have been studi
from the 1960s when the works of Hall on rotating supe
fluid 4He [1] and of de Gennes and Matricon on type-
superconductors [2] were published. In superfluid4He
the vortex modes have been observed as comparativ
narrow resonances [3], whereas in superfluid3He they are
overdamped and have been identified as long relaxat
processes after modulation of rotation speed [4].

Until recently vortex modes in superconductors r
mained a topic of the theory: large viscous losses in lo
Tc superconductors prevented the observation of th
modes. Therefore observation of the magnetoabsorpt
resonances in high-Tc Bi compounds by Tsuiet al. [5]
has attracted great attention and has given an impetus
great number of experimental works [6–10] in which the
observed these resonances in different conditions and
terials. It seemed quite natural to interpret them as sl
collective vortex modes (Kopninet al. [11]). But later
the experimentalistsunanimously interpreted the reso-
nances as plasma oscillations in Josephson junctions
tween CuO superconducting layers.

The original plasma-mode interpretation of the ma
netoabsorption resonances was suggested by Bulaev
et al. [12,13] using the idea of the Josephson-plasma ed
with frequencyv ­ vJ

p
kcoswl where vJ is the fre-

quency in zero magnetic field andkcoswl is the spatial
average for the phase differencew between two layers.
In order to agree with experiment,kcoswl had to be small
for any direction of the magnetic field. However, it wa
known that either in a wide Josephson junction [14] or
layered superconductor [15] there is no plasma edge
any finite densityof vortices (fluxons); i.e., the plasma
frequency ceases to be a lower bound on the osci
tion frequency since the soft Goldstone mode related
the vortex-array translation arises. Moreover, in par
lel fields considered in Ref. [12], there is no plasma mo
which could be observable by microwaves. Thus t
plasma-edge idea could not be a basis for interpretat
of magnetoabsorption resonances [16].

Later Bulaevskii et al. [17–19] have revised their
theory relating now the resonances observed in para
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field with the Goldstone mode mentioned above whic
they call “sliding mode.” The latter is, in fact, the
same vortex mode branch suggested in Ref. [11] fo
explanation of resonances in a perpendicular and a tilt
field, but extrapolated now to the parallel field where i
has new properties (e.g., vortex mass becomes essent
But Bulaevskiiet al. [19] still insist that the Josephson-
plasma modes have been experimentally observed, a
this interpretation is accepted by experimentalists [6–10

In the present Letter, I show that properties of th
plasma mode in layered superconductors are differe
from those observed for magnetoabsorption resonanc
and therefore their interpretation in terms of the Josep
son plasma mode looks at least very unlikely. The mo
serious drawbacks for this interpretation are: (i) The ex
perimental resonance in a tilted magnetic field is governe
by the field component normal to layers while the plasm
mode is governed mostly by the in-plane one (paralle
to layers), and (ii) the experimental resonance frequen
goes to zero when the vortices become parallel to the la
ers [9] while the plasma-mode frequency remains finite i
this limit. These drawbacks are known to proponents o
plasma-mode interpretation, and they have suggested s
narios to overcome them, but I shall show that these sc
narios are not persuasive. The presented analysis ref
to temperatures and fields below the irreversibility line
where layers are not decoupled, though its results mig
be important for the vortex-liquid phase also.

Let us start from a phenomenological approach. If th
magnetic field $B is along the axisc (the axis z), the
plasma mode is described by equations forz components
of the electric field and the current,

1
c

≠Ez

≠t
­ 2

4p

c
jz , (1)

≠jz

≠t
­

e2nc

m
Ez , (2)

wherenc is the superfluid electron density for the current
normal to the layers. It determines the plasma frequen
vc ­

p
4pe2ncym and the penetration depthlc ­ cyvc.
© 1997 The American Physical Society
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The vortex mode is related with in-plane motion and
completely decoupled from the plasma mode.

In the opposite limit of $B in the planeab (B ­ By)
Eq. (2) is replaced by

≠jz

≠t
­

v2
c

4p

√
Ez 1 By

yL

c

!
, (3)

whereyL ­ duydt is the velocity andu is the displace-
ment of the vortex lines along the axisx which is deter-
mined from the equation

2M
≠2u
≠t2

1 K
≠2u
≠z2

­
F0

c
jz . (4)

One sees the Lorentz force on the right-hand side,
there is no Magnus force: the latter is in thec direction in
which vortices cannot move because of intrinsic pinnin
Then one must take into account the vortex massM. Also
the shear elasticity of the vortex lattice given by the elas
modulusK is important.

For a plane wave,expsikz 2 ivtd the dispersion
equation is

sv2 2 v2
cd sv2 2 c2

yk2d 2 Gv2v2
c ­ 0 , (5)

wherec2
y ­ KyM, andG ­ ByF0y4pMc2. In the limit

of k ! 0 this dispersion equation yields the plasma mo
with renormalized gapvc

p
1 1 G and the soft soundlike

vortex modev ­ cyky
p

1 1 G.
More general equations for an arbitrary direction

$B must include the Magnus force which becomes mo
important than the vortex inertia force. But the fina
conclusion of the phenomenological theory is that o
can easily discern the plasma mode with a gap origina
from the Coulomb interaction, and the soft vortex mod
which is gapless in the uniform case, but has a gap in
presence of pinning. The plasma gap depends only on
in-plane componentBy .

However, even thoughBz has no direct effect on the
plasma frequency, it can affect it via the superfluid de
sity nc. The latter is constant outside the vortex cor
(the London region), but is suppressed inside the cor
ThusBz diminishes the averagekncl and the plasma fre-
quencyvc ~

p
kncl. In continuous superconductors th

effect is roughly proportional toByHc2 which is the ra-
tio of the core area to the area of the vortex unit cell.
layered superconductors the core area must be found f
the Lawrence-Doniach model. In this model the curre
is jz ­ jc sinw, where jc is the critical current for the
Josephson coupling between two layers. Suppose th
smooth phase modulationw0 ø s≠wy≠z is superimposed
on the ground-state phase pattern. Heres is the period
of the layered structure. Then the average current
jz ­ jckcoswlw0 where noww is the phase in the ground
state. Comparison of this expression with that for a co
tinuous superconductor,jz ­ encsBd sh̄ymd≠wy≠z, yields
that ncsBzd ­ ncs0d kcoswl where ncs0d ­ jcsmyeh̄ is
the superfluid density without magnetic field. Since th
zero-field plasma frequencyvcs0d coincides with the
s
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Josephson-plasma frequencyvJ , this gives an expression
for the plasma frequencyvcsBd ­ vJ

p
kcoswl suggested

by Bulaevskiiet al. [12] and used by all experimentalist
for comparison with their results. Thus the wholeBz de-
pendence is presented by the factorkcoswl, and in order
to explain the experimental dependence this factor m
be essentially smaller than unity. Let us estimate ho
small it could be.

By definition, in the London region the superfluid
density is close to its value far from the vortex line, i.e
cosw ø 1. Then the core area must be defined as
area where the phasew is not small compared to unity.
In the Lawrence-Doniach model the vortex line, whic
is directed at the tilt angleq ­ arcsinBzyB to the ab
plane in average, consists of pancakes in superconduc
CuO layers connected by Josephson strings in interla
spacings. The phasew is large (i.e., cosw may be
small) only inside a Josephson string wherew varies
in the 2p interval. The length of the Josephson strin
is LJ ­ sy tanq . The width of the string also canno
exceed this value, as pointed out by Clem [20]. Th
the core area in theab plane does not exceed,L2

J . A
more accurate estimation shows that the effective c
area differs from this value by a logarithm factor, bu
it is not important for our rough estimation. A stron
inequality kcoswl ø 1 takes place if cores occupy the
whole ab plane, i.e., the core area,L2

J ­ s2y tan2 q is
on the order or more than the areaF0yBz per one vortex.
It is possible if tanq ø q ø ByHs whereHs ­ F0ys2

is about 1000 T while fields relevant for experiment a
less than 10 T. Therefore an essential suppression of
plasma frequency by the magnetic field is possible for
angles of about 1±.

In order to conciliate the plasma-mode theory wi
experiment at fields perpendicular to theab plane, Bu-
laevskii et al. [13] suggested that even for a field nor
mal to layers in average, the local direction of vortex lin
strongly fluctuates because of pinning of pancakes. A
result, there appears a great number of Josephson str
which, as they believe, can effectively decrease the fac
kcoswl. But they strongly overestimated this effect usin
the relationkcoswl ­ exps2kw2ly2d which is incorrect if
kw2l is large, i.e., ifkcoswl is small. Our estimation has
shown that in order to essentially decreasekcoswl, the
deviations from the direction normal to layer must beev-
erywhereabout 90±. It is difficult to imagine a structure
in which random directions of the vortex line are kep
so close to the planeab: In the presence of numerou
pinning sites pancakes can always choose those wh
do not require a vortex line to deviate from its averag
direction so strongly which would cost a higher energ
But in the case that such an exotic structure was realiz
nevertheless, one would expect a strong effect of the f
tor kcoswl also on the field-dependent penetration dep
3733
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lcsBd ­ cyvcsBd. Such huge enhancement oflc could
not be unnoticed in direct magnetic measurements onlc.

Our phenomenology assumed existence of the Lond
region. But for a parallel field this region may be
eliminated as shown above. Therefore one must che
this case using the Lawrence-Doniach model which de
with equations for the gauge-invariant interlayer pha
difference wn,n11 ­ wn11 2 wn between the layersn
andn 1 1 [see Eq. (11) of [21], dissipation is neglected

1

c2
0

≠2

≠t2 fs2 1 adwn,n11 2 wn11,n12 2 wn21,ng

­
≠2wn,n11

≠x2 2
1

l
2
J

fs2 1 ad sinwn,n11

2 sinwn11,n12 2 sinwn21,ng . (6)

Here a ­ s2yl
2
ab, lJ ­ sg, g ­ vabyvc ­ lcylab ,

vab , andlab are the plasma frequency and the penetrati
depth for currents in theab plane, andc0 ­ c

p
a is

the analog of the Swihart velocity. Without magneti
field all phase differences vanish in the ground sta
w

s0d
n,n11sxd ­ 0. But the phase differences can oscillat

with the plasma frequencyvJ ­ c0ylJ ­ cylc.
In the limit of high magnetic fieldsBy ­ B ¿ H0 ­

F0yslJ vortices fill all interlayer spacings forming pe-
riodic chains with perioda ­ F0ysB ø lJ . In neigh-
boring interlayer spacings the vortex chains are shift
by ay2 forming a triangular lattice [22]. The equilibrium
stationary configurationw

s0d
n,n11sxd satisfies Eq. (6) with-

out time derivatives and may be found treating the si
terms as weak perturbations,

w
s0d
n,n11sxd ­ kx 1 pn 2 s21dn 4 1 a

k2l
2
J

sinkx , (7)

where k ­ 2pya. Then one might expect the plasm
mode with frequency

v2
c ­ v2

Jkcosw
s0d
n,n11l ­

s4 1 adc2
0

2k2l
4
J

­ v2
J

s4 1 adH2
0

8p2B2 .

(8)

Let us try to find it solving Eq. (6) linearized with re-
spect to small phase modulationw0

n ­ wn,n11 2 w
s0d
n,n11.

Equations forw0
nsxd are Mathieu equations which one

may solve using the perturbation theory with respect
the periodical potential. For modes propagating norma
to the layers,w0

nsx, td ­ fsxd expsiqn 2 ivtd and the
phase modulation is periodical:fsx 1 ad ­ fsxd. We
obtain that the frequency of these modes is given by

v2 ­
c2

0

k2l
4
J

s1 2 cosqd ­ v2
J

H2
0

4p2B2 s1 2 cosqd . (9)

This is a gapless mode which agrees with the spectr
derived earlier by Volkov [15] [see his Eq. (17) fo
k ­ 0].

The mode at the boundary of the first Brillouin zon
q ­ 6p has a maximum frequencyv2 ­ 2c2

0yk2l
4
J

which is roughly equal to the plasma frequency give
3734
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by Eq. (8) (a is small), but in this mode the average
currentjz and the average electric fieldEz vanish (they
have opposite signs in neighboring layers). Therefore th
mode is not coupled with a practically uniform electric
field generated in microwave experiments.

Thus according to the Lawrence-Doniach model on
cannot observe the plasma mode in a strong parallel fie
But the soft vortex mode predicted by phenomenolog
is observable and corresponds to Eq. (9) in the limit o
small q ­ ks. Indeed, in this limit one may present an
oscillation in terms of vortex displacementsu assuming
that w0

nsxd ­ 2u≠w
s0d
n,n11sxdy≠x. Then it is evident that

the mode under consideration is the transverse sound
the lattice of vortices which have a mass.

Note that our triangular lattice has asingle vortexin
the elementary cell. Therefore the structure cannot sust
any optical mode. The optical mode obtained in Ref. [17
results from an improper choice of the elementary ce
with two vortices in neighboring layers. Formally one
may choose the unit cell containing two vortices. But thi
yields a wrong physical picture: the optical branch in suc
a picture must be continuously connected with acous
branch at the boundary of the first Brillouin zone for a
two-site cell, i.e., belongs to the same branch, in fac
Discontinuity between “acoustic” and “optical” modes
at the Brillouin-zone boundary obtained in Ref. [17
contradicts to symmetry of the vortex lattice.

The optical mode appears, however, if vortices do n
fill all interlayer spacings. According to Bulaevskii and
Clem [22] the vortex lattice with the vortex chains in any
layer transforms at some magnetic field of orderH0 to the
lattice with the double period along the axisc, in which
any second interlayer spacing is free from vortices. W
assume that the even spacings with the phasesw2n,2n11

are filled with vortices (vortex layers), whereas the od
ones with the phasesw2n11,2n12 are vortex free (Meissner
layers). This structure also has only one vortex in the un
cell. However, the oscillating phase in the Meissner lay
is an independent variable. So the unit cell contains tw
sites: one is occupied by a vortex, another is vortex free

Using the perturbation theory for the high magneti
field again, we obtain for the static triangular structur
thatw

s0d
2n11,2n12sxd ­ 0, i.e., cosw

s0d
2n11,2n12 ­ 1 and

w
s0d
2n,2n11sxd ­ kx 1 pn 2 s21dn 2 1 a

k2l
2
J

sinkx . (10)

Now we introduce small deviations from the equilib
rium in vortex layers,un ­ w2n,2n11 2 w

s0d
2n,2n11, and in

Meissner layers,yn ­ w2n11,2n12. Taking the periodic
potential into account by the perturbation theory as b
fore, the equations forx-independentun andyn are

s2 1 ad
v2

c2
0

un 2

√
v2

c2
0

2
1

l
2
J

!
syn21 1 ynd ­ 0 ,

s2 1 ad

√
v2

c2
0

2
1

l
2
J

!
yn 2

v2

c2
0

sun 1 un11d ­ 0 . (11)
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We restrict ourselves by a caseq ­ 0. Thenun andyn do
not depend on the layer numbern and the equations yield
two modes: the soft vortex mode withv ­ 0 (acoustic
mode), and the plasma mode with frequency close
vJ (optical mode). Note that the plasma frequency
not suppressed by the magnetic field since the curre
and the electric field are confined in the Meissner laye
where cosw , 1. Therefore the expressionvcsBd2 ­
v

2
J kcosfl does not predict a correct value of the plasm

frequency, sincekcosfl ø 1y2 in the present case.
On the basis of these calculations one may conclu

when the plasma mode is observable by microwav
and when it is not. It is definitely observable if there
is an essential London region, where there is no fa
phase variation and cosw ø 1. In the second example
the vortex-free interlayer spacings play a role of such
region. I argue that magnetic-field tilting is also able t
make the plasma mode observable. At any finite tilt ang
q , BzyBy , however small, there is no infinite-length
Josephson vortices anymore. Instead there are fin
length Josephson strings stretched between panca
Only infinite-length strings are able to eliminate a
observable plasma mode. This may be illustrated by
analysis in the low-field limit, when in the planeab the
transverse sizelJ of vortices (fluxons) is much smaller
than the intervortex distance. Infinite Josephson strin
cut the whole plane onto disconnected strips with phas
2pn. The mode with plasma frequency still exists, but
has nodes along fluxon lines, so that the current and
electric field have opposite directions on the two sides
the fluxon. As a result, they vanish in average and th
mode cannot be observed. Roughly speaking, even o
infinite-length string is enough for it. But a finite-length
Josephson stringcannotdisconnect the area with the sam
phase (the London region); i.e., this area remainssingle
connected: the current (field) direction must be the sam
far from the string, so the average current (field) does n
vanish.

All this leads to the conclusion that the plasma mod
is not observable only in a rather strong magnetic fie
strictly parallel to the ab plane. But its frequency
never vanishes. Therefore extrapolation of the plasm
frequency to zeroBz must always give afinite frequency.
In contrast to it, recent measurements of the resonan
frequency for small tilt angles [9] yielded the dependenc
v ~

p
HzyH. Here $H is the external field, but its

difference from the magnetic induction$B is not important
for frequency extrapolation. Thus this observation do
disprove, but not prove, the plasma-mode interpretation

In summary, our analysis of the plasma mode in th
layered superconductor shows that its magnetic-field d
pendence is essentially different from that of observe
magnetoabsorption resonances. Except for quite small
angles between the field and layers, the factorkcoswl
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is about unity and the magnetic-field dependence of t
plasma frequencyvc ­ vJ

p
kcoswl is negligible com-

pared to that observed. At small tilt angles extrapolatio
of the plasma frequency to zero angle must yield a fin
observable value, in contrast to zero value obtained in
recent experiment [9].

This conclusion, which is negative for plasma-mode i
terpretation, does not mean that the vortex-mode interp
tation must automatically replace it. It is evident now
that even if experimentalists really observed the vort
mode, its properties are different from those suggested
Ref. [11]. In particular, the mode must be governed b
pinning in the bulk, but not only on the surface. Othe
interpretations different from “either plasma, or vorte
mode” also must not be ruled out. This problem wi
be addressed elsewhere. Additional experiments, wh
could help to resolve the problem, were extensions
measurements to lower magnetic field, where the diffe
ence between vortex and plasma modes became more
nounced. Since the penetration depthlc is also affected
by the factorkcoswl, comparison with measurements o
lc in magnetic fields would also be useful.
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