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Fracture of a Brittle Membrane
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The fracture of a brittle membrane by a localized transverse impact is studied using a numerical
lattice model. The fracture patterns which are found experimentally [N. Shink&raatography of
Glass, edited by R.C. Bradt and R.E. Tressler (Plenum, New York, 1994)] by dropping a heavy ball
on a thin glass plate are reproduced. At a very high impact velocity only a small hole is created
at the impact area (Hertzian fracture). At lower velocities tangential and radial cracks are formed.
In the model calculations, pure Hertzian fracture appears in the limit where inertial forces dominate
over the elastic forces, while tangential fracture appears in the opposite limit. Radial cracks are
demonstrated to be a consequence of nonlinear deformations or an externally applied in-plane strain.
[S0031-9007(97)04464-5]

PACS numbers: 62.20.Mk, 05.90.+m, 46.30.Nz

Membranes and thin plates have many advantages froehronological appearance of the cracks in the simulations
a technological point of view and appear in all kindswill be discussed below.
of man-made structures. In many of the applications, Another, more fundamental, aspect of this work is to
however, membranes are useful only if they are made afevelop a computer simulation model of fracture, which
a stiff and light material so that they are rigid. Stiff and can more readily be compared to experimental results
light materials are easy to find but many of them are alsahan the so far extensively used strictly two-dimensional
very brittle, and they therefore break easily. Everydaymodels. For a review of the two-dimensional models of
examples of such structures are ceramic and glass platgsasistatic fracture see, e.g., Refs. [2,3], and for results
(like windows). To be able to optimize these structures itof dynamic fracture of two-dimensional models see, e.g.,
is necessary to understand how they fracture. Irrespectiieefs. [4—9]. The present membrane model also has a
of any practical use, it is interesting to study membrandwo-dimensional geometry, but the difference lies in the
fracture as a physical phenomenon. possibility to deform in all three space dimensions.

In this Letter we report the results of lattice model We have chosen to use a beam lattice model for our
simulations of a brittle two-dimensional solid that cannumerical investigations for two reasons. Beam lattices
be deformed in three dimensions. We demonstrate thaire efficient from a numerical point of view, and they
our model can reproduce the fracture patterns which werform a straightforward discretization of a brittle solid
found by Shinkai [1] in his experiments on thin glassobeying “Cosserat elasticity” [10,11]. That is, large scale
plates. In these experiments, thin square-shaped glasstations are possible. The particular lattice we use here
plates were supported at the edges, and a small and heagya triangular lattice with beams as the lattice bonds.
ball was dropped on them from a point above the center
of the plate. The fracture patterns that were formed by
the impacts typically consisted of three types of cracks.
For a high impact velocity, only a small circular hole
at the point of impact was formed. This is a so-called
Hertzian fracture [1]. At lower velocities, radial and
tangential cracks appeared (Fig. 1). The radial cracks
were fairly straight and directed outwards from the point
of impact, while the tangential cracks formed a more or
less circularly symmetric crack with the impact point as
the center of the circle. At still lower impact velocities,
only radial cracks were formed. Finally, of course, at very
low velocities no cracks appeared.

Notice that the chronological order of the appearance of
these cracks can be determined from Fig. 1. As all radial o )
cracks originate from the hole at the impact point, the hold /G- 1. ~Schematic picture of the fracture pattern on a thin

. . lass plate. Hertzian type fracture at the center of the plate,
must be, created before the rad_'al _C_raCks' Slmllquy, as th dial cracks directed outwards from the center, and a roughly
tangential cracks have discontinuities at the radial cracksircular tangential crack around the center. Sketched after
they must be formed after the radial cracks [1]. TheRef. [1].
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The beams, which are assumed to have no mass, conndgy. (1). For the lattice in thez plane only the sites at the
lattice sites at which masses are located. The beamnisft and right edges of the lattice are constrained to remain
are assumed to have a square cross section, and e their original positions, while a number of sites in the
use the stiffness matrix of a slender beam (i.e., bendingniddle of the upper boundary move in the negative
dominates over shear deformations), which can be derivedirection. To include fracture, we set a threshold value for
from linear theory of elasticity [12]. Notice that we the elongation of a beam at which failure is irreversibly
only use linear elasticity, and therefore neglect higheinitiated. Fracture is, however, not instantaneous. At the
order terms in the displacements of the sites which ariséhreshold we assume that the Young’s modulus of a beam
from deformations of the membrane. In other words, oubegins to decrease linearly in time until it reaches zero.
model is correct, in a strict sense, only for infinitesimalThe rate at which the modulus decreases is a parameter
deformations. The length, the cross-section area, anfl) for which we have tested different values. For a
Young’'s modulus of the beams are all, for the sake ofmaterial like glass, for example, bending would be a more
simplicity, set to unity. The Poisson ratio is assumed to behysical breaking criterion than elongation. We have
zero. These are not actually “slender” beams, but we aralso tested a combined breaking criterion of elongation
only interested in the qualitative behavior of the model,and out-of-plane bending of the membrane. The crack
and therefore we choose the simplest possible set gfatterns found were qualitatively similar to those found
parameter values. With these parameter values, the forcesing only the elongation criterion. Thus, for simplicity,
needed to elongate or shear a beam by a unit distance ane@ use only the elongation criterion. At this point it
both unity. The angular momentum needed to create ahould be mentioned that our lattice model mimics the
unit torsional rotation and a unit angular rotation of one ofdeformations of a solid correctly on a scale larger than
the ends of a beam ang'12 and 1/3, respectively. The a lattice bond. Fracture, however, is a local process and
masses and the moments of inertia of the sites are alsoust therefore be defined on the smallest possible scale
both set to unity. In the simulations we use lattices ofon the lattice (i.e., on the scale of a single bond). On this
50 X 70 sites located in they plane, while the impact is scale the geometry of the lattice will affect the direction of
in the z direction. To study the effect of the thickness of a crack. This has no physical counterpart in real world, at
the membrane, we also simulate a two-dimensional latticeeast not for an isotropic material. The effect of the lattice
in the xz plane. Notice that a two-dimensional lattice is geometry will be discussed more below.

sufficient in this case if we assume circular symmetry, In Fig. 2 we show a sequence of snapshots of a
i.e., we simulate a circular instead of a square plate. Thesimulation of an impact. The radius of the impact is
all deformations of the lattice will only depend on the 5, Ar = 0.05, « = 0.05/At, and v = 1/600Az. The
radial distance from the center of the impact point, andsnapshots are taken after 200, 400, and 600 time steps,
it suffices to study a two-dimensional cross section of theespectively, and the lattice is shown tilted at angtest
lattice. In this case we use latticesIoi0 X 10 sites. The and 7/2. The figure clearly shows the formation of a
dynamics of the lattices are calculated using a discreteircular well. Fracture is initiated at the points where
form of Newton’s equations of motion including a small the walls of the well are the steepest, and eventually a

linear viscous dissipation term, circular crack is formed around the center of the impact
M C M point, that is, a tangential crack. This figure also displays

[F + E}U(z + Ar) = {F — K}U(t) the effect of lattice geometry. In the snhapshot taken at
400 time steps, it can be seen that the tangential crack

M C is first formed at the location where a lattice bond is in

| A2 2Ar the direction of the gradient of the slope of the well.

From this figure it is also evident that the lattice is not

X Ut — Ar), (1) at equilibrium during the impact, and that dynamic effects

whereM is a diagonal mass matriX; the stiffness matrix, are important. With these parameter values, the radius of
C a diagonal damping matrix{/ a vector containing the tangential crack is rather small. If the velocity of the
the displacements of the sites from their equilibriumimpact is smaller, the deformation of the lattice reminds
positions, Ar the length of the discrete time step, andus more of a lattice at equilibrium. This is demonstrated
t the time. In the simulations, botlkf and C are set in Fig. 3 where we have used the same lattice as in Fig. 2,
proportional to the unity matrix. The boundary conditionsbut with v = 1/8000A¢. In Fig. 3 the deformations are
imposed on the lattice in they plane are such that the so close to those at equilibrium that dynamical forces are
sites at the boundaries of the lattice are constrained toegligible as compared to elastic forces, and the tangential
remain at their original positions, while the sites in acrack has a bigger radius. The same phenomenon can
circular area in the middle of the lattice are forced to movebe seen in simulations of a lattice in the plane. This

a distance-vt in the z direction. The lattice is set to be is demonstrated in Fig. 4. In Fig. 4(a), the velocity of
at static equilibrium at the time = 0, and the locations the impact isv = 1/200A¢, while itisv = 1/8000A¢ in

of all sites at any time can be calculated iteratively usingig. 4(b). In Fig. 4(a) only a small hole is formed at the
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200

FIG. 4. Deformations of a cross section of a membrane with a
finite thickness. (a) Hertzian fracture at a high impact velocity
(v = 1/200A¢), and (b) tangential cracks at a low impact
velocity (v = 1/8000A¢).

at Fig. 1, one might intuitively expect that the radial
cracks appear as small cracks initiated at impurities close
to the point of impact. Because of the in-plane strain
resulting from bending of the membrane, such cracks
400 would propagate as a consequence of stress enhancement
at their sharp tips. If the slope of the deformation
well (cf. Fig. 2) isdU/L (i.e., dU is the displacement
difference in thez direction of the ends of a bond, and
L is the bond length), then tha-planestraino,, at that
point will simply be

oy = 1/2(dU/L)* + 0((dU/L)"), (2)

which obviously cannot be accounted for by our linear
600 model. To test our assumption that the radial cracks
appear as a consequence of in-plane strain, we therefore
apply an extra, constant, in-plane strainrat 0, and
FIG. 2. A sequence of snapshots of a simulation of an impactkeep the boundaries of the lattice at the new locations
The radius of the impact is 5 bond lengths. The impact objectluring the impact simulation. This means thattat 0
illSOgOtaf]goé\g]OiI’:int1heesf':gu;e.relheeci,ir\lZPShaontil ?ﬁg ﬁg‘&?cnea}gesrhﬁev%e adjust the displacements of all sites so that the entire
tilted at anglesr /4 anderkz. Sroken %'onds are removed. lattice is at qulllbrlum with th_e new, nonzero str_aln,
boundary conditions. The result is demonstrated in Fig. 5,
which obviously displays radial cracks originating from
location of the impact, i.e., a Hertzian fracture, while athe Hertzian type crack formed at the impact. In Fig. 5,
tangential crack is formed in Fig. 4(b).

Based on the results shown in Figs. 2—4, it is clear
that our model reproduces either a Hertzian fracture or
tangential cracks, depending on the velocity of the impact,
in agreement with the experiments [1]. So far, however,
our model has not reproduced the radial cracks. Looking

200 350

500

8000

FIG. 5. Radial cracks in a lattice with an externally applied
FIG. 3. Deformation of the lattice of Fig. 2 after 8000 time in-plane strain:a = 0.1/Af, v = 1/600A¢, and the in-plane
steps with an almost 15 times lower impact velocity. The ftiltstrain is o, = 0.167. Snapshots at 200, 350, 500, and
angle of the lattice i9.757 /2. 700 time steps are shown. The tilt angle of the lattice is zero.
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a = 0.1/At, v = 1/600A¢, and the in-plane strain is In summary, we have demonstrated that a numerical
oy = 0.167. lattice model of a brittle membrane can reproduce all
To study the chronological appearance of the tangentiahree types of cracks found in experiments on glass plates,
and radial cracks, model parameters would have to bee., Hertzian type of fracture, radial cracks, and tangential
found for which both these types of cracks appear. Suchracks. At high impact velocities only the Hertzian frac-
parameters proved to be difficult to find. Much largerture appears, while at lower velocities tangential cracks
systems and longer computing times than available at theppear. This is consistent with experiments. The radial
moment would probably be needed to achieve this. cracks only appear in a nonlinear model or if an extra in-
Finally, one could try to find parameter values whichplane strain is applied. Even though the present lattice
match a specific material and compare the simulatioomodel excellently mimics membrane fracture in a quali-
results with experiment. This is, however, not verytative sense, further refinements have to be done to the
easy as the correct postfracture elastic behavior (i.emodel before quantitative comparisons with experiment
the parameterr in our model) is difficult to simulate are possible.
correctly. This is an important issue as it seems to
have quite a large influence on the final crack pattern
[a large @ (i.e., @ = 1/At) leads to few and narrow
cracks, while a very smalk leads to shattering of the
entire membrane]. In experiments, a glass plate can[l] N. Shinkai, in Fractography of Glassedited by R.C.
remain as one piece even if it contains several cracks Bradt and R.E. Tressler (Plenum Press, New York and
because the crack surfaces are rough, and therefore London, 1994).
interlocking of the fragments will hinder the plate from [2] Stgtistical Models for the Fracture of Disordered Media,
falling apart. Thus, the plate will behave almost as if ~ €dited by H.J. Herrmann and S. Roux (North-Holland,
it were undamaged, at least with respect to compressive[s] Amsterdam, 1990).

. o M. Sahimi and S. Arbabi, Phys. Rev. 87, 695 (1993);
deformations, although it is fractured. In the present S. Arbabi and M. Sahimi, Phys. Rev. &, 703 (1993).

lattice model, yve have only used the simple linear deqay[4] M. Marder and X. Liu, Phys. Rev. Let71, 2417 (1993).
of the Young's modulus as the postfracture behavior 5] g, sharon, S.P. Gross, and J. Fineberg, Phys. Rev. Lett.
of bonds. This feature should be developed further ~ 74 5096 (1995).
before any quantitative comparison between simulations[6] P. Heino and K. Kaski, Phys. Rev. B4, 6150 (1996).
and experiment will sensibly be done. Alternatively, the [7] J. Astrém and J. Timonen, Phys. Rev5B, R9585 (1996).
membrane could be simulated as a full three-dimensional[8] F. Abraham, D. Brodbeck, R. A. Rafey, and W. E. Rudge,
model, which allows for interlocking of fragments, and Phys. Rev. Lett73, 272 (1994).
which accounts for the delay in crack formation as cracks[®] B.L. Holian, R. Blumenfeld, and P. Gumbsch, Phys. Rev.
have to penetrate through the membrane inzt&ection. 0 b\?ttl'\r& 78k'(1'?k?7)' ¢ Mi lar ElasticitdSpri
Another aspect, which should be considered before anff®l W- Nowacki, Theory of Micropolar ElasticitySpringer-

. . . : : : Verlag, Udine, 1972).
detailed comparisons of simulations and experiments, i

. o . 1] S. Roux, in Statistical Models for the Fracture of
the appearance of impurities in all real materials. Base Disordered MediaRef. [2]).

on earlier studies [2,3] such impurities are important in12] see, e.g., L.D. Landau and E.M. LifshitZheory of
fracture. To carry out these simulations would, however, Elasticity (Pergamon Press, New York, 1958), or almost
require very large lattices and long computing times, and  any other standard textbook on theory of elasticity or the
would be outside the scope of this analysis. finite element method.
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