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Atomistic Determination of Cross-Slip Pathway and Energetics

T. Rasmussen,1,2 K. W. Jacobsen,1 T. Leffers,2 O. B. Pedersen,2 S. G. Srinivasan,3 and H. Jónsson1,4

1CAMP, Department of Physics, Technical University of Denmark, DK–2800 Lyngby, Denmark
2Materials Research Department, Risø National Laboratory, DK–4000 Roskilde, Denmark

3Department of Materials Science and Engineering, University of Washington, Seattle, Washington 89195-
4Department of Chemistry, University of Washington, Seattle, Washington 89195–1700

(Received 2 July 1997)

The mechanism for cross slip of a screw dislocation in Cu is determined by atomistic simulations
that only presume the initial and final states of the process. The dissociated dislocation constrict
in the primary plane and redissociates into the cross-slip plane while still partly in the primary
plane. The transition state and activation energy for cross slip as well as the energies of the
involved dislocation constrictions are determined. One constriction has a negative energy compare
to parallel partials. The energy vs splitting width for recombination of parallel partials into a perfect
dislocation is determined. The breakdown of linear elasticity theory for small splitting widths is studied.
[S0031-9007(97)04444-X]
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The mechanical properties of metals are, to a large e
tent, controlled by the complicated structure and dynami
of dislocations and other defects. Linear elasticity theo
is well suited to describe the long range elastic intera
tions between such defects but breaks down for proces
involving dislocation cores. Such cases may require
treatment of all the atomic degrees of freedom.

Cross slip is the mechanism by which a screw dislo
cation changes glide plane and it plays an important ro
for plastic deformation, e.g., the onset of stage III in me
chanical deformation. Several possible mechanisms ha
been proposed for the thermally activated cross slip [1
5], and recently the model proposed by Friedel [2] an
Escaig [5] (FE) has been treated with linear elasticity th
ory [6,7]. During the cross-slip process the dislocatio
cores overlap, and the estimates of the activation ener
vary appreciably depending on the cut-off procedures
the dislocation cores [6,8,9].

In this Letter we describe the results of an atomist
approach to the problem of cross slip of a dissociate
screw dislocation in Cu. We use a path techniqu
to determine the minimum energy transition path an
the corresponding activation energy for cross slip. N
presumptions about the actual cross-slip mechanism
made, and, furthermore, the atomistic approach enable
proper treatment of the dislocation cores.

The simulations show that cross slip proceeds in th
following manner: Initially the dislocation is dissociated
into two parallel Shockley partials in the primary glide
plane. The partials bow in towards each other and reco
bine in a constriction which then redissociates in the oth
glide plane, the cross-slip plane. The redissociation crea
two twisted constrictions on the dislocation, thus situatin
the dislocation partly in the primary plane and partly in
the cross-slip plane. Finally the constrictions move apa
and the cross-slip process is complete with parallel pa
6 0031-9007y97y79(19)y3676(4)$10.00
x-
cs
ry
c-
ses
a

-
le
-
ve
–
d

e-
n
gy
at

ic
d
e
d
o

are
s a

e

m-
er
tes
g

rt,
r-

tials in the cross-slip plane. This cross-slip mechanism
corresponds qualitatively to the FE model. The twiste
constrictions show a remarkable difference not discusse
earlier with elasticity theory: One constriction has a nega
tive energy compared to parallel partials. Simulations o
straight dislocations enable determination of the energy v
splitting width for recombination of parallel partials into a
perfect screw dislocation.

We consider a screw dislocation with Burgers vecto
b ­ 1

2 f110g in Cu, and denote the length of the per-
fect Burgers vector b. The computational cell is a par
allelepiped of heighth with the screw dislocation at the
center. The cell can be seen as a stacking of (110) plan
in an . . .ABAB . . . sequence along the dislocation line
with s111d planes ands111d planes as the nonorthogo-
nal sides of the cell. Periodic boundary conditions ar
applied in the direction of the dislocation line, wherea
the h111j surfaces are free. The side length of the com
putational cell perpendicular to the dislocation is de
notedw. The largest system hadw ­ 37 b (9.5 nm) and
h ­ 100 b (26 nm) and consisted of 184 900 atoms.

The atomic interactions are described with a many
body potential derived from the effective-medium theory
[10]. The potential reproduces the elastic constants an
the intrinsic stacking-fault energy of Cu very well [9].

The simulated cross-slip process starts and ends
two equivalent configurations with parallel Shockley par
tials in either of the two possible glide planes, Figs. 1(a
and 1(f). Because of the high dimensionality of the
configuration space (ø550 000 degrees of freedom), it is
highly nontrivial to identify the transition path and the
corresponding transition state. We approach this pro
lem with a configuration-space-path technique [11,12] i
which the entire transition path is determined simultane
ously. In this approach an initial guess for the transitio
path is relaxed according to the calculated forces until th
© 1997 The American Physical Society
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FIG. 1. Minimum energy transition path for cross slip of a screw dislocation. Top: primary glide planes111d. Bottom: cross-slip
plane s111d. The Burgers vectors in each glide plane are indicated to the left. (a) Starting configuration with parallel Shoc
partials in the primary glide plane. (b) Recombination into a constriction entirely in the primary plane. (c) Redissociation i
cross-slip plane. The upper constriction is screwlike, and the lower is edgelike. (d) Transition state with half of the dislocat
either glide plane. (e) Single plane constriction entirely in the cross-slip plane. (f) The cross-slip process is complete, with p
Shockley partials in the cross-slip plane.
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minimum energy path with vanishing forces perpendicul
to the path is obtained. We use the nudged-elast
band method [12] in which the path is represented by
sequence of replicas of the system. Each replica is rela
perpendicular to the path using an energy minimizatio
technique [13] keeping the replicas equidistantly spac
in configuration space. The initial path is a straight lin
in configuration space between the initial and final stat
discretized into 18–34 replicas of the system. It shou
be noted that no constraints on the cross-slip process
imposed, besides the specified initial and final states.

We have investigated cross slip for varying heights
the computational cell. In the first set of simulation
h is either 60 or 100 b and the width isw ­ 37 b.
These heights are large enough to allow the partia
to be flexible in their glide planes, and thus to ado
nonstraight configurations. For the system withh ­
100 b the path of 18 replicas consists of a total o
3.3 3 106 atoms. The smaller height (h ­ 60 b) allows
simulation of 34 replicas (3.5 3 106 atoms) in the path,
to check the influence of the number of replicas o
the saddle point (activation) energy. The second set
simulations haveh ­ 5 b (1.3 nm). The partials are kep
straight, thereby enabling determination of the energy
the dissociated screw dislocation as a function of t
splitting width. The simulations are carried out on
parallel computer, with each CPU handling 1–4 replica

Figure 1 shows the cross-slip process from the simu
tion with h ­ 60 b and 34 replicas in the path. The crys
tals have been cut through to display the primary glid
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plane in the top row and the cross-slip plane in the bo
tom row. The atoms close to the dislocation cores ha
been colored black, using a topologically based disloc
tion finding algorithm [14]. The cross-slip process is in
tiated by formation of a constriction in the primary glide
plane, Fig. 1(b). The dislocation is still entirely in the
primary plane, i.e., there is no sign of redissociation
the cross-slip plane as can be seen in the lower pane.
note that the initial configuration space path, in principl
possesses lattice translational symmetry along the dislo
tion line. However, small amounts of numerical noise
the atomic coordinates of the initial path are sufficient
break the symmetry, leading to the spontaneous const
tion formation. In Fig. 1(c) the constriction in the primary
plane has dissociated into two twisted constrictions cre
ing a small loop in the cross-slip plane. Since the partia
are no longer straight, their characters vary along the d
location lines. We distinguish between the constrictio
and denote the lower constriction “edgelike” and the u
per constriction “screwlike” because of the characters
the partials close to the constriction. Figure 1(d) show
the transition state with half of the dislocation in eithe
glide plane. The constrictions move apart, but due to t
periodic boundary conditions they meet and form anoth
single plane constriction, Fig. 1(e). The cross-slip proce
is complete in Fig. 1(f) with two parallel Shockley partial
in the cross-slip plane. Figures 1(e) and 1(f) are equiv
lent to Figs. 1(b) and 1(a), respectively. The calculat
minimum energy transition path agrees qualitatively wi
the mechanism proposed by Friedel [2] and Escaig [5].
3677
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For h ­ 100 b and h ­ 60 b the activation energies
are 3.2 and 3.1 eV, respectively, independent of th
number of replicas in the path. The activation energy f
the smaller height is lower since the interaction betwee
the constrictions is attractive. The energy of the singl
plane constriction [Figs. 1(b) and 1(e)] isø1.6 eV.

It is interesting to examine the energetics in detail. T
do so we plot the energy contributions from each (11
plane pair (AB) in the . . .ABAB . . . stacking sequence
along the dislocation line. The energy of anAB pair
is the sum of the energies of all the atoms in that pa
The results for the four systems shown in Figs. 1(a)
1(d) are shown in Fig. 2. TheAB pair energy of the
initial configuration (a) is constant along the dislocation
line and defines the zero point of the energy scale. T
system with the constriction in the primary glide plan
(b) shows a peak in the energy plot locatedø3 b below
the actual position of the constriction. This is caused b
the asymmetry of the dislocation characters on either si
of the constriction. Below the constriction the partial
acquire edgelike character, whereas above the constrict
they are like screw dislocations. The asymmetry caus
the energy plot to be asymmetrical and offsets the ener
peak towards the edgelike part. Note that the energy
the screwlike part just above the constriction is lower tha
the energy of the two parallel partials with equilibrium
splitting width. For a discussion of the influence o
the dislocation characters on the energetics we refer
Ref. [9]. When the dislocation redissociates in the cros
slip plane two constrictions are formed. The constriction
are symmetrical with respect to the dislocation charact
on either side of the constriction, and the associat
peaks in the energy plot [curves (c) and (d)] correspond
exactly to the location of the constrictions. The edgelik
constriction (to the left in Fig. 2) has a positive energ
(ø4 eV), whereas the screwlike constriction (to the righ
has anegativeenergy (ø21 eV) compared to two parallel
partials [15]. Hence, a configuration with a screwlik
constriction on the dislocation is energetically favore
over two parallel partials. The negative energy of th
screwlike constriction is not included in the origina
approach by Escaig [5], because of the use of a simp
line-tension model. The simulations [6,7] of the FE mode
calculate the cross-slip activation energy as the energy
the entire transition state, and the difference between
constrictions is not discussed. One can speculate that
alternative cross-slip mechanism could be cross slip o
screw dislocation terminated at a free surface, initiate
by the formation of a screwlike constriction at the fre
surface. Such a cross-slip event has been observed
simulations, but the energy barrier for this process is
present not known [9].

The energy of the single plane constriction [Figs. 1(b
and 1(e)] has been calculated with linear elasticity theo
[16,17]. The results for Cu are 2 eV (Ref. [16]) and
1.1 eV (Ref. [17]), which could be compared to our resu
of 1.6 eV. The present result for the cross-slip activatio
3678
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FIG. 2. Energy contribution from individual (110) plane pairs
to the total energy of the four configurations shown in
Figs. 1(a)–1(d). The energy of the parallel partials (a) defines
the zero point of the energy. The energy of the singl
constriction (b) is 1.6 eV. Notice the asymmetry of the energy
plot caused by the asymmetry in dislocation character belo
(edgelike) and above (screwlike) the constriction. After th
redissociation into two constrictions, the energy increases
2.9 eV (c) and 3.1 eV in the transition state (d). For (c) and
(d) notice the qualitative difference between the two kinds o
constrictions. The edgelike constriction has a positive energ
whereas the screwlike constriction has anegativeenergy.

energy is roughly 10% higher than the2.9 6 0.1 eV
expected from simulations of isolated constrictions [18
This is easily explained by considering the initial and
final states. Ideally, these states should be systems w
equilibrated partials perfectly centered in either glid
plane. The true minimum energy configuration of suc
a system is, of course, a perfect crystalwithout the
dislocation, and the dislocation is therefore balancin
on a potential saddle point at the center of the ce
However, the time for displacement of the dislocation
away from the center is much longer than the time fo
the relaxation of the dislocation core itself. This mean
that it is possible to obtain relaxed initial and fina
configurations with the dislocation displaced only very
little (,1 b) away from the center of the crystal. Using a
simple image dislocation construction for a parallelogram
shaped computational cell of equal side length, it i
possible to estimate the elastic energy associated with t
displacement of the dislocation, and correct the activatio
energy accordingly. We have found that the displaceme
of the dislocation in the two glide planes wasø0.9 b and
this leads to a small (ø0.2 eV) correction of the activation
energy. The corrected activation energies become 2
and 3.0 eV forh ­ 60 b and h ­ 100 b, respectively,
in good agreement with the result of simulations o
single constrictions [9], and in reasonable agreement wi
simulations based on elasticity theory [6].

The simulations with short computational cells,h ­
5 b, had 34 replicas in the path. For this height th
periodic boundary conditions prevent the partials from
bowing in towards each other, and cross slip therefo
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FIG. 3. Energy per length versus splitting widths for straigh
partials. The circles are the results from the simulation. Th
full line is the result from linear elasticity theory.

takes place in a homogeneous manner. The energy ver
the splitting width d for recombination of two parallel
Shockley partials into a perfect screw dislocation can the
be found [19]. The results are shown in Fig. 3. Th
energy difference between Shockley partials separat
by their equilibrium splitting widthd0 and recombined
partials is DE ­ 0.13 eVyb. A cross-slip mechanism
including a segment of recombined perfect dislocation
some length in the primary plane has been proposed [
To complete the cross-slip process the perfect segm
is suggested to bow out in the cross-slip plane under
shear stress. Within elasticity theory [17], the energy o
a configuration with a perfect segment of lengths can be
estimated asESS ­ E0 1 sDE, whereE0 is the energy of
the single plane constriction. With our values forE0 and
DE we obtain a maximum length of the perfect segme
of ,s3 eV 2 1.6 eVdys0.13 eVybd ­ 11 b, too short to
make the mechanism work for any reasonable shear stre

Linear elasticity theory provides a simple expression fo
the energy as a function of the splitting width for straigh
partials

Eelsdd ­ 2Kiflnsdyd0d 1 1 2 dyd0g , (1)

where Ki is the prelogarithmic interaction term be-
tween partials. In isotropic elasticity theoryKi,iso ­
mb2y16p ­ 0.11 eVyb, with Poisson’s ratio equal to
1y3. More generallyKi is related tod0 and the stacking-
fault energyg by Ki ­ gd0 ­ 0.15 eVyb, and this value
can be seen as the anisotropic result. Relation (1)
plotted as the full line in Fig. 3 withKi ­ 0.15 eV. For
splitting widths less than 1 b the logarithmic divergenc
stemming from the use of singular dislocations dominate
For splitting widths larger than 2 b the agreement is qui
good, and the small discrepancy is readily explaine
Relation (1) is derived under the assumptions of consta
stacking-fault energy and nonoverlapping dislocation
A plot of the displacements over the glide plane show
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however, that the partials do in fact overlap for all splittin
widths.
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