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The Skyrme model of nuclear physics requires quantization if it is to match observed nucl
properties. A simple technique is used to find the normal mode spectrum of the baryon numberB ­ 4
Skyrme soliton. We find 16 vibrational modes and classify them under the cubic symmetry groupOh

of the static solution. The spectrum possesses a remarkable structure, with the lowest energy m
lying in those representations expected from an approximate correspondence between Skyrmion
Bogomolny-Prasad-Sommerfeld monopoles. The next mode up is the “breather”, and above tha
higher multipole breathing modes. [S0031-9007(97)03613-2]

PACS numbers: 24.85.+p, 11.10.Lm, 12.39.Dc, 27.10.+h
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In the Skyrme model of nuclear physics, both pions an
nucleons are represented by a single scalar SU(2) gro
valued field,Usxd. Pions occur as field quanta, while
baryons are instead represented as topological solito
The classical Skyrme theory, with a simple quantizatio
of the spin and isospin collective modes, provides
description of nucleons and theD resonance in modest
agreement with experiment [1,2].

Applying the Skyrme model to larger nuclei and to nu
clear matter is an even more interesting proposition, sin
with no additional free parameters one could compare t
theory with the binding energies and gamma ray spec
of all nuclei. There has been progress in understandi
the structure of Skyrme multisolitons [3,4], but it is clea
that unless quantum fluctuations about the static solutio
are included, there is little chance of success. For re
nuclei the relative kinetic energies of the nucleons in th
ground state are large, so a quantization at least of a nu
ber of degrees of freedom equal to the number of nucle
coordinates is essential. Note that the simple collecti
coordinate quantizations of spin and isospin [1,2] includ
effects of orderh̄2, while ignoring effects of order̄h.

Recently there has been some progress in quantizati
based upon Manton’s notion of representing low ener
solitonic excitations as motion on a finite dimensiona
space of moduli. A study of the deuteron by Leeseet al.
[5] using an instanton approximation for the field config
urations, gave encouraging agreement with experimen
properties, but only included two of the four expected v
brational modes of the deuteron. Walet [6] extended th
treatment to estimate all vibrational frequencies for the de
teron and triton, again using the instanton approximatio

In this Letter we follow a different track. We directly
compute the low energy normal modes, finding their fre
quencies and the representations they lie in under t
static soliton’s symmetry group. The frequencies and re
resentations provide a coordinate-independent descript
of the configuration space around the static solution;
the harmonic approximation they determine the quantu
0031-9007y97y79(3)y367(4)$10.00
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vibrational energy levels. Our results provide new insigh
to the moduli space approach, since the representatio
for the lowest frequency modes turn out to be just thos
expected from a recently understood approximate corr
spondence between Skyrmions and Bogomolny-Prasa
Sommerfeld (BPS) monopoles [7]. Furthermore, th
success of these calculations allows one to contempl
going beyond the moduli space approximation and pe
forming a full semiclassical quantization of the field the
ory. This is an attractive goal, since the Skyrme theo
could then be incorporated in the framework of chiral e
fective Lagrangians [8], allowing a unified treatment o
mesons, baryons, and higher nuclei.

I Method.—Since the SU(2) manifold is a 3-sphere
we represent it in terms of a scalar fieldf [ R4, with
fafa ­ 1. In terms of this field, the Skyrme Lagrangian
density is

L ­
1
2 ≠mf≠mf 1 v2

pf1 1 lsff 2 1d

1
1
4 hs≠mf≠nfds≠mf≠nfd

2 s≠mf≠mfds≠nf≠nfdj , (1)

with l a Lagrange multiplier field. Here, length and time
are in units of 2

eFp
, energy in units ofFp

2e . In these rescaled

units, the only remaining parameter isvp ­
2mp

eFp
, the

oscillation frequency for the homogenous pion field. Fo
the most part we have adopted the “standard” valu
[2] of vp ­ 0.526, although we have also performed
calculations at twice this value.

The mixed space and time derivative terms in th
Skyrme Lagrangian make numerical solution in gener
difficult. Isolating the time derivative terms one has

L ­
1
2

ÙfaKabs≠ifd Ùfb 2 V sf, ≠ifd 1 lsff 2 1d ,

(2)

where Kab ­ dabf1 1 s≠ifd2g 2 ≠if
a≠if

b is a local
inertia matrix, andV sf, ≠ifd is the potential. In general,
© 1997 The American Physical Society 367
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Kab is time dependent, but for small perturbations aroun
a static solutionfstsxd we write fsx, td ­ fstsxd 1

esx, td, e ø 1 and to second order ine the Lagrangian
is

L ­
1
2

ÙeaKabs≠fstdÙeb 2 V sf, ≠ifd 1 lsff 2 1d .

(3)

This Lagrangian leads to classical field equations:

Kabs≠fstdf̈a ­ ≠i

µ
≠V

≠fb,i

∂
2

≠V
≠fb

1 lfb, (4)

where the matrixKabsxd is taken to be its value at the
static classical solution. Equation (4) closely approx
mates the Skyrme equations for fields near a static cla
sical solution, precisely the desired regime for studyin
soliton normal modes.

In order to numerically solve the field equations, w
discretize the action, (3), using a diagonal differencin
scheme for the four spatial derivative terms, achievin
a high degree of locality and second order accura
in both spatial and time steps. The numerical cod
conserves energy and baryon number to within 1 part
105 over the course of extremely long (50k time step
runs. Periodic boundary conditions are used. We fir
create the appropriate minimal energy static solution b
straightforward time evolution from four-Skyrmion initial
conditions. A simple relaxation procedure sets the fie
momenta zero each time the kinetic energy reaches
maximum. We find the fields rapidly converge on th
minimum energy configuration.Kab is set equal todab

in this part of the calculation, since this does not affect th
final static solution.

Next we slightly perturb the fields and evolve them
forward again, but now using the full inertia matrix
Kabs≠fstd. The evolving field is

fsx, td ­ fstsxd 1
X

modes

endnsxd cossvntd 1 Ose2d ,

(5)

where the functionsdnsxd [ R4, obeyingdnsxdfstsxd ­
0, are the normal modes, each excited with amplitudeen.
The normal mode frequenciesvn are found by Fourier
transformingfsx, td with respect to time at any point in
the box, and plotting the resulting power spectrum.

The space of perturbations has a useful inner product

kd1jd2l ­
Z

box
da

1 sxdKabsxddb
2 sxd d3x , (6)

which is zero for normal modesd1 and d2 if v1 fi v2.
The inner product allows one to determine the degenerac
of the normal mode frequencies and the representations
which the modes transform under the soliton’s symmet
group.

II Results for theB ­ 4 soliton.—We have applied this
technique to the case of the Skyrme soliton with baryo
368
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number four. TheB ­ 4 configuration provides an es-
pecially simple case for quantization, because the grou
state possesses zero angular momentum and isospin.
static soliton has cubic symmetry; its energy and baryo
number density concentrate along the edges of a cube [
The full 48 dimensional cubic group of symmetriesOh

(for notation see [9]) is generated by 90± and 120± rota-
tions, and parityI. After an appropriate global isospin ro-
tation, the action of these group elements on spatial coo
dinates and pion fieldsffa ­ ss, $pdg is as follows [10]:

C4 : sp1, p2, p3d sx, y, zd ! s2p2, 2p1, 2p3d s2y, x, zd,

C3 : sp1, p2, p3d sx, y, zd ! sp2, p3, p1d s y, z, xd ,

I : sp1, p2, p3d sx, y, zd ! sp̃1, p̃2, p̃3d s2x, 2y, 2zd ,

with p̃1 ­
1
3 sp1 2 2p2 2 2p3d, etc. From this it is

straightforward to check that a homogeneous pion fie
falls into the two dimensional representationE1 and the
one dimensional representationA2

2 , where superscripts
indicate parity.

A typical power spectrum of the perturbations is show
in Fig. 1. Spectra at different sites and for differen
field components show the same peaks, but with differin
heights. Once the normal mode frequenciesvn are
identified, maps of the normal modesdnsxd may be
constructed by performing discrete Fourier sums on ea
component of the field as it evolves. For degenera
modes, each set of perturbed initial conditions gives
different linear combination

P
i eidisxd of modes with the

same frequency. Other linear combinations may also b
produced by applying the symmetries of the static solito
S1, S2, . . . to a given moded. The degeneracy of a given
frequency is found by computing the rank of the matrix o
inner products between the different linear combination
of degenerate modes produced in these ways. Once
degeneracy is determined, a complete orthonormal ba
of modes with this frequency can be constructed. Th
character of anyOh group element can then be computed

FIG. 1. Fourier power spectrum for perturbations around
B ­ 4 soliton. Frequency is in Skyrme units, power scale
is arbitrary. Note that the frequency of homogeneous pio
oscillations isvp ­ 0.526 in these units.
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eir
FIG. 2. Contours of constant baryon density for theB ­ 4 soliton, combined with its normal modes, as indexed by th
frequencies in Fig. 1. These modes were studied in a box of size8 3 8 3 8, with a grid spacingDx ­ 1

8
in Skyrme units.

For comparison, the soliton itself is a cube roughly2 3 2 3 2 in these units. For the casev ­ 0.367 two orthogonal modes of
the degenerate multiplet are shown, in order cases a single mode only is shown.
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as a trace. These characters were within60.001 of an
integer value, and interpretation was unambiguous.

Each peak in Fig. 1 marks the frequency of a norm
mode. The lowest peak (atv ­ 0.07) is the rotational
zero mode, shifted to nonzero frequency by finite si
effects, effectively through interactions with image sol
tons one box length away. There are also several pe
corresponding to relatively delocalized modes which w
interpret as pion radiation. Two (atv ­ 0.545, 0.587)
correspond to the lowest radiation modes, homogene
away from the soliton, whose threefold degeneracy
split into E1 1 A2

2 by the presence of the soliton. Th
first radiation mode at nonzero wave number is atv ­
0.908. The remaining modes are the true vibrational e
citations of thea particle. Somewhat fortuitously, the
box size was small enough that the lowest inhomogene
radiation mode has a frequency above the highest vib
tional mode.

Four widely separatedB ­ 1 Skyrmions have 24 zero
modes, corresponding to three translations and th
isorotations each. As they combine to form theB ­ 4
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soliton, nine of them (three translations, three rotation
and three isorotations) remain as zero modes of t
new system. One might expect the remaining 15 mod
would survive as low energy vibrational modes. Th
in one fewer than what we find: we have an addition
breather mode.

The vibrational modes distort theB ­ 4 soliton as
illustrated in Fig. 2 and explained in the Table I. Th
modes naturally divide into two sets. The lower nin
vibrational modes consist of deformations which, roughl
involve incompressible flow of the baryon charge. I
contrast, the higher seven vibrational modes all ha
a “breathing” character, in which local baryon charg
expands or contracts to occupy a greater or lesser volu
The breather itself is simply a rescaling of the size
the soliton, with consequent change in density. The ne
mode up involves breathing motion of a dipole characte
and the one above that of a quadrupole nature.

Remarkably, the vibrational modes below the breath
fall into representations corresponding to those for sm
zero-mode deformations of the BPS four-monopo
369
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TABLE I. Description of the Skyrme fieldB ­ 4 normal modes marked in Fig. 1. The notation of Hamermesh [9] is used
the representations of the cubic groupOh; superscripts denote parity.

Frequency Degeneracy Symmetry Description

0.07 3 F1
1 Rotations of the soliton. This is a zero mode broken by the finite box size.

0.367 2 E1 Lowest vibrational modes. One mode,d1, alternately pulls theB ­ 4 cube into
two B ­ 2 donuts in two perpendicular directions. The orthorgonal mode,d2,
pulls it into four B ­ 1 edges one way and twoB ­ 2 donuts the other.

0.405 1 A2
2 The corners of the cube make two interlacing tetrahedra. This mode pulls on

tetrahedron out into fourB ­ 1 corners, pushing the other one in.

0.419 3 F1
2 Deform two opposite faces of the cube into rhombuses.

0.513 3 F2
2 Deform the cube by pulling two opposite edges one one face, and the two perp

dicular edges on the opposite face. This takes the cube to fourB ­ 1 edges.

0.545 2 E1 Two of the pionk ­ 0 modes.

0.587 1 A2
2 The remaining pionk ­ 0 mode, with tetrahedral symmetry.

0.605 1 A1
1 The breathing mode, with the full cubic symmetry of the soliton.

0.655 3 F2
1 One face of the cube inflates, while the opposite face deflates.

0.738 3 F1
2 One pair of diagonally opposite edges inflates; the parallel pair deflates.

0.908 3 The lowest nonzerosk ­ 1, 0, 0d pion radiative mode.
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solution [7]. The same phenomenon occurs in th
deuteron [11], and it will be straightforward to check the
B ­ 3, 5, 6, 7 solitons using the methods described her
Qualitative similarities between Skyrme multisolitons an
BPS multimonopoles and their scattering dynamics ha
been noted before [3,12]. Our findings suggests a co
nection between the lowest energy Skyrmion vibration
modes and the multimonopole moduli spaces. If it hold
for higher nuclei, there will be4B 2 7 such modes. It
would be very interesting to interpret this number in term
of individual nucleon degrees of freedom (presumab
translations and spin and/or isospin).

Finally, we have investigated the effect of doubling th
parametervp on the spectrum of modes. All modes
move up in frequency. The nine lowest modes mov
up by (15–25)%, the breathing modes by (30–45)%
and the homogeneous pion modes roughly double
frequency. So as the pion mass in increased from ze
the homogeneous pion mode frequency moves up throu
the vibrational mode spectrum.

The work described here is a small step toward
a full semiclassical quantization of theB ­ 4 Skyrme
soliton. There are three directions for future work
First, the normal modes we have found can be us
as initial data to search for nonlinear periodic solution
Second, our techniques in principle allow a computatio
of the full perturbation spectrum, and thus the soliton’
Casimir energy. Finally, we note that the second fou
derivative term in the SU(2) Skyrme model, indicated t
be present in chiral perturbation theory fits [8], can b
straightforwardly included (as can terms involving vecto
mesons explicitly). Work in each of these directions wil
likely be needed before a realistic attempt can be made
describe thea particle and its excited states.
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