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Normal Modes of the B = 4 Skyrme Soliton
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The Skyrme model of nuclear physics requires quantization if it is to match observed nuclear
properties. A simple technique is used to find the normal mode spectrum of the baryon mumbér
Skyrme soliton. We find 16 vibrational modes and classify them under the cubic symmetry@youp
of the static solution. The spectrum possesses a remarkable structure, with the lowest energy modes
lying in those representations expected from an approximate correspondence between Skyrmions and
Bogomolny-Prasad-Sommerfeld monopoles. The next mode up is the “breather”, and above that are
higher multipole breathing modes. [S0031-9007(97)03613-2]

PACS numbers: 24.85.+p, 11.10.Lm, 12.39.Dc, 27.10.+h

In the Skyrme model of nuclear physics, both pions andiibrational energy levels. Our results provide new insight
nucleons are represented by a single scalar SU(2) group the moduli space approach, since the representations
valued field, U(x). Pions occur as field quanta, while for the lowest frequency modes turn out to be just those
baryons are instead represented as topological solitonexpected from a recently understood approximate corre-
The classical Skyrme theory, with a simple quantizatiorspondence between Skyrmions and Bogomolny-Prasad-
of the spin and isospin collective modes, provides éSommerfeld (BPS) monopoles [7]. Furthermore, the
description of nucleons and th® resonance in modest success of these calculations allows one to contemplate
agreement with experiment [1,2]. going beyond the moduli space approximation and per-

Applying the Skyrme model to larger nuclei and to nu-forming a full semiclassical quantization of the field the-
clear matter is an even more interesting proposition, sincery. This is an attractive goal, since the Skyrme theory
with no additional free parameters one could compare theould then be incorporated in the framework of chiral ef-
theory with the binding energies and gamma ray spectréective Lagrangians [8], allowing a unified treatment of
of all nuclei. There has been progress in understandinmesons, baryons, and higher nuclei.
the structure of Skyrme multisolitons [3,4], but it is clear | Method—Since the SU(2) manifold is a 3-sphere,
that unless quantum fluctuations about the static solutionsie represent it in terms of a scalar fiefl € R*, with
are included, there is little chance of success. For reap?¢* = 1. Interms of this field, the Skyrme Lagrangian
nuclei the relative kinetic energies of the nucleons in thedensity is
ground state are large, so a quantization at least of a num-
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ber of degrees of freedom equal to the number of nucleon L=z0updt¢+wrd + A1)
coordinates is essential. Note that the simple collective 1 v
. . - . . . + 7 U000, Fda

coordinate quantizations of spin and isospin [1,2] include 1{0.00,6)0"40"4)
effscts oilor:jherﬁz,a/vhilg ignoring effects of o_rdeh. - — (0, 9"$)(9,00" )}, (1)

ecently there has been some progress in quantization, S .
based upon Manton’s notion of representing low energ)W'th Aa Lagraznge multiplier field. Here, length and time

solitonic excitations as motion on a finite dimensional@® in units of;—, energy in units O‘sz_e' Inthesi rescaled
My

space of moduli. A study of the deuteron by Leesal.  units, the only remaining parameter is, = 77, the

[5] using an instanton approximation for the field config- oscillation frequency for the homogenous pion field. For

urations, gave encouraging agreement with experimentdhe most part we have adopted the “standard” value

properties, but only included two of the four expected vi-[2] of w, = 0.526, although we have also performed

brational modes of the deuteron. Walet [6] extended thisalculations at twice this value.

treatment to estimate all vibrational frequencies for the deu- The mixed space and time derivative terms in the

teron and triton, again using the instanton approximationSkyrme Lagrangian make numerical solution in general
In this Letter we follow a different track. We directly difficult. Isolating the time derivative terms one has

compute the low energy normal modes, finding their fre- 1 - .

quencies and the representations they lie in under theL = ) K (3 p)p” — V(h.0id) + M — 1),

static soliton’s symmetry group. The frequencies and rep-

resentations provide a coordinate-independent description (2)

of the configuration space around the static solution; irwhere K* = §9[1 + (9,¢)*] — 9;¢%0;¢" is a local

the harmonic approximation they determine the quantunmertia matrix, andV (¢, 9; ¢) is the potential. In general,
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K is time dependent, but for small perturbations aroundhumber four. TheB = 4 configuration provides an es-
a static solution¢g(x) we write ¢(x,1) = dg(x) + pecially simple case for quantization, because the ground
e(x,1), € < 1 and to second order ia the Lagrangian state possesses zero angular momentum and isospin. The
is static soliton has cubic symmetry; its energy and baryon
| number density concentrate along the edges of a cube [4].
L = —&KP0pg)el? — V(g,0,0) + Mo — 1). The full 48 dimensional cubic group of symmetri€g
2 (for notation see [9]) is generated by°98nd 120 rota-
(3)  tions, and parity. After an appropriate global isospin ro-

This Lagrangian leads to classical field equations: tation, the action of these group elements on spatial coor-
dinates and pion fieldsp® = (o, 77)] is as follows [10]:

. aV aV
K (3¢5 = ai(ad)b’i) “agr A @ o () ()= (crk =) (.32,
where the matrixk“ (x) is taken to be its value at the C3: (7', 7% ) (x,y,2)—= (w*, 7>, 7") (y.2.%),
static classical solution. Equation (4) closely approxi- ;. (71 72 %) (x,y,7)— (7!, 72, #°) (—x, —y, —2),
mates the Skyrme equations for fields near a static clas-
sical solution, precisely the desired regime for studyingyith #! = %(ﬂ-l — 272 — 247%), etc. From this it is
soliton normal modes. straightforward to check that a homogeneous pion field
In order to numerically solve the field equations, wefa]ls into the two dimensional representatisi and the
discretize the action, (3), using a diagonal differencingone dimensional representatioty , where superscripts
scheme for the four spatial derivative terms, achievingndicate parity.
a high degree of locality and second order accuracy A typical power spectrum of the perturbations is shown
in both spatial and time steps. The numerical codgn Fig. 1. Spectra at different sites and for different
conserves energy and baryon number to within 1 part ifield components show the same peaks, but with differing
10° over the course of extremely long (50k time step)heights. Once the normal mode frequencies are
runs. Periodic boundary conditions are used. We firsi{dentified, maps of the normal modes,(x) may be
create the appropriate minimal energy static solution byonstructed by performing discrete Fourier sums on each
straightforward time evolution from four-Skyrmion initial component of the field as it evolves. For degenerate
conditions. A simple relaxation procedure sets the fieldnodes, each set of perturbed initial conditions gives a
momenta zero each time the kinetic energy reaches gjfferent linear combinatio®}; €, 8;(x) of modes with the
maximum. We find the fields rapidly converge on thesame frequency. Other linear combinations may also be
minimum energy configurationk“” is set equal t&*”  produced by applying the symmetries of the static soliton
in this part of the calculation, since this does not affect thes, S, ... to a given modeS. The degeneracy of a given
final static solution. frequency is found by computing the rank of the matrix of
Next we slightly perturb the fields and evolve theminner products between the different linear combinations
forward again, but now using the full inertia matrix of degenerate modes produced in these ways. Once the

K (d¢y). The evolving field is degeneracy is determined, a complete orthonormal basis
of modes with this frequency can be constructed. The
d(x, 1) = Ppg(x) + Z €,6,(x)codw,t) + O(€?), character of any),, group element can then be computed
modes
5)
where the functions, (x) € R*, obeyings, (x) oy (x) = Log Power
0, are the normal modes, each excited with amplitegle 10
The normal mode frequencias, are found by Fourier
transforminge (x, 7) with respect to time at any point in -15
the box, and plotting the resulting power spectrum.
The space of perturbations has a useful inner product -20

(81182 = jb SI KD (1)) dx,  (6) o

which is zero for normal modes; and &, if w; # w,.
The inner product allows one to determine the degeneracies  -35

-30

; -racie 0.2 0.4 0.6 0.8 1
of the normal mode frequencies and the representations in Omega

which the modes transform under the soliton’s symmetryFIG 1

Fourier power spectrum for perturbations around a
group. . . . B =4 soliton. Frequency is in Skyrme units, power scale

Il Results for theB = 4 soliton—We have applied this s arbitrary. Note that the frequency of homogeneous pion
technique to the case of the Skyrme soliton with baryoroscillations isw, = 0.526 in these units.
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Static B = 4 soliton, ¢

FIG. 2. Contours of constant baryon density for tBe= 4 soliton, combined with its normal modes, as indexed by their
frequencies in Fig. 1. These modes were studied in a box of &ixe8 X 8, with a grid spacingA, = Din Skyrme units.

For comparison, the soliton itself is a cube roughly 2 X 2 in these units. For the case = 0.367 two orthogonal modes of
the degenerate multiplet are shown, in order cases a single mode only is shown.

as a trace. These characters were withif.001 of an  soliton, nine of them (three translations, three rotations,
integer value, and interpretation was unambiguous. and three isorotations) remain as zero modes of the

Each peak in Fig. 1 marks the frequency of a normahew system. One might expect the remaining 15 modes
mode. The lowest peak (at = 0.07) is the rotational would survive as low energy vibrational modes. This
zero mode, shifted to nonzero frequency by finite sizen one fewer than what we find: we have an additional
effects, effectively through interactions with image soli- breather mode.
tons one box length away. There are also several peaks The vibrational modes distort th® = 4 soliton as
corresponding to relatively delocalized modes which wallustrated in Fig. 2 and explained in the Table I. The
interpret as pion radiation. Two (ab = 0.545,0.587) modes naturally divide into two sets. The lower nine
correspond to the lowest radiation modes, homogeneousbrational modes consist of deformations which, roughly,
away from the soliton, whose threefold degeneracy isnvolve incompressible flow of the baryon charge. In
split into E* + A, by the presence of the soliton. The contrast, the higher seven vibrational modes all have
first radiation mode at nonzero wave number iswat=  a “breathing” character, in which local baryon charge
0.908. The remaining modes are the true vibrational ex-expands or contracts to occupy a greater or lesser volume.
citations of thea particle. Somewhat fortuitously, the The breather itself is simply a rescaling of the size of
box size was small enough that the lowest inhomogeneouke soliton, with consequent change in density. The next
radiation mode has a frequency above the highest vibranode up involves breathing motion of a dipole character,
tional mode. and the one above that of a quadrupole nature.

Four widely separate® = 1 Skyrmions have 24 zero Remarkably, the vibrational modes below the breather
modes, corresponding to three translations and threfall into representations corresponding to those for small
isorotations each. As they combine to form the= 4  zero-mode deformations of the BPS four-monopole
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TABLE I. Description of the Skyrme field3 = 4 normal modes marked in Fig. 1. The notation of Hamermesh [9] is used for
the representations of the cubic gro0p; superscripts denote parity.

Frequency Degeneracy Symmetry Description
0.07 3 Fy Rotations of the soliton. This is a zero mode broken by the finite box size.
0.367 2 E* Lowest vibrational modes. One mod®!, alternately pulls the8 = 4 cube into

two B = 2 donuts in two perpendicular directions. The orthorgonal méde,
pulls it into four B = 1 edges one way and twB = 2 donuts the other.

0.405 1 Ay The corners of the cube make two interlacing tetrahedra. This mode pulls one
tetrahedron out into fouB = 1 corners, pushing the other one in.

0.419 3 F5 Deform two opposite faces of the cube into rhombuses.

0.513 3 Fy Deform the cube by pulling two opposite edges one one face, and the two perpen-
dicular edges on the opposite face. This takes the cube toBfedrl edges.

0.545 2 E* Two of the pionk = 0 modes.

0.587 1 Ay The remaining piork = 0 mode, with tetrahedral symmetry.

0.605 1 AT The breathing mode, with the full cubic symmetry of the soliton.

0.655 3 Fr One face of the cube inflates, while the opposite face deflates.

0.738 3 F5 One pair of diagonally opposite edges inflates; the parallel pair deflates.

0.908 3 The lowest nonzer¢k = 1,0,0) pion radiative mode.

solution [7]. The same phenomenon occurs in the We thank Richard Battye, Guy Moore, Conor
deuteron [11], and it will be straightforward to check the Houghton, Paul Sutcliffe, and especially Nick Manton for
B = 3,5,6,7 solitons using the methods described herehelpful discussions. We also acknowledge the Pittsburgh
Qualitative similarities between Skyrme multisolitons andSupercomputing Center Grant No. AST9G3P.

BPS multimonopoles and their scattering dynamics have

been noted before [3,12]. Our findings suggests a con-

nection between thg lowest energy Skyrmion vibrational *Electronic address: barnes@puhepl.princeton.edu
mode;s and the multlmonqpole moduli spaces. Ifit holds  tgoctronic address: phkim@python.swan.ac.uk

for higher nuclei, there will betB — 7 such modes. It *Electronic address: N.G.Turok@amtp.cam.ac.uk

would be very interesting to interpret this number in terms [1] G. Adkins, C.R. Nappi, and E. Witten, Nucl. Phyg228,
of individual nucleon degrees of freedom (presumably 552 (1983).

translations and spin and/or isospin). [2] G. Adkins and C. R. Nappi, Nucl. PhyB233 109 (1984).
Finally, we have investigated the effect of doubling the [3] R. Battye and P. Sutcliffe, Imperial Report No. 96/98,
parameterw, on the spectrum of modes. All modes hep-th/9702089 (to be published).

move up in frequency. The nine lowest modes move [4] E. Braaten, S. Townsend, and L. Carson, Phys. Lett. B
up by (15-25)%, the breathing modes by (30-45)%, 235 147 (1990).
and the homogeneous pion modes roughly double in(®] 3'4’;\' nge;e’lgNéSS' Manton, and B. J. Schroers, Nucl. Phys.
frequency. So as the pion mass in increased from zero% 2 ( )

he h . de f h 6] N. Walet, Nucl. PhysA606, 429 (1996).
the homogeneous pion mode frequency moves up througfjz; . s Manton, (private communication) noticed the corre-

the vibrational mOd(_'?‘ spectrum. spondence between the representations of the proper cubic
The work described here is a small step towards  group we found with those for small deformations of the

a full semiclassical quantization of thB = 4 Skyrme cubic four-monopole BPS solution. One of us (N.T.) in-

soliton. There are three directions for future work. dependently confirmed that the correspondence also holds

First, the normal modes we have found can be used for the parity assigments. See also C.J. Houghton, N.S.
as initial data to search for nonlinear periodic solutions.  Manton and P. M. Sutcliffe (to be published).

Second, our techniques in principle allow a computation [8] For a review, seeDynamics of the Standard Model,
of the full perturbation spectrum, and thus the soliton’s ~ €dited by J.F. Donoghue, E. Golowich, and B. R. Holstein
Casimir energy. Finally, we note that the second four- (Cambridge University Press, Cambridge, England, 1992).

S . o [9] M. Hamermesh,Group Theory and its Application to
derivative term in the SU(2) Skyrme model, indicated to Physical ProblemgDover, New York, 1962).

be present in chiral perturbation theory fits [8], can be[m] R.A. Leese and N.S. Manton, Nucl. Phys572, 575
straightforwardly included (as can terms involving vector (1994). ’ ’

mesons explicitly). Work in each of these directions will [11] C. Barnes, K. Baskerville, and N. Turok, e-print hep-th/
likely be needed before a realistic attempt can be made to 9704028 (to be published).

describe they particle and its excited states. [12] R. Battye and P. Sutcliffe, Phys. Lett. 31, 150 (1997).
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