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Off-Equilibrium Fluctuation-Dissipation Relation in Fragile Glasses
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In this Letter we investigate the approach to equilibrium in fragile glasses by doing numerical
simulations of binary mixtures. We study the diffusion of particles and the response to an external
driving force. We find evidence for the validity of the Cugliandolo-Kurchan off-equilibrium fluctuation-
dissipation relation. The results agree with the predictions of one step replica symmetry breaking
and the dependence of the breakpoint parameter on temperature coincides with that found in simple
generalized spin glass models. [S0031-9007(97)04473-6]

PACS numbers: 61.20.Lc, 02.70.Ns, 64.70.Pf

When we suddenly decrease the temperature in H was conjectured a long time ago that the equilibrium
Hamiltonian system (with dissipative dynamics), many in-properties of glasses are in the same universality class of
teresting phenomena happen if the initial and the finakome simple generalized spin glass models [9]. Here we
temperatures correspond to different phases. When thetudy the dynamic functiox (C) in glass forming mate-
low temperature phase can be characterized by a simptéls (in the case of a fragile glass) and we show that its
order parameter (e.g., the magnetization for ferromagnetgroperties are in agreement with the conjecture of Ref. [9]
we find the familiar phenomenon of spinodal decomposi-and the dynamic theory of Ref. [3]. The approach to equi-
tion characterized by growing clusters of different phasedibrium of the fragile glass we study (a binary mixture)
There is a dynamical correlation length (i.e., the size oftonforms well to the theoretical predictions, at least in the
the clusters) which increases as a power of the tirae  region of time explored by these simulations. It would be
ter the quench and the energy approaches equilibrium withery interesting to check if the same properties are present
powerlike corrections [e.gE(r) = E. + Atr~'/2]. Inthis  also for strong glasses.
region aging phenomena are also present [1,2]. Let us define our notations. We concentrate our

The situation is more intriguing in the case of glassesttention on a quantityd(z); later on we will make a
and spin glasses where the low temperature phase canmoecise choice of this function. We suppose that the
be characterized in terms of a simple order parameter argystem starts at time = 0 from an initial condition and
clusters cannot easily be defined. Remarkable progressibsequently is at a fixed temperatdre If the initial
in understanding the off-equilibrium dynamics and itsconfiguration is at equilibrium at a temperatuifé> T,
relations to the equilibrium properties has been doneve observe an off-equilibrium behavior. Here we will
by noticing that a crucial off-equilibrium feature is the consider only the casg’ = .

presence of deviations from the well knovequilibrium We can define a correlation function
fluctuation-dissipation relations. On the basis of some C(t,t,) = (A(t,)A(t + 1)) (1)
analytic results for soluble models it has been conjecturegng the response function

that in the general case one can define a funcko@), SA(r + 1,,))

C being an autocorrelation function at different times G(t,t,) = W . 2)

[3—5]. This function characterizes the violations of the,;nare we are considering the evolution in presence of a

fluctuation-dissipation theorem (which is correct only atjme dependent Hamiltonian in which we have added the
equilibrium). Inthe case of the spinodal decomposition thga [ dr e()A(r).

function X(C) takes only the values 0 or 1, but different 1 5yl equilibrium fluctuation-dissipation theorem
results are expected for other systems. It is remarkabl@:DT) tells us that

that (at least in the case of spin glasses) the function dCea(r)
X(C) is equal to the function:(g) (g being the overlap G(r) = —B a (3)
of two spin configurations) which plays a central role inyhere
the equilibrium computation of the free energy [6,7]. () = |i () = |i

This equality is very interesting because it is rather dif- G rw"—n»ooG(t’ ) ) tw@xc(t’ )
ficult to measure the function(g) at thermal equilibrium (4)

while the functionX (C) can be measured relatively easily It is convenient to define the integrated response:
in off-equilibrium simulations [8]. The temperature de- !

pendence of the functiok(C) is interesting also because R(t,1,) = fo dr Gt — 7,1, + 1),

rather different systems can be classified in the same uni- a1 (5)
versality class according to the behavior of this function. R*(1) = ,!V'TooR(t’ fw).
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R(z,t,) is the response of the system at time- 7, to  Hamiltonian:

a field acting for a time starting atr,,. The usual FDT o(i) + o(k)\2
relation becomes H= Z(m) ; 9)
R¥I() = B(C(r) — C4(0)). (6) e

where the radiugo) depends on the type of particles.

The off-equilibrium fluctuation-dissipation relation This model has been carefully studied in the past [11—

states that the response function and the correlatioT4] The choiceos /o4 = 1.2 strongly inhibits crystal-
function satisfy the following relation for largs,: ' Bl A .

o) !ization and the system goes into a glassy phase _whe|_1 it
R(t,1,) = B X(C)dcC. 7) s cqoled. Using thg same conventions of the previous in-

Cti) vestigators we consider g)artlcles of average radius 1, i.e.,
In other words if we ploR versusBC for larget,, the data [03 + 2(04 + o)} + 03]/4 = 1.
collapse on the same universal curve and the slope of that The thermodynamic quantities depend only on the
curve is—X(C). The functionX(C) is system dependent quantity7*/p, T andp being, respectively, the tempera-
and its form tells us interesting information. The relationture and the density (which we take equal to 1). Itis usual
in Eqg. (7) has been numerically verified in Ref. (8) in theto introduce the quantitf’ = g*. For quenching from
case of three dimensional spin glasses. T = « the glass transition is known to happen around

We must distinguish two regions: I'. = 1.45[12].

(1) A short time region wher&(C) = 1 (the so-called Our simulations are done using a Monte Carlo algo-
FDT region) andC belongs to the interval (i.e., C; <  rithm. We start by placing the particles at random and we
C < (). guench the system by putting it at final temperature (i.e.,

(2) A large time region [usuallyy = O(z,,)] where infinite cooling rate). Each particle is shifted by a ran-
C & I andX(C) < 1. Inthe same region the correlation dom amount at each step, and the size of the shift is fixed
function often satisfies an aging relation [i.€(s,t,) by the condition that the average acceptance rate of the
depends only on the ratio = /¢, in the region where proposal change is about 0.4. Particles are placed in a cu-
botht ands,, are largeC(z,t,) = C%(t/t,)]. bic box with periodic boundary conditions. In our simu-

In the simplest nontrivial case, i.e., one step replicdations we have considered a relatively small number of
symmetry breaking [6,7], the functioki(C) is piecewise particles, i.e.N = 66. Previous studies have shown that
constant, i.e., such a small sample is quite adequate to show interesting

X(C)=m forC €1, X(C)=1 forc&1. off-equilibrium behavior in the time window we consider

in this Letter [15]. As a check we have also done some
(8)  other simulations av = 130.
One step replica symmetry breaking for glasses is the The main quantity on which we will concentrate our

basis of the conjecture of Ref. [9]. attention is the diffusion of the particles:
In all known cases in which one step replica symmetry S vixi(r) = xi( + DA
holds, the quantityn vanishes linearly with the tempera- At 1) = : (10)

N
The wusual diffusion constant is given by =
lim,— A(t, 1,,)/1.

The other quantity we measure is the response to a
rce. At timer, we add to the Hamiltonian the term
ef - x;, wheref is the vector of squared length equaldo

nd we measure the response

ture at small temperatures. It often happens that 1
atT = T. andm(T) is roughly linear in the whole tem-
perature range.

If replica symmetry is broken at one step, the same
value ofm should be obtained for all the observables. In
this case Eq. (8) has a highly predictive power becaus

the vgl_ue ofm may be measured by looking to different of - x.(t,, + 1) f-xi(t, + 1)
quantities. R(z,, l‘) = T ~ ;
In this Letter we show that in a binary mixture of soft €=0 (11)

spheres the functioX(C) seems to be given by the one o
step formula (8) with an approximate linear dependencéor sufficiently smalle. o
of m on the temperature. It has already been shown that The usual quctuann theorem tells that at equilibrium
in this model simple aging is well satisfied and someBA®(f) = R®(¢).  This relation holds even though
indications for the validity of Eq. (7) were found [10] A(t, t,,) is not the_ product of two obseryables, one at time
by looking to the correlations of the stress energy tensorw. the other at time,, + 7. However, it can be written
Here we study a different and more suitable observabl@s
and we find much more accurate results that extend tha;, ¢,)
previous finding. ) )

We consider a mixture of soft particles of different = Zimiw(Xit)” + Xiltw + 1° = 2xi(1) - Xty + t»,
sizes. Half of the particles are of typ® half of type N
B, and the interaction among the particles is given by the (12)
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and a detailed analysis [16] shows that the fluctuation- In Fig. 2 we showR versus BA at 1, = 2048 and

dissipation theorem is valid also in this case. t, = 8192 for I' = 1.6 and r = 41, at N = 66. We
In the following we will look for the validity in the low also show the data for,, = 2048 at N = 130. We
temperature region of the generalized relatk(A) = do not observe any significant systematic shift in this

dR/dA. This relation (withX # 1) can be valid only plot among three data sets. We distinguish two linear
in the region where the diffusion constadtis equal to regions with different slope as expected from one step
zero. Strictly speaking also in the glassy regibr# 0,  replica symmetry breaking. The slope in the first region
because diffusion may always happen by interchangings compatible with 1, as expected from the FDT theorem,
two nearby particles[¥ is different from zero also in a while the slope in the second region is near 0.62. Also
crystal); however, if the times are not too large the valughe data at different temperatures for all valuesl'o&
of D is so small in the glassy phase that this process may.5 show a similar behavior. The value & in the
be neglected in a first approximation. region where the FDT relation does not hold can be very
For N = 66 we average over 250 samples in absencevell fitted by a linear function ofA as can be seen in
of the force and on 1000 samples in presence of the forc&ig. 2. The region where a linear fit (withh < 1) is
We have done simulations fdr = 1.4,1.5,...,2.0. To  quite good corresponds tgz,, > 0.2. The fitted value of
decrease the error on the determinatiofRafe follow (as m = dR/d(BA) is displayed in Fig. 3 using the data at
suggested in Ref. [17]) the method of computing in ther,, = 2048. Whenm becomes equal to 1, the fluctuation-
same simulation the response function for different pardissipation theorem holds in the whole region and this is
ticles [18]. In other words we add to the Hamiltonian thewhat happens at higher temperatures. The straight line is
term € > ;—, v fx - xx, where thef are random Gaussian the prediction of the approximation(7) = T /T, using
vectors of average squared length equal.tdhe quantity I'. = 1.45.
Ris the average over the variablesf The value ofm we find atl’ = 1.8 (i.e.,m = 0.33 *
S it Xt + 1) 0.04) is compatible with the valugm =025+ 0.1)
: . (13) of Ref. [10] extracted from the fluctuation of the stress
Ne o ] energy tensor. The method described in this Letter is
The value ofe should be sufficiently small in order to ch’more accurate for two reasons: (a) The quantities
avoid nonlinear effects: we have done extensive tests fQkhich we consider become larger when we enter the
e =0.1ande = 02. We found thate = 0.2 is in the  OFDR region: they increase (not decrease) as function
linear region, but we have followed the more conservativgyf time. (b) The correlation quantity we measure is an

optione = 0.1. (The choice of must be done carefully: jntensive quantity which becomes self-averaging in the
when e decreases the systematic errors decrease, but th&it of infinite volume.

statistical errors on the ratio increase). We do not observe | ig amusing to notice that the simple aging relation

any sygtematic shift. A(t,,t,) = const for larger,, implies that the particles
In Fig. 1 we show the dependence 4&f and R on  moyve in average by a constant amount in each interval
the ratios = ¢/1,, in the low temperature region, i.e., at of time 2K < s < 2K+1 [19]. If we assume that the

I' = 1.7 for 1, = 2048. They coincide in the smak  mgyements in each time interval are uncorrelated, it
region, where FDT holds, but they differ fer> 0.1.
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FIG. 2. RversusBA atT' = 1.6 for ¢, = 8192 and ¢, =
FIG. 1. BA (points) andR (crosses) as function the ratio 2048 at N = 66 and for s, = 2048 at N = 130. The two
In(1 + s) =In(1 + ¢/t,) atT’ = 1.7 for t,, = 2048. straight lines have slope 1 and 0.62, respectively.
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1.2 T T T T T . wider range of application than the models from which

r ] they have been extracted. It is likely that they reflect
1r + 1 quite general properties of the phase space and therefore

C 1 can be applied in cases which are very different from the

0.8 - 7 original ones. In a recent work [20] some thermodynamic

m C predictions have been obtained for the behavior of glassy
0.6 E systems, like the present ones, under the assumption that

0.4 - E they obey the laws derived for generalized spin glasses.

b ; The present Letter confirms that assumption.
02 L E The most urgent theoretical task now would be to de-

] velop an analytic theory for glasses in the low temperature

0 1 1 1 I I ] region from which one could compute the functiaiT’).

005 041 0415 02 o025 0.3 Thisgoalshould notbe out of reach: a first step in this
T direction can be found in [21].
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