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Off-Equilibrium Fluctuation-Dissipation Relation in Fragile Glasses
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In this Letter we investigate the approach to equilibrium in fragile glasses by doing numerical
simulations of binary mixtures. We study the diffusion of particles and the response to an external
driving force. We find evidence for the validity of the Cugliandolo-Kurchan off-equilibrium fluctuation-
dissipation relation. The results agree with the predictions of one step replica symmetry breaking
and the dependence of the breakpoint parameter on temperature coincides with that found in simple
generalized spin glass models. [S0031-9007(97)04473-6]
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When we suddenly decrease the temperature in
Hamiltonian system (with dissipative dynamics), many in
teresting phenomena happen if the initial and the fin
temperatures correspond to different phases. When
low temperature phase can be characterized by a sim
order parameter (e.g., the magnetization for ferromagne
we find the familiar phenomenon of spinodal decompos
tion characterized by growing clusters of different phase
There is a dynamical correlation length (i.e., the size
the clusters) which increases as a power of the timet af-
ter the quench and the energy approaches equilibrium w
powerlike corrections [e.g.,Estd ø E` 1 At21y2]. In this
region aging phenomena are also present [1,2].

The situation is more intriguing in the case of glass
and spin glasses where the low temperature phase can
be characterized in terms of a simple order parameter a
clusters cannot easily be defined. Remarkable progr
in understanding the off-equilibrium dynamics and it
relations to the equilibrium properties has been do
by noticing that a crucial off-equilibrium feature is the
presence of deviations from the well knownequilibrium
fluctuation-dissipation relations. On the basis of som
analytic results for soluble models it has been conjectur
that in the general case one can define a functionXsCd,
C being an autocorrelation function at different time
[3–5]. This function characterizes the violations of th
fluctuation-dissipation theorem (which is correct only a
equilibrium). In the case of the spinodal decomposition t
function XsCd takes only the values 0 or 1, but differen
results are expected for other systems. It is remarka
that (at least in the case of spin glasses) the functi
XsCd is equal to the functionxsqd (q being the overlap
of two spin configurations) which plays a central role i
the equilibrium computation of the free energy [6,7].

This equality is very interesting because it is rather d
ficult to measure the functionxsqd at thermal equilibrium
while the functionXsCd can be measured relatively easil
in off-equilibrium simulations [8]. The temperature de
pendence of the functionXsCd is interesting also because
rather different systems can be classified in the same u
versality class according to the behavior of this functio
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It was conjectured a long time ago that the equilibrium
properties of glasses are in the same universality class
some simple generalized spin glass models [9]. Here w
study the dynamic functionXsCd in glass forming mate-
rials (in the case of a fragile glass) and we show that it
properties are in agreement with the conjecture of Ref. [9
and the dynamic theory of Ref. [3]. The approach to equ
librium of the fragile glass we study (a binary mixture)
conforms well to the theoretical predictions, at least in th
region of time explored by these simulations. It would be
very interesting to check if the same properties are prese
also for strong glasses.

Let us define our notations. We concentrate ou
attention on a quantityAstd; later on we will make a
precise choice of this function. We suppose that th
system starts at timet ­ 0 from an initial condition and
subsequently is at a fixed temperatureT. If the initial
configuration is at equilibrium at a temperatureT 0 . T ,
we observe an off-equilibrium behavior. Here we will
consider only the caseT 0 ­ `.

We can define a correlation function
Cst, twd ; kAstwdAst 1 twdl (1)

and the response function

Gst, twd ;
dkAst 1 twdl

destwd

Ç
e­0

, (2)

where we are considering the evolution in presence of
time dependent Hamiltonian in which we have added th
term

R
dt estdAstd.

The usual equilibrium fluctuation-dissipation theorem
(FDT) tells us that

Geqstd ­ 2b
dCeqstd

dt
, (3)

where
Geqstd ­ lim

tw!`
Gst, tw d, Ceqstd ­ lim

tw!`
Cst, tw d .

(4)
It is convenient to define the integrated response:

Rst, twd ­
Z t

0
dt Gst 2 t, tw 1 td ,

Reqstd ­ lim
tw!`

Rst, twd .
(5)
© 1997 The American Physical Society
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Rst, twd is the response of the system at timet 1 tw to
a field acting for a timet starting attw . The usual FDT
relation becomes

Reqstd ­ bsssCeqstd 2 Ceqs0dddd . (6)

The off-equilibrium fluctuation-dissipation relation
states that the response function and the correlat
function satisfy the following relation for largetw:

Rst, tw d ø b
Z Cs0,twd

Cst,twd
XsCd dC . (7)

In other words if we plotRversusbC for largetw the data
collapse on the same universal curve and the slope of t
curve is2XsCd. The functionXsCd is system dependent
and its form tells us interesting information. The relatio
in Eq. (7) has been numerically verified in Ref. (8) in th
case of three dimensional spin glasses.

We must distinguish two regions:
(1) A short time region whereXsCd ­ 1 (the so-called

FDT region) andC belongs to the intervalI (i.e., C1 ,

C , C2).
(2) A large time region [usuallyt ­ Ostwd] where

C ” I andXsCd , 1. In the same region the correlation
function often satisfies an aging relation [i.e.,Cst, twd
depends only on the ratios ; tytw in the region where
both t andtw are large:Cst, twd ø Castytwd].

In the simplest nontrivial case, i.e., one step replic
symmetry breaking [6,7], the functionXsCd is piecewise
constant, i.e.,

XsCd ­ m for C [ I , XsCd ­ 1 for C ” I .

(8)

One step replica symmetry breaking for glasses is t
basis of the conjecture of Ref. [9].

In all known cases in which one step replica symmet
holds, the quantitym vanishes linearly with the tempera
ture at small temperatures. It often happens thatm ­ 1
at T ­ Tc and msT d is roughly linear in the whole tem-
perature range.

If replica symmetry is broken at one step, the sam
value ofm should be obtained for all the observables.
this case Eq. (8) has a highly predictive power becau
the value ofm may be measured by looking to differen
quantities.

In this Letter we show that in a binary mixture of sof
spheres the functionXsCd seems to be given by the one
step formula (8) with an approximate linear dependen
of m on the temperature. It has already been shown t
in this model simple aging is well satisfied and som
indications for the validity of Eq. (7) were found [10]
by looking to the correlations of the stress energy tens
Here we study a different and more suitable observab
and we find much more accurate results that extend
previous finding.

We consider a mixture of soft particles of differen
sizes. Half of the particles are of typeA, half of type
B, and the interaction among the particles is given by t
ion
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Hamiltonian:

H ­
X
i,k

µ
ssid 1 sskd

jxi 2 xkj

∂12

, (9)

where the radiusssd depends on the type of particles
This model has been carefully studied in the past [11
14]. The choicesBysA ­ 1.2 strongly inhibits crystal-
lization and the system goes into a glassy phase whe
is cooled. Using the same conventions of the previous
vestigators we consider particles of average radius 1, i
fs3

A 1 2ssA 1 sBd3 1 s
3
Bgy4 ­ 1.

The thermodynamic quantities depend only on th
quantityT4yr, T andr being, respectively, the tempera
ture and the density (which we take equal to 1). It is usu
to introduce the quantityG ; b4. For quenching from
T ­ ` the glass transition is known to happen aroun
Gc ­ 1.45 [12].

Our simulations are done using a Monte Carlo alg
rithm. We start by placing the particles at random and w
quench the system by putting it at final temperature (i.
infinite cooling rate). Each particle is shifted by a ran
dom amount at each step, and the size of the shift is fix
by the condition that the average acceptance rate of
proposal change is about 0.4. Particles are placed in a
bic box with periodic boundary conditions. In our simu
lations we have considered a relatively small number
particles, i.e.,N ­ 66. Previous studies have shown tha
such a small sample is quite adequate to show interest
off-equilibrium behavior in the time window we conside
in this Letter [15]. As a check we have also done som
other simulations atN ­ 130.

The main quantity on which we will concentrate ou
attention is the diffusion of the particles:

Dst, twd ;
P

i­1,N kjxistwd 2 xistw 1 tdj2l
N

. (10)

The usual diffusion constant is given byD ­
limt!` Dst, twdyt.

The other quantity we measure is the response to
force. At time tw we add to the Hamiltonian the term
ef ? xk, wheref is the vector of squared length equal tod
and we measure the response

Rstw , td ­

ø
≠f ? xkstw 1 td

≠e

¿ Ç
e­0

ø
ø

f ? xkstw 1 td
e

¿
(11)

for sufficiently smalle.
The usual fluctuation theorem tells that at equilibrium

bDeqstd ­ Reqstd. This relation holds even though
Dst, twd is not the product of two observables, one at tim
tw , the other at timetw 1 t. However, it can be written
as

Dst, twd

;
P

i­1,N kxistwd2 1 xistw 1 td2 2 2xistwd ? xistw 1 tdl
N

,

(12)
3661



VOLUME 79, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 10 NOVEMBER 1997

is
ar
ep
n

m,
so

ry

t
-
is

e is

s
is

ies
he
ion
n

he

n

val

it
and a detailed analysis [16] shows that the fluctuatio
dissipation theorem is valid also in this case.

In the following we will look for the validity in the low
temperature region of the generalized relationbXsDd ­
≠Ry≠D. This relation (withX fi 1) can be valid only
in the region where the diffusion constantD is equal to
zero. Strictly speaking also in the glassy regionD fi 0,
because diffusion may always happen by interchang
two nearby particles (D is different from zero also in a
crystal); however, if the times are not too large the va
of D is so small in the glassy phase that this process m
be neglected in a first approximation.

For N ­ 66 we average over 250 samples in absen
of the force and on 1000 samples in presence of the fo
We have done simulations forG ­ 1.4, 1.5, . . . , 2.0. To
decrease the error on the determination ofR we follow (as
suggested in Ref. [17]) the method of computing in t
same simulation the response function for different p
ticles [18]. In other words we add to the Hamiltonian th
term e

P
k­1,N fk ? xk, where thef are random Gaussian

vectors of average squared length equal tod. The quantity
R is the average over the variablesf ofP

k­1,N kfk ? xkstw 1 tdl
Ne

. (13)

The value ofe should be sufficiently small in order to
avoid nonlinear effects: we have done extensive tests
e ­ 0.1 and e ­ 0.2. We found thate ­ 0.2 is in the
linear region, but we have followed the more conservat
optione ­ 0.1. (The choice ofe must be done carefully:
when e decreases the systematic errors decrease, bu
statistical errors on the ratio increase). We do not obse
any systematic shift.

In Fig. 1 we show the dependence ofD and R on
the ratios ; tytw in the low temperature region, i.e., a
G ­ 1.7 for tw ­ 2048. They coincide in the smalls
region, where FDT holds, but they differ fors . 0.1.

FIG. 1. bD (points) andR (crosses) as function the rati
lns1 1 sd ; lns1 1 tytwd at G ­ 1.7 for tw ­ 2048.
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In Fig. 2 we showR versusbD at tw ­ 2048 and
tw ­ 8192 for G ­ 1.6 and t # 4tw at N ­ 66. We
also show the data fortw ­ 2048 at N ­ 130. We
do not observe any significant systematic shift in th
plot among three data sets. We distinguish two line
regions with different slope as expected from one st
replica symmetry breaking. The slope in the first regio
is compatible with 1, as expected from the FDT theore
while the slope in the second region is near 0.62. Al
the data at different temperatures for all values ofG $

1.5 show a similar behavior. The value ofR in the
region where the FDT relation does not hold can be ve
well fitted by a linear function ofD as can be seen in
Fig. 2. The region where a linear fit (withm , 1) is
quite good corresponds totytw . 0.2. The fitted value of
m ; ≠Ry≠sbDd is displayed in Fig. 3 using the data a
tw ­ 2048. Whenm becomes equal to 1, the fluctuation
dissipation theorem holds in the whole region and this
what happens at higher temperatures. The straight lin
the prediction of the approximationmsT d ­ TyTc, using
Gc ­ 1.45.

The value ofm we find atG ­ 1.8 (i.e., m ­ 0.33 6

0.04) is compatible with the valuesm ­ 0.25 6 0.1d
of Ref. [10] extracted from the fluctuation of the stres
energy tensor. The method described in this Letter
much more accurate for two reasons: (a) The quantit
which we consider become larger when we enter t
OFDR region: they increase (not decrease) as funct
of time. (b) The correlation quantity we measure is a
intensive quantity which becomes self-averaging in t
limit of infinite volume.

It is amusing to notice that the simple aging relatio
Dstw , twd ­ const for largetw implies that the particles
move in average by a constant amount in each inter
of time 2K , t , 2K11 [19]. If we assume that the
movements in each time interval are uncorrelated,

FIG. 2. R versusbD at G ­ 1.6 for tw ­ 8192 and tw ­
2048 at N ­ 66 and for tw ­ 2048 at N ­ 130. The two
straight lines have slope 1 and 0.62, respectively.
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FIG. 3. The quantitym ; ≠R
≠sbDd as tw ­ 2048 as function

of the temperature. The straight line is the prediction of t
approximationmsT d ­ TyTc.

follows that in the glassy phaseDst, twd ~ lnstytwd 1

const for largetytw . In Fig. 4 we show the data fortw ­
1, i.e., the average distance squared for each particle f
the initial position. The data seem to display a very n
logarithmic behavior. The same argument would imp
that Dst, twd should be a linear function of lns1 1 tytwd.
This is what happens outside the FDT region (i.e.,tytw .

0.2), as can be seen from Fig. 1.
All the results are in very good agreement with th

theoretical expectations based on our knowledge extra
from the mean field theory for generalized spin gla
models. The approximationmsT d ­ TyTc seems to work
with an embarrassing precision. We can conclude that
ideas developed for generalized spin glasses have a m

FIG. 4. The average distance squared from the initial confi
ration [i.e., Dst, 1d] as function of the time in a logarithmic
scale forG ­ 1.6.
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wider range of application than the models from which
they have been extracted. It is likely that they reflec
quite general properties of the phase space and therefo
can be applied in cases which are very different from th
original ones. In a recent work [20] some thermodynamic
predictions have been obtained for the behavior of glass
systems, like the present ones, under the assumption th
they obey the laws derived for generalized spin glasse
The present Letter confirms that assumption.

The most urgent theoretical task now would be to de
velop an analytic theory for glasses in the low temperatur
region from which one could compute the functionmsT d.
This goal should not be out of reach: a first step in this
direction can be found in [21].
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