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Noise-Sustained Convective Structures in Nonlinear Optics
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Evidence of noise-sustained patterns in nonlinear optical systems is given. They are found in passi
optical cavities, filled by Kerr type nonlinear media, when the angle of incidence of the pump beam is
not zero, in a regime of convective instability. These patterns arise as a macroscopic manifestation
dynamically amplified noise, with amplification factors of up to105. We characterize the difference
between noise-sustained and deterministic patterns in terms of statistical properties of the field spect
intensity. [S0031-9007(97)04420-7]
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Processes in which intrinsic microscopic noise of
system is amplified so that it manifests macroscopica
provide a way to probe and characterize noise. Thr
important examples are the noise-triggered decay of
unstable state, the critical fluctuations close to an instabil
(which give rise to noisy precursors [1] of the stat
beyond the instability) and convectively unstable stat
in which fluctuations are dynamically amplified while
convected away through the boundaries of the system [
In this paper we address this third situation in the conte
of nonlinear optics. We show the existence of nois
sustained patterns which appear as a spatially structu
macroscopic manifestation of quantum noise.

The other two examples of noise amplification have be
previously addressed in optical systems. The switch-on
a laser is an example of decay of an unstable state in wh
laser radiation is built up from quantum noise. In fact, th
idea of a “statistical microscope” was put forward to us
this process, with amplification factors of108, as a sensi-
tive test of quantum fluctuations [3]. However, this give
no information about spatial correlations, a topic which ha
been considered recently through looking at amplified cri
cal fluctuations in transverse pattern formation in nonlin
ear passive cavities [4–6]. This pattern formation proble
has been the object of an intense investigation [7,8], par
because of the foreseen applications in all-optical proce
ing and storage of information [9] and the possibility o
studying the interface between classical and macrosco
quantum patterns [10]. The quantum noise reduction as
ciated with a pattern forming instability and a Heisenberg
type relation between near- and far-field patterns appe
when looking at the noisy precursor of the pattern that w
emerge beyond the instability [4–6,10]. From the class
cal viewpoint, this situation is conceptually equivalent t
experiments in fluid dynamics where patterns induced
thermal fluctuations can be observed just below the on
of convection [11]. The strength of thermal noise is de
termined from the power spectrum of the fluctuating pa
tern (rolls or hexagons) which identifies a preferred wav
number below threshold. The alternative situation consi
ered in fluid dynamics to characterize thermal fluctuation
0031-9007y97y79(19)y3633(4)$10.00
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is that of a convectively unstable state in an open flow
Macroscopic noise-sustained patterns arise here by no
being amplified by factors of up to105. Thus, we find two
different situations: just below threshold the noisy precu
sors, which are weakly damped fluctuations, and just abo
threshold the convective noise-sustained patterns, wh
result from the amplification of fluctuations by the deter
ministic dynamics. Quantitative detailed experiments i
Taylor-Couette flow [12], in which the noise strength is th
only free parameter, have been used to determine therm
noise characteristics, including the noise power spectru
What we explore in this paper is the counterpart of th
situation in nonlinear optics, in which quantum noise migh
sustain a macroscopic pattern.

The system we consider is a cavity [ring or Fabry
Perot (FP)] filled with a nonlinear, Kerr-type media [7]
and pumped by an external laser beam. This kind of d
vice presents transversally uniform steady states and bis
bility [13]. If the amplitude of the cavity field exceeds
a certain threshold the uniform steady state becomes u
stable and a spatial structure might form [14,15]. It i
also in this system where the question of the manifest
tion of quantum fluctuations in pattern formation was firs
addressed [4,5]. For this system we predict thatoptical
noise-sustained structurescan be observed in the regime
of convective instability. A necessary condition for this
regime is the existence of a drift (or group-velocity) term
in the governing equation. Such a contribution arises nat
rally if the incident pump beam is slightly tilted; then, the
pattern which forms drifts always in time and, therefore, a
a fixed spatial position, the field pulses (drift instability) a
theoretically predicted [15] and experimentally observe
[16,17]. Three regimes can actually be found: absolu
instability, absolute stability (i.e., when a perturbation o
the steady state may or may not grow at a fixed point
space), and theconvectively unstableregime [18]. The
latter refers to the case when a perturbation is unstab
in a reference frame moving at the drift velocity but i
does not grow locally. In other words the growing per
turbation drifts from its original position, and therefore i
finally moves outside the system. However, under th
© 1997 The American Physical Society 3633
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condition, a pattern may arise if noise is present; in fac
noise can excite the convectively unstable modes and
pattern, though drifting, is regenerated in a continuou
fashion at each position and at all times. The role of nois
in optical systems in the convectively unstable regime h
not been previously addressed.

The equation governing the slowly varying electric field
amplitudeA in a FP cavity filled with a Kerr medium and
excited by an external laser pumpE0 is [7,15,19]

≠tA 2 2a0≠xA ­ i≠2
xA 2 f1 1 ihsD 2 jAj2dgA

1 E0 1
p

e jsx, td , (1)

whereD represents the cavity detuning,h gives the sign
of the Kerr nonlinearity (1 for self-focusing,21 for self-
defocusing), anda0 depends on the angle of incidence o
the pump into the cavity. The complex stochastic var
able jsx, td is Gaussian with zero mean and correlatio
kjsx, td, jpsx0, t0dl ­ 2dsx 2 x0ddst 2 t0d, and it gives a
standard semiclassical model of noise. In the linearize
version of the Langevin equation of (1) it may describ
quantum noise in the Wigner representation, as conside
in [6] for the optical parametric oscillator. It can also ac
count for thermal and input field fluctuations. A stochas
tic dynamics description of Eq. (1) when no drift term is
present was given in [19].

Equation (1) has homogeneous steady-state solutionsA0
given by A0f1 1 ihsD 2 jA0j

2dg ­ E0 and for D .
p

3
bistability occurs [13]. On writingA ­ A0s1 1 sd the
eigenvalues of the linear evolution matrix for a weak pe
turbations in the Fourier space (at wave numberq) are,
for h ­ 1 [20],

v6sqd ­ 2ia0q 2 1 6

q
jA0j4 2 s2jA0j2 2 D 2 q2d2 .

(2)

The homogeneous steady state is unstable for Resv1d .

0, and the marginal stability curve is given byjA0j
2 ­

f2sD 1 q2d 2
p

sD 1 q2d2 2 3 gy3. Its minimum corre-
sponds toq2

c ­ 2 2 D when D , 2, and q2
c ­ 0 when

D . 2. Hence, forD , 2, the instability threshold is
given by jA0j

2
, ­ 1, q2

c ­ 2 2 D. On the other hand,
for D . 2, the instability threshold is given byjA0j

2
. ­

f2D 2
p

D2 2 3 gy3, q2
c ­ 0. This instability threshold

is shown as a solid line in Fig. 1. Above threshold, whe
D , 2, Resv1d is maximum forq2 ­ q2

c ­ 2jA0j
2 2 D

and whenD . 2 for q2 ­ q2
c ­ 0.

Because of the presence of an advective-type term in t
case of oblique input fields, the instabilities described
the preceding section are convective up to the absolute
stability threshold. The nature of the instability may be de
termined, as usual, through the evaluation of the maximu
growth rate of a perturbation of the form expskx 1 vtd,
where k ­ k0 1 ik00 is complex, at a fixed location
[18,21]. The growth rate is given by Refv1s2ikdg where
v1 is defined in Eq. (2). If Refv1s2ikdg is negative, per-
3634
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FIG. 1. Stability diagram as a function of the detuningD:
solid curve is the threshold of convective instability. The
other curves, obtained solving numerically Refv1s2iksdg ­ 0
and Eq. (3), are the absolute instability thresholds for differen
a0 (dashed,a0 ­ 0.15; dash-dotted,a0 ­ 0.2; and dotted,
a0 ­ 0.25). The quantities plotted in all the figures of this
paper are dimensionless.

turbations decay locally, since they are advected away b
the drift and the instability is convective. If Refv1s2ikdg
is positive, the instability is absolute. The thresh-
old for absolute instability (Fig. 1) is then given by
Refv1s2iksdg ­ 0 whereks is the complex vectork at
which the velocity of the fastest growing perturbation
front is zero [21]. This is determined by

Re

µ
dv1s2ikd

dk

Ç
ks

∂
­ Im

µ
dv1s2ikd

dk

Ç
ks

∂
­ 0 ,

Re

µ
d2v1s2ikd

dk2

Ç
ks

∂
. 0 .

(3)

Note that, unlike the result reported in Ref. [15], here
the absolute instability threshold depends on the incidenc
angle; this fact might be an explanation for the numerica
observation in Ref. [22]. The convective instability ap-
pears also forD . 2, for the homogeneous perturbations
(q2

c ­ 0). For a givena0 fi 0 convectively unstable so-
lutions are those in the region between the solid curve an
the calculated threshold. There, a pattern can still be ob
served if noise is present as we demonstrate through th
numerical solutions of Eq. (1). The detuning is fixed to
D ­ 1.7, a value set in order to observe the phenomeno
easily without additional complications. In fact, accord-
ing to Fig. 1 asD ! 2 the convectively unstable region
gets larger but, as said, forD .

p
3 the system shows

bistability and theq ­ 0 mode is unstable, becoming the
most unstable forD . 2. Note that the criterion given
for the transition from convective to absolute instability
is of linear nature. Nonlinear terms can shift this thresh
old if the bifurcation is strongly subcritical [23]. For the
chosen value ofD we have checked that the bifurcation is
weakly subcritical and our numerical results indicate tha
the linear criterion is valid. The pump used was a super
Gaussian beam,E0sx, td ­ Em expf2sxyx0d2my2g, with
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m ­ 5 and x0 ­ 250. We integrated Eq. (1) in Fourier
space with periodic boundary conditions; the spatial wi
dow (640 units) was large enough to yield an almost ze
pump (and thus field) on both sides.

The spatiotemporal evolution of the intensityjAj2 is
shown in Fig. 2 for three cases. In 2(a) the pump inte
sity is above the threshold of absolute instability (star
Fig. 1) and a spatial structure forms and tends to sprea
the whole beam. Figure 2(b) corresponds to the regi
of the convective instability (cross in Fig. 1) without nois
(e ­ 0). The structure is formed from an initial perturba
tion, but it drifts away from the pump region and finall

FIG. 2. Spatiotemporal evolution of the field intensit
for (a) jA0j

2 ­ 1.035 (p in Fig. 1) without noise (e ­ 0),
(b) jA0j

2 ­ 1.02 (1 in Fig. 1) without noise, and (c) with
noise (e ­ 2.5 3 1023). The contour plot is shown for
jxj , 200; the integration window wasjxj , 320; a0 ­ 0.15.
n-
ro

n-
in
d to
me
e
-
y

y

disappears. Figure 2(c) has been obtained with the sa
parameters of Fig. 2(b) but with nonzero noise. A patte
is continuously formed and drifts outside the pump bea
By comparing 2(a) with 2(c) note that the noise-sustain
pattern rises appreciably at a random spatial position
different times. The phenomenon described occurs for a
nonzero value of the noise intensity; the average time de
and the “jitter” of the formation of the edge of the struc
ture can be used, as done in the experiments reported
Ref. [12], to determine the noise level.

A quantitative description of the transition from noise- t
dynamics-sustained structures can be given in terms of
spectrum obtained by Fourier transforming the time wa
form of the amplitude at a fixed spatial position [Fig. 3(a)
In theV ­ 1yt frequency domain, the dynamics-sustaine
pattern spectrum shows a series of well defined lines
frequenciesVi which correspond (through the relation
t ­ xy2a0) to the most unstable spatial modeq2

m ­
2jA0j

2 2 D and its harmonics. By contrast the noise
sustained spectral peaks are sensibly broader. Note
both results have been obtained using the same noise le
Figure 3(b) quantifies [12] this behavior by displaying th
variances

2
i ­ ksV 2 Vid2lyV

2
i of the first 3 spectral

lines as a function of the intensity. The intensity at whic
the pattern dramatically changes its nature is in very go
agreement with that predicted from Fig. 1 (jA0j

2 . 1.027).
In general, optical noise-sustained structures should

experimentally observed for pump intensities at the ons
of the modulation instability. As a particular example th
results of Fig. 2 may correspond, according to the defin
tion of the coefficients and variables of Eq. (1) [15], to
FP cavity, with mirror transmittivityT ­ 0.06 and filled

FIG. 3. (a) Spectral intensity of the field amplitude at
fixed spatial position (xf ­ 2132.5) for jA0j

2 ­ 1.035 (solid
curve) andjA0j

2 ­ 1.01 (dashed curve). The frequencies o
the maxima of the first harmonic areV1.035 ­ 0.032 (solid
curve) andV1.01 ­ 0.03 (dashed curve) in good agreemen
with the predicted valuesV1.035 ­ 0.029 and V1.01 ­ 0.027
[VI ­ 2a0qmys2pd with q2

m ­ 2I 2 D]. Noise level was the
same as for Fig. 2(c). (b) Variances2

i of the first (squares),
second (triangles), and third (diamonds) harmonic. The dott
vertical line indicates the threshold predicted by Fig. 1. As
Fig. 2, a0 ­ 0.15.
3635
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with aL ­ 1 mm thick plate of semiconductor CdS0.5Se0.5
(nonlinearityn2 ­ 2.9 3 10217 m2 W21, refractive index
n0 ­ 2.45). The pump source, lasing at the wavelength o
l ­ 1.064 mm (l0 ­ lyn0 ­ 0.434 mm in the medium),
should provide a beam withw ­ 2x0

p
Ll0ys2pTd ­

1.7 cm spot size, an intensity (at threshold) of aboutI ­
jAj2 ­ T 2n0l0ys12pLn2d ­ 0.35 MW cm22 at an angle
of incidence u ­ arcsinfa0

p
Tl0ys2pLd g ­ 0.3 mrad.

It is worth stressing that the noise level in the numeric
results is 5 orders of magnitude below the intensity lev
of the noise-sustained pattern. Noise level can be take
as in fluid dynamics experiments, as the parameter to
determined from comparison of theory and experiment.

In conclusion, we have shown the existence of opt
cal noise-sustained spatial structures in the field intensi
Their growth is induced by the convective instability. A
drift, or convective, term arises naturally in the governin
equation of a passive optical cavity when there is a tilt o
the input pump beam. Though small, this new term caus
the pattern to drift outside the pump beam, below the a
solute instability threshold, unless noise is present. In th
case the structure is locally sustained because, although
vected away, it is continuously regenerated by the nois
We have presented the features which distinguish nois
sustained from dynamics-sustained structures.

We finally point out that noise-sustained optical struc
tures should be observable in different systems. Actual
in previous experiments on a drift instability [16,17] the
observation of “noisy patterns” has been reported. D
spite the fact that the experimental systems are not exac
described by the model presented here, the observed p
terns may very well be noise-sustained ones. Moreover
term proportional to≠xA is found in the equations model-
ing passive cavities filled with nonlinear quadratic media
because of the different group velocities of the fundame
tal and second harmonic caused by the intrinsic birefri
gence of the nonlinear crystal. We thus predict that th
effect should be observed in optical parametric oscillato
too; this subject is now under investigation and will be re
ported elsewhere.
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