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Symmetric Skyrmions
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We present candidates for the global minimum energy solitons of charge 5 to 9 in the Skyrme
model generated using sophisticated numerical algorithms. The solitons found are particularly
symmetric; for example, the charge seven skyrmion has icosahedral symmetry, and the shapes
are shown to fit a remarkable sequence defined by a geometric energy minimization (GEM) rule.
[S0031-9007(97)03638-7]

PACS numbers: 24.85.+p, 12.39.Dc, 21.10.Dr, 27.10.+h

Skyrmions are topological soliton solutions of a clas-rations are then evolved using the discretized equations
sical nonlinear field theory known as the Skyrme modelbf motion. As the dynamics proceeds, the system oscil-
[1]. As examples of three-dimensional solitonic struc-lates between maxima and minima of the potential energy.
tures, they are of inherent interest, but they may alsdf one stops the dynamics at a minimum of the potential
have applications in nuclear physics. This arises sincenergy and then removes all the kinetic energy from the
the Skyrme model can be obtained as a low energy limisystem, the solution will gradually move towards a local
of QCD in the largeN, limit [2], with baryons being minimum of the system. Once the system is close to the
identified as the quantized states of the classical solitominimum one can also incorporate dissipation which will
solutions [3]. Although this application, which we com- speed up the process of relaxation. Of course, as with any
ment on briefly in the final paragraph, is a motivation fornumerical minimization procedure, one cannot be sure that
our work, we believe that our findings on the structure ofone has found the global minimum. However, given suf-
multisolitons is an important step in understanding threeficiently asymmetric, but attractive, initial conditions, as
dimensional soliton phenomenology which may be ofcreated using the product ansatz, it is likely that one will
relevance in a number of branches of theoretical physicslocate the global minimum.

In a recent Letter [4], we presented the first results from For charges 1 to 4 it was possible to construct configu-
a code which evolves the dynamical equations of motiontations using just the product ansatz, in which all the
exhibiting the dynamics of symmetric configurations in Skyrmions are in a mutually attractive channel [4,7]. It
the attractive channel and also the minima for charges I not possible to use this naive approach to construct a
to 4. These minima were already known from numericalmaximally attractive channel of charge five or higher, and
relaxation calculations [5] and also from instanton calcutherefore one must consider other approaches. In order
lations [6]. In this Letter, we present what we describe ador our algorithm to relax quickly to the minimum, we
candidate minima for charges 5 to 9, which we firmly be-must construct a configuration with low energy, in which
lieve are, in fact, the global minima. These minima can bemost of the Skyrmions are attractive. It heed not be the
classified in terms of the isosurfaces of baryon density (omaximally attractive channel, but the algorithm will relax
energy density), which are seen to fit a remarkable patterio the minimum quicker if it is close to the most attractive.
obeying what we shall call a geometric energy minimiza-Some of the configurations chosen relax quicker than
tion (GEM) rule. We also calculate accurately the energyothers, suggesting that in some cases we have selected
and average size of each soliton. As in Ref. [4], we shalthe correct configuration and in others we have found one
assume the pion mass is zero, with results for a physicathich works, but is perhaps not the best.
value of the pion mass presented in future work. We do We find that it is best to mix the instanton approach for
not expect that inclusion of a finite pion mass will effecta known symmetric configuration, with a small number of
the overall shape and symmetry of the soliton; rather isingle Skyrmions added using the product ansatz to break
will just modify its energy and size. the exact symmetries. For example, in the casB ef 5,

The full details of the numerical methods are presentedt is possible to construct a highly attractive configuration
in Ref. [7]. The basic procedure is to set up discretizedby adding in two single Skyrmions either side oBa= 3
initial conditions for static low energy configurations us- tetrahedron. Since the pion fields of the tetrahedron are
ing either a simple ansatz for a single Skyrmion and thesimilar to those of an anti-Skyrmion at large distances,
product ansatz, or by calculating the holonomy of instanthe configuration is of low energy and relaxes extremely
tons [8], or a combination of both, as is the case for thequickly (~1000 time steps) to the minimum. Using the
higher charge configurations. The critical feature of theanalogy, toB = 2 to B = 4 scattering, we tried con-
specific configurations chosen is that the Skyrmions are istructingB = 6 and B = 7 configurations by surround-
an attractive or nearly attractive channel. These configuing a B = 3 tetrahedron with Skyrmions in cyclic and
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tetrahedral configurations, respectively, using the product
ansatz. These configurations relaxed toward the minimum
in over 5000 time steps, suggesting that, in fact, these are
not the maximally attractive channel. Nonetheless, they
are of reasonably low energy and work eventually. For
B = 6, one can relax to the minimum much more quickly
by colliding two tetrahedra. Reassuringly, it is the same
minima as calculated before, providing a useful consis-
tency check. In order to calculate configurations of higher
charge(B > 7), one can just add in a single Skyrmion to
the known minima of charge 1 less.

A useful way to represent a Skyrmion is by displaying
a surface of constant baryon density. In Fig. 1 we display
isosurfaces for the Skyrmions of charges 5to 9 (1 to 4
are presented in Ref. [4]), using the same constant value
for the baryon density in each case, to ensure that the
relative sizes of the Skyrmions are accurately represented.
The baryon density has maxima at several points in space,
which we can think of as vertices of a solid, and these
are connected by links of slightly lower baryon density,
which can be regarded as the edges of the solid. Clearly
in this way we can assign a solid to each Skyrmion
which accurately reflects the shape and symmetry of the
Skyrmion. In fact, for all the Skyrmions we consider, the
associated solid is remarkably close to being composed of
regular or nearly regular polygons with a fixed edge length.
Given this fascinating result, we shall describe each solid in
terms of its construction from polygons. Includedin Fig. 1
alongside each baryon density plot is a photograph of
the associated solid, constructed using a molecular model
building kit. In Table | we list the number of faces of each
associated solid, together with the number of each type of
polygon from which it is constructed.

Itis perhaps useful to give a brief description of each of
the solids, which, in conjunction with Fig. 1, should make
the structure of each configuration clear. TBe= 5

Skyrmion consists of two parallel down—pOIr_ltlr_lg PEN" 1. 1. Skyrmions of charge 5 to 9; on the left baryon density
tagons attached to two more parallel up-pointing penjgogyrtaces (to scale) with 5 at the top and 9 at the bottom and
tagons, so that four sides of a box are formed. The topn the right wire frame models of the corresponding solids.
of the box is formed by adding two squares, and simi-Note that the wire frame models are not to scale and have
larly for the bottom of the box, though, of course, thedifferent orientations to the baryon density plots.

arrangement of joined squares on the top and bottom have

a relative rotation of 90 The B = 6 configuration con-

sists of two halves, each of which is formed from a square The symmetries of each Skyrmion are of interest, and
with a pentagon hanging down from each of its four sideshere we shall discuss the symmetry group of the baryon
Note that to join these two halves implies that the twodensity (or equivalently energy density). To discuss the
squares are parallel, but one is rotated by #&ative symmetries of the field itself is a more complicated task,
to the other. TheB = 7 solid is a regular dodecahe- since the three-dimensional representation of the symmetry
dron. TheB = 8 Skyrmion has a similar structure to its group which acts on the pion fields as an isospin rotation
B = 6 counterpart, except that the squares are replaceaiust also be identified. In the final column of Table |
by hexagons, so that each half has six pentagons hangimge give the symmetry group, where we use the Schonflies
down. This requires the top hexagon to be parallel to theotation (see, for example, Ref. [9]) popular in chemistry.
bottom hexagon but rotated by 30Finally, theB =9  All the configurations contain at least the symmetry group
structure has four hexagons located at the vertices of B,,;, for somen. This symmetry group is obtained
regular tetrahedron which are joined by four sets of thredrom the cyclic group of order, C,, by the addition
connected pentagons, whose single common vertex lies af a C, symmetry with axis perpendicular to the main
the vertices of the dual tetrahedron. symmetry axis and a reflection symmetry in a vertical
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TABLE I. The constituent polygons and symmetry structurethat consists of a hexagon with alternating squares and
for the candidate minima of charge 3 and above. T, S, Ppentagons rising from its edges, and topped by three
and H stand for triangles, squares, pentagons, and hexagongined pentagons. This crownlike configuration, which

respectively. has cyclicC; symmetry, satisfies the first part of the GEM

B Faces T S P H Symmetry rule, but is not very spherical, having a flat bottom and a
3 4 4 0 0 0 T, pointed top. It may be that some other statement, such as
4 6 0 6 0 0 0, a minimization of the standard deviation of edge lengths,
5 8 0 4 4 0 Doy or a similar property for edge angles, is an improved
6 10 0 2 8 0 Dy statement of the spherical property. More examples of
7 12 0 0 12 0 I, higher charge Skyrmions are required to resolve this issue.
8 14 0 0 12 2 Dgq It follows from the GEM rule that foB = 7 the solid

9 16 0 0 12 4 Tq consists of 12 pentagons ad@dB — 7) hexagons. Such

configurations occur in fullerene chemistry [14,15], where
we should compare with the carbon struct@igz—»). In
plane containing the main axis and which bisects the anglillerene chemistry avoiding large curvature is important,
between pairs ofC; axes. Thus these twisted dihedral so the first fullerene i<»g, avoiding a fused quartet of
symmetries (which are enhanced to platonic symmetry ipentagons, which has precisely the form of the= 9
some cases) appear to be of importance to Skyrmions, &kyrmion. It would be interesting to see if this correspon-
they are for BPS monopoles [10,11]. dence continues, since tiBe= 17 Skyrmion should have
Note that the Skyrmions of charges 3, 4, 7 have théhe C¢y Buckminsterfullerene structure.
same platonic forms as the corresponding Bogomol'nyi- We have calculated the discrete charge and energy for
Prasad-Sommerfeld (BPS) monopoles of the same chardlee minima onl00° grids, which are displayed in Table II.
[10,12,13], but that the charge 5 configuration is not anThese energy values are less than the true values since
octahedron, even though an octahedral 5-monopole existse grid size is finite, but they are nonetheless within
[10]. An octahedral charge 5 Skyrmion does exist bu2% accurate. One can make a better estimate of the
it is not the minimal energy configuration [7]. This overall energy by using the ratiB,;;/Bg;s as discussed
illustrates an important difference between BPS monopolein Ref. [4]. This can be seen to be exact to 3 decimal
and Skyrmions. All the monopole configurations of aplaces for theB = 1 Skyrmion, and we suggest that it
particular charge have the same energy and it is due towill be so for all the others, since the third decimal place
mathematical simplification that only the very symmetrichas not changed for many-(000) time steps. (It should
ones have been found, but the Skyrmions evolve unddre noted that the quoted values #®r= 1 to B = 4 differ
the influence of a potential allowing for the possibility of very slightly from those presented in Ref. [4]. The current
minima. values are the result of further relaxation of the same
Given the complex structure of these Skyrmions theconfigurations.) These values have been used to calculate
guestion now arises as to whether a rule exists which fitthe ionization energylg = E; + Eg—; — Ep), that is,
the remarkable sequence of shapes found. We propose ttiee energy required to remove one Skyrmion, which in
following phenomenological rule for the structure of the general gives an indication of the classical binding energy.
minimum energy chargB > 2 Skyrmion, which we refer We have also calculated the average size of the saliton
to as the geometric energy minimization rule. from the second moment of the baryon distribution as in
GEM rule—The chargeB baryon density surface is Ref. [5]. This value is extremely rough since it ignores
composed of almost regular polygons and consists of
4(B — 2) trivalent vertices. If more than one such solid TABLE II. Calculated values of the chargeBd,), energy
exists, then select the most spherical. (Eais), and soliton size £r) for B =1 to B = 9 in natural
It should be noted that there are several equivalent wayshits, where the Bogomolyni bound = |B|. Also presented
in which the GEM rule could be stated. For example 8 e I0alEn Sherof, WiKh i he enerey eaios o
fro_m the trivalent property together with Eulers fqrmula, the results and comparison to previous calculations see the text.
fixing one of the three parameters of the solid, that
is, the number of vertices, faces, and edges, determine8  Bais Egig Edis/Bais E I Ar
the other two. Explicity we have/ = 4(B — 2), F = 1 0984 1.212 1.232 1.232 1.034
2(B — 1), and E = 6(B — 2). Thus since the baryon 2 1972 2.308 1171  2.342 0122 1.416
density isosurface has a hole in the center of each face3 2.960 3.384 1.143 3429 0.145 1.636
then the GEM rule implies the observation of Ref. [5] that 4  3.948  4.407 1.116 4464 0.197 1.860
the isosurface contair¥B — 1) holes. As the value a8 5 493 5509 1.116 5.580 0.116 2.035
increases the number of possible configurations satisfyin@ 5.923  6.567 1109  6.654 0158  2.220
the first part of the GEM rule grows, and hence the need 6.913  7.596 1.099 7.693 0193 2.332
for the second part. For example, B&t= 6 in addition 7.900  8.690 1.100 8.800  0.125  2.487
- . ! o 8.885 9.759 1.098 9.852 0.150 2.624
to the configuration found there is a second possibility
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the symmetries of the object, but nonetheless it gives atreatment of nuclei where it is not possible to extract
indication of the overall trend. a purely classical picture. Quantization of the classical

We should comment on the relevance of our work tosoliton solutions is a difficult task and remains the aim
previous calculations. In numerical work [5], similar to of a long term investigation, though recent work [18]
ours, configurations up to charge 6 were studied using an the normal mode spectra of the classiBat 2 and
global minimization algorithm. Our results for charges 5B = 4 Skyrmions is an important step in this direction.
and 6 differ from these earlier computations, which weA vital ingredient in this analysis is the symmetry of
attribute to numerical effects in the earlier work due tothe Skyrmion, so our results on the very symmetric
lack of resources; for example, the grid we use containgigher charge Skyrmions is the first necessary ingredient
almost 5 times the number of points. For charge 5 then extending these results t8 > 4 Skyrmions. It is
difference is small, and we obtain the same symmetrynteresting to note that recently it has been discovered
group but identify different polygons forming the solid, [19] that realistic nuclear force models actually do predict
which is possible thanks to our improved grid resolution.highly anisotropic density distributions in light nuclei,
For charge 6 our results are very different, as wewith little density at the origin.
find a very symmetric configuration, whereas the earlier We have benefited from useful conversations with
computation gave a structure with very little symmetry. Nick Manton, Conor Houghton, Brad Baxter, Paul Shel-

A different approach to constructing high charge con-ard, Jonathan Moore, Dick Hughes-Jones, Neil Turok,
figurations has used the Skyrme crystal [16] and involvesind Kim Baskerville. We acknowledge PPARC Grant
cutting out sections [17]. Although these configurationsNo. GR/K94799, the PPARC Cambridge Relativity
have low energy, they are not as low as those presentedlling grant, and EPSRC Applied Mathematics Initiative
here, and they are fundamentally different in nature. The&rant No. GRK50641.
configurations presented here are shells with less baryon
density in the center, whereas those created from the
Skyrme crystal have internal structure since they are cre-
ated from cubic configurations. Such structures do not
fit the GEM rules since they are not trivalent. It is an [1] T.H.R. Skyrme, Nucl. Phys31, 556 (1962).
open question as to whether the shell structure persists fof2] E. Witten, Nucl. Phys.B223 422 (1983);B223 423
higher charge. (1983). ) ,

We believe that the candidate minima which we have [°] (5323 ég;miég%R' Nappi, and E. Witten, Nucl. Phys.
presented here are, in fact, the global minima since the,, R.A?Battyfe and).P.M. Sutcliffe, Phys. Lett. B9L 150
initial conditions have natural_asymmetry, we hgve in 1997).
some cases got the same configuration from two differents) £ Braaten, S. Townsend, and L. Carson, Phys. Lett. B
initial conditions and most of all the isosurfaces of the 235, 147 (1990).
baryon density fit a remarkable sequence of polygons.[6] R.A. Leese and N.S. Manton, Nucl. Phya572, 575
The symmetry properties of these polygons could be the  (1994).
starting point for an understanding of the moduli space [7] R.A. Battye and P. M. Sutcliffe (to be published).
structure of the Skyrme model, leading to a study of low [8] M.F. Atiyah and N.S. Manton, Phys. Lett. B22 438
energy dynamics. (1989).
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