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Symmetric Skyrmions
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We present candidates for the global minimum energy solitons of charge 5 to 9 in the Skyrme
model generated using sophisticated numerical algorithms. The solitons found are particularly
symmetric; for example, the charge seven skyrmion has icosahedral symmetry, and the shapes
are shown to fit a remarkable sequence defined by a geometric energy minimization (GEM) rule.
[S0031-9007(97)03638-7]

PACS numbers: 24.85.+p, 12.39.Dc, 21.10.Dr, 27.10.+h
ons
cil-
gy.
ial
the
al
the
ill
any
that
uf-
s
ill

u-
he
It
t a

nd
rder
e
h

the
x
e.
an
cted
ne

or
of
eak

on

are
es,
ely
e

-
d

Skyrmions are topological soliton solutions of a clas
sical nonlinear field theory known as the Skyrme mod
[1]. As examples of three-dimensional solitonic struc
tures, they are of inherent interest, but they may als
have applications in nuclear physics. This arises sin
the Skyrme model can be obtained as a low energy lim
of QCD in the largeNc limit [2], with baryons being
identified as the quantized states of the classical solit
solutions [3]. Although this application, which we com-
ment on briefly in the final paragraph, is a motivation fo
our work, we believe that our findings on the structure o
multisolitons is an important step in understanding thre
dimensional soliton phenomenology which may be o
relevance in a number of branches of theoretical physic

In a recent Letter [4], we presented the first results fro
a code which evolves the dynamical equations of motio
exhibiting the dynamics of symmetric configurations in
the attractive channel and also the minima for charges
to 4. These minima were already known from numerica
relaxation calculations [5] and also from instanton calcu
lations [6]. In this Letter, we present what we describe a
candidate minima for charges 5 to 9, which we firmly be
lieve are, in fact, the global minima. These minima can b
classified in terms of the isosurfaces of baryon density (
energy density), which are seen to fit a remarkable patte
obeying what we shall call a geometric energy minimiza
tion (GEM) rule. We also calculate accurately the energ
and average size of each soliton. As in Ref. [4], we sha
assume the pion mass is zero, with results for a physic
value of the pion mass presented in future work. We d
not expect that inclusion of a finite pion mass will effec
the overall shape and symmetry of the soliton; rather
will just modify its energy and size.

The full details of the numerical methods are presente
in Ref. [7]. The basic procedure is to set up discretize
initial conditions for static low energy configurations us
ing either a simple ansatz for a single Skyrmion and th
product ansatz, or by calculating the holonomy of instan
tons [8], or a combination of both, as is the case for th
higher charge configurations. The critical feature of th
specific configurations chosen is that the Skyrmions are
an attractive or nearly attractive channel. These config
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rations are then evolved using the discretized equati
of motion. As the dynamics proceeds, the system os
lates between maxima and minima of the potential ener
If one stops the dynamics at a minimum of the potent
energy and then removes all the kinetic energy from
system, the solution will gradually move towards a loc
minimum of the system. Once the system is close to
minimum one can also incorporate dissipation which w
speed up the process of relaxation. Of course, as with
numerical minimization procedure, one cannot be sure
one has found the global minimum. However, given s
ficiently asymmetric, but attractive, initial conditions, a
created using the product ansatz, it is likely that one w
locate the global minimum.

For charges 1 to 4 it was possible to construct config
rations using just the product ansatz, in which all t
Skyrmions are in a mutually attractive channel [4,7].
is not possible to use this naive approach to construc
maximally attractive channel of charge five or higher, a
therefore one must consider other approaches. In o
for our algorithm to relax quickly to the minimum, w
must construct a configuration with low energy, in whic
most of the Skyrmions are attractive. It need not be
maximally attractive channel, but the algorithm will rela
to the minimum quicker if it is close to the most attractiv
Some of the configurations chosen relax quicker th
others, suggesting that in some cases we have sele
the correct configuration and in others we have found o
which works, but is perhaps not the best.

We find that it is best to mix the instanton approach f
a known symmetric configuration, with a small number
single Skyrmions added using the product ansatz to br
the exact symmetries. For example, in the case ofB ­ 5,
it is possible to construct a highly attractive configurati
by adding in two single Skyrmions either side of aB ­ 3
tetrahedron. Since the pion fields of the tetrahedron
similar to those of an anti-Skyrmion at large distanc
the configuration is of low energy and relaxes extrem
quickly (,1000 time steps) to the minimum. Using th
analogy, toB ­ 2 to B ­ 4 scattering, we tried con-
structing B ­ 6 and B ­ 7 configurations by surround
ing a B ­ 3 tetrahedron with Skyrmions in cyclic an
© 1997 The American Physical Society 363
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tetrahedral configurations, respectively, using the produ
ansatz. These configurations relaxed toward the minim
in over 5000 time steps, suggesting that, in fact, these
not the maximally attractive channel. Nonetheless, th
are of reasonably low energy and work eventually. F
B ­ 6, one can relax to the minimum much more quickl
by colliding two tetrahedra. Reassuringly, it is the sam
minima as calculated before, providing a useful cons
tency check. In order to calculate configurations of high
chargesB . 7d, one can just add in a single Skyrmion t
the known minima of charge 1 less.

A useful way to represent a Skyrmion is by displayin
a surface of constant baryon density. In Fig. 1 we displ
isosurfaces for the Skyrmions of charges 5 to 9 (1 to
are presented in Ref. [4]), using the same constant va
for the baryon density in each case, to ensure that
relative sizes of the Skyrmions are accurately represent
The baryon density has maxima at several points in spa
which we can think of as vertices of a solid, and the
are connected by links of slightly lower baryon densit
which can be regarded as the edges of the solid. Clea
in this way we can assign a solid to each Skyrmio
which accurately reflects the shape and symmetry of t
Skyrmion. In fact, for all the Skyrmions we consider, th
associated solid is remarkably close to being composed
regular or nearly regular polygons with a fixed edge leng
Given this fascinating result, we shall describe each solid
terms of its construction from polygons. Included in Fig.
alongside each baryon density plot is a photograph
the associated solid, constructed using a molecular mo
building kit. In Table I we list the number of faces of eac
associated solid, together with the number of each type
polygon from which it is constructed.

It is perhaps useful to give a brief description of each
the solids, which, in conjunction with Fig. 1, should mak
the structure of each configuration clear. TheB ­ 5
Skyrmion consists of two parallel down-pointing pen
tagons attached to two more parallel up-pointing pe
tagons, so that four sides of a box are formed. The t
of the box is formed by adding two squares, and sim
larly for the bottom of the box, though, of course, th
arrangement of joined squares on the top and bottom h
a relative rotation of 90±. The B ­ 6 configuration con-
sists of two halves, each of which is formed from a squa
with a pentagon hanging down from each of its four side
Note that to join these two halves implies that the tw
squares are parallel, but one is rotated by 45± relative
to the other. TheB ­ 7 solid is a regular dodecahe-
dron. TheB ­ 8 Skyrmion has a similar structure to its
B ­ 6 counterpart, except that the squares are replac
by hexagons, so that each half has six pentagons hang
down. This requires the top hexagon to be parallel to t
bottom hexagon but rotated by 30±. Finally, theB ­ 9
structure has four hexagons located at the vertices o
regular tetrahedron which are joined by four sets of thr
connected pentagons, whose single common vertex lie
the vertices of the dual tetrahedron.
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FIG. 1. Skyrmions of charge 5 to 9; on the left baryon densi
isosurfaces (to scale) with 5 at the top and 9 at the bottom a
on the right wire frame models of the corresponding solid
Note that the wire frame models are not to scale and ha
different orientations to the baryon density plots.

The symmetries of each Skyrmion are of interest, a
here we shall discuss the symmetry group of the bary
density (or equivalently energy density). To discuss t
symmetries of the field itself is a more complicated tas
since the three-dimensional representation of the symme
group which acts on the pion fields as an isospin rotati
must also be identified. In the final column of Table
we give the symmetry group, where we use the Schönfl
notation (see, for example, Ref. [9]) popular in chemistr
All the configurations contain at least the symmetry grou
Dnd , for some n. This symmetry group is obtained
from the cyclic group of ordern, Cn, by the addition
of a C2 symmetry with axis perpendicular to the mai
symmetry axis and a reflection symmetry in a vertic
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TABLE I. The constituent polygons and symmetry structur
for the candidate minima of charge 3 and above. T, S,
and H stand for triangles, squares, pentagons, and hexag
respectively.

B Faces T S P H Symmetry

3 4 4 0 0 0 Td

4 6 0 6 0 0 Oh

5 8 0 4 4 0 D2d

6 10 0 2 8 0 D4d

7 12 0 0 12 0 Ih

8 14 0 0 12 2 D6d

9 16 0 0 12 4 Td

plane containing the main axis and which bisects the an
between pairs ofC2 axes. Thus these twisted dihedra
symmetries (which are enhanced to platonic symmetry
some cases) appear to be of importance to Skyrmions
they are for BPS monopoles [10,11].

Note that the Skyrmions of charges 3, 4, 7 have t
same platonic forms as the corresponding Bogomol’ny
Prasad-Sommerfeld (BPS) monopoles of the same cha
[10,12,13], but that the charge 5 configuration is not a
octahedron, even though an octahedral 5-monopole ex
[10]. An octahedral charge 5 Skyrmion does exist b
it is not the minimal energy configuration [7]. This
illustrates an important difference between BPS monopo
and Skyrmions. All the monopole configurations of
particular charge have the same energy and it is due t
mathematical simplification that only the very symmetr
ones have been found, but the Skyrmions evolve und
the influence of a potential allowing for the possibility o
minima.

Given the complex structure of these Skyrmions th
question now arises as to whether a rule exists which
the remarkable sequence of shapes found. We propose
following phenomenological rule for the structure of th
minimum energy chargeB . 2 Skyrmion, which we refer
to as the geometric energy minimization rule.

GEM rule.—The chargeB baryon density surface is
composed of almost regular polygons and consists
4sB 2 2d trivalent vertices. If more than one such soli
exists, then select the most spherical.

It should be noted that there are several equivalent wa
in which the GEM rule could be stated. For exampl
from the trivalent property together with Eulers formula
fixing one of the three parameters of the solid, th
is, the number of vertices, faces, and edges, determi
the other two. Explicitly we haveV ­ 4sB 2 2d, F ­
2sB 2 1d, and E ­ 6sB 2 2d. Thus since the baryon
density isosurface has a hole in the center of each fa
then the GEM rule implies the observation of Ref. [5] tha
the isosurface contains2sB 2 1d holes. As the value ofB
increases the number of possible configurations satisfy
the first part of the GEM rule grows, and hence the ne
for the second part. For example, atB ­ 6 in addition
to the configuration found there is a second possibili
e
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that consists of a hexagon with alternating squares a
pentagons rising from its edges, and topped by thre
joined pentagons. This crownlike configuration, which
has cyclicC3 symmetry, satisfies the first part of the GEM
rule, but is not very spherical, having a flat bottom and
pointed top. It may be that some other statement, such
a minimization of the standard deviation of edge length
or a similar property for edge angles, is an improve
statement of the spherical property. More examples
higher charge Skyrmions are required to resolve this issu

It follows from the GEM rule that forB $ 7 the solid
consists of 12 pentagons and2sB 2 7d hexagons. Such
configurations occur in fullerene chemistry [14,15], wher
we should compare with the carbon structureC4sB22d. In
fullerene chemistry avoiding large curvature is importan
so the first fullerene isC28, avoiding a fused quartet of
pentagons, which has precisely the form of theB ­ 9
Skyrmion. It would be interesting to see if this correspon
dence continues, since theB ­ 17 Skyrmion should have
theC60 Buckminsterfullerene structure.

We have calculated the discrete charge and energy
the minima on1003 grids, which are displayed in Table II.
These energy values are less than the true values sin
the grid size is finite, but they are nonetheless withi
2% accurate. One can make a better estimate of t
overall energy by using the ratioEdisyBdis as discussed
in Ref. [4]. This can be seen to be exact to 3 decima
places for theB ­ 1 Skyrmion, and we suggest that it
will be so for all the others, since the third decimal plac
has not changed for many (.1000) time steps. (It should
be noted that the quoted values forB ­ 1 to B ­ 4 differ
very slightly from those presented in Ref. [4]. The curren
values are the result of further relaxation of the sam
configurations.) These values have been used to calcul
the ionization energy (IB ­ E1 1 EB21 2 EB), that is,
the energy required to remove one Skyrmion, which i
general gives an indication of the classical binding energ
We have also calculated the average size of the solitonDr
from the second moment of the baryon distribution as i
Ref. [5]. This value is extremely rough since it ignores

TABLE II. Calculated values of the charge (Bdis), energy
(Edis), and soliton size (Dr) for B ­ 1 to B ­ 9 in natural
units, where the Bogomolyni bound isE $ jBj. Also presented
is the ionization energyI, which is the energy required to
remove one Skyrmion. For a discussion of the accuracy
the results and comparison to previous calculations see the te

B Bdis Edis EdisyBdis E I Dr

1 0.984 1.212 1.232 1.232 1.034
2 1.972 2.308 1.171 2.342 0.122 1.416
3 2.960 3.384 1.143 3.429 0.145 1.636
4 3.948 4.407 1.116 4.464 0.197 1.860
5 4.935 5.509 1.116 5.580 0.116 2.035
6 5.923 6.567 1.109 6.654 0.158 2.220
7 6.913 7.596 1.099 7.693 0.193 2.332
8 7.900 8.690 1.100 8.800 0.125 2.487
9 8.885 9.759 1.098 9.852 0.150 2.624
365
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the symmetries of the object, but nonetheless it gives
indication of the overall trend.

We should comment on the relevance of our work t
previous calculations. In numerical work [5], similar to
ours, configurations up to charge 6 were studied using
global minimization algorithm. Our results for charges
and 6 differ from these earlier computations, which w
attribute to numerical effects in the earlier work due t
lack of resources; for example, the grid we use contai
almost 5 times the number of points. For charge 5 th
difference is small, and we obtain the same symmet
group but identify different polygons forming the solid
which is possible thanks to our improved grid resolution
For charge 6 our results are very different, as w
find a very symmetric configuration, whereas the earli
computation gave a structure with very little symmetry.

A different approach to constructing high charge con
figurations has used the Skyrme crystal [16] and involv
cutting out sections [17]. Although these configuration
have low energy, they are not as low as those presen
here, and they are fundamentally different in nature. Th
configurations presented here are shells with less bary
density in the center, whereas those created from t
Skyrme crystal have internal structure since they are c
ated from cubic configurations. Such structures do n
fit the GEM rules since they are not trivalent. It is a
open question as to whether the shell structure persists
higher charge.

We believe that the candidate minima which we hav
presented here are, in fact, the global minima since t
initial conditions have natural asymmetry, we have i
some cases got the same configuration from two differe
initial conditions and most of all the isosurfaces of th
baryon density fit a remarkable sequence of polygon
The symmetry properties of these polygons could be t
starting point for an understanding of the moduli spac
structure of the Skyrme model, leading to a study of lo
energy dynamics.

Finally, returning to the application of Skyrmions to
nuclear physics, it is encouraging that physical propertie
such as classical binding energies, appear to follow t
trend of the light elements, at least qualitatively. Fo
example, the binding energy of theB ­ 4 Skyrmion,
which models thea particle, is much greater than that o
the B ­ 5 Skyrmion, for which there is no corresponding
mass numberA ­ 5 stable nuclear ground state. O
course, only a rough qualitative correspondence shou
be expected at this level, since a quantization of th
classical soliton solutions is required before a reasona
comparison can be made. However, the classical resu
are such that one might hope that upon quantization t
classical binding energies are reduced, which could lea
for example, to the result that the weakly bound classic
B ­ 5 Skyrmion becomes unstable. Note that since w
are dealing with a solitonic treatment of particles then w
expect that classical results do give important informatio
in contrast to the more traditional quantum mechanic
366
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treatment of nuclei where it is not possible to extrac
a purely classical picture. Quantization of the classic
soliton solutions is a difficult task and remains the aim
of a long term investigation, though recent work [18
on the normal mode spectra of the classicalB ­ 2 and
B ­ 4 Skyrmions is an important step in this direction
A vital ingredient in this analysis is the symmetry o
the Skyrmion, so our results on the very symmetri
higher charge Skyrmions is the first necessary ingredie
in extending these results toB . 4 Skyrmions. It is
interesting to note that recently it has been discover
[19] that realistic nuclear force models actually do predic
highly anisotropic density distributions in light nuclei,
with little density at the origin.
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