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Can Wave Packet Revivals Occur in Chaotic Quantum Systems?
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The short time revivals of initially localized wave packets are well known in simple, closed, 1-
degree-of-freedom (1D) systems. In 2D or higher, if the system is integrable or has exclusively periodic
dynamics, a generalization is possible. If the dynamics are chaotic, revivals have not been previously
seen and are priori, not expected. Nevertheless, we have found that some stretched wave packets in a
chaotic system experience, very early, surprisingly large recurrences. We extend a semiclassical theory
founded on summing over heteroclinic orbits to determine a set of necessary conditions. The most
important one is an Einstein-Brillouin-Keller-like quantization of classical flux crossing the turnstile
formed by the stable and unstable manifolds of the initial wave packet’'s underlying central orbit.
[S0031-9007(97)04472-4]

PACS numbers: 05.45.+b, 03.20.+i, 03.65.Sq, 42.50.Dv

In most quantum systems, initially localized wave paradigm of chaos, with behavior similar to the usual
packets will spread and disperse as they are propagatesvival behavior found in periodic dynamical systems.
For systems with classical analogs exhibiting periodicAlthough the occurrences are rare and only at particular
dynamics, such wave packets will reconstruct at relativelywavelengths, it is remarkable that any chaotic revivals
short times leading to “revivals” of the initial localized exist. We then show that the semiclassical theory of
state [1]. The most important and recent physical exwave packet propagation in chaotic systems [5] can be
amples are given by coherent electronic wave packets ifurther developed for stretched wave packets with little
Rydberg atoms which have been theoretically treated [1inodification. From this we determine general conditions
and experimentally measured [2]. The coulomb problemmecessary to observe “chaotic revivals” and relate their
is not unique though, and, quite generally, boundedehavior to geometric phase space properties. More
1-degree-of-freedom (1D) systems possess periodic dypecifically, the central, underlying, classical trajectory’s
namics, and thus manifest revival behavior. In the shorstable and unstable manifolds cross to form a complicated
wavelength limit, their spectra are locally uniform “broken separatrix” which encloses a phase space volume
(harmonic-oscillator-like) except that the energy spacingand has an associated turnstile determining the classical
between levels is slowly and smoothly changing. Bothflux of trajectories crossing in and out of this volume
properties are essential for the initial dispersion and subf6]. The first two criteria are EBK-like quantization
sequent revivals. An alternative semiclassical approacbonditions on the phase space volume inside and, much
makes direct use of the underlying classical evolution tanore importantly, the flux crossing through the turnstile.
explain the main quantum features including fractional From a dynamical viewpoint it is straightforward to see
revivals [1,3]. why revivals in chaotic systems should not occur; we re-

In systems with more than 1D, the classical dynamics istrict ourselves to 2D, bounded systems in a semiclassical
almost always quasiperiodic (integrable), chaotic, or someegime. Chaotic systems being unstable, the wave packet
mixture of both. Early revivals of fully localized wave will rapidly disperse in the transverse degree of freedom.
packets can no longer be expected. For 2D integrabl®nce dispersed, the underlying trajectories repeatedly ex-
systems, one way to circumvent this problem is to creatplore the available phase space. At any given moment in
a stretched wave packet which is only localized transversgéme, between the initial central phase point’s neighbor-
to some periodic orbit, but carrying a phase and slowlyhood and any final point’'s neighborhood, the wave func-
varying amplitude of the formt exp(i [ p - dg/h) along  tion will be constructed with many groups of trajectories
the orbit. This effectively reduces the wave packet'swhich have followed a large number of random-looking
underlying dynamics to 1D. In this manner, the stretchegaths. All those contributions ending at a particular po-
wave packet is constructed from a superposition of aition will interfere to give the total wave function at that
portion of the eigenstates whose energy level spacings amint. Assuming the accumulated phases acquired along
nearly uniform. This cannot be done for chaotic system&ach path are more or less random, the evolution must
whose energy levels repel as in random matrix theornappear as random moving waves; see Fig. 7 of [7]. This
and whose eigenstates are not localized to tori in phasendomlike evolution would continue for enormously long
space via Einstein-Brillouin-Keller (EBK) quantization times, far beyond the time scales under consideration,
[4]. Nevertheless, in this Letter we show examplesafter which the discreteness of the spectrum eventually
of stretched wave packets in the stadium billiard, aenforces recurrences.
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Typically, this image is borne out. In the left column parent. Neither is a spectral argument possible in this case
of Fig. 1 we show time snap shots of the evolution ofas for integrable systems. This is for the same reasons that
the initial state constructed along the horizontal periodiaevivals are not expected in chaotic systems. To study
orbit of the stadium billiard pictured in the uppermostthe revivals more quantitatively, we consider the initial
frame. It rapidly disperses and then oscillates in sometate’s (o)) autocorrelation functiorC,(¢) = (a|a(t)).
complicated way with little discernible pattern. However, Initially, C,(0) is unity from normalization and its de-
for some specific values of the wave vector, the evolutiorcay depends on the instability of the orbit, but is generally
has a very different appearance. In the right column ofapid. We consider the system as exhibiting a chaotic re-
Fig. 1, we see a case in which the initial state relocalizesival when C,(¢) returns close to unity at a time beyond
almost completely at just beyond double the period ofwhich the initial state has completely dispersed, but long
its underlying periodic orbit. Furthermore, it continuesbefore the quantum recurrence implied by the discrete-
to relocalize repeatedly. ness of the spectrum. In Fig. 2, we sha@w(z) for the

This unusual behavior is not predicted by Heller’s origi-two stretched wave packets of Fig. 1. The nonreviving
nal linearized wave packet dynamics applied to scarring oivave packet displays a complicated, fluctuating time de-
eigenstates [8], nor has it anything to do with localizationpendence. It is not shown here, but this behavior is very
due to vertical bouncing ball motion. With respect to thesimilar to that found with Gaussian orthogonal ensemble
former, the instability is too great to predict such large re{GOE) simulations. To make the GOE comparison it suf-
currences, and with respect to the latter, the revivals occuices to fix an effective dimensionality given by the en-
so early in time that the slow entrance of the dynamicsergy uncertainty determined from the initial decay rate of
into the bouncing-ball phase space domain is not yet apc, (¢) divided by the local level density of the stadium. In
stark contrast, one can easily see the reviving wave packet
evolves in a very surprising, nearly periodic fashion up to
and far beyond the Heisenberg time scale defined by the
mean level spacing. Its initial dispersion shows no hint of
the impending, nearly complete rebuilding of the waves
into the initial state.

Turning to a theoretical explanation of the revival, if
|v),(B| are localized in all degrees of freedom, then in
Ref. [5] it was shown that
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FIG. 1. The time evolution of two stretched wave packets in t

the Bunimovich stadium. The evolution of an initial wave

packet spanning 27 wavelengths is shown in the left columnFIG. 2. The quantum autocorrelation functiaf, (). The

On the right, the wave packet is 24 wavelengths across. Twaolid curve corresponds to the right column stretched state of
contour levels are drawn fd,(r)|>. Note thatr = 1 is the  Fig. 1 and the dashed curve corresponds to the state in the left
time to cross the stadium horizontally at the mean momentum.column.
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We first decomposed the initial stretched state into a serigshase that involve only the orbit, but is independent of
of Gaussian wave packets displaced along the periodithe states.
orbit. Consequently, the autocorrelation function for the This result represents a great simplicity since it renders
stretched state,(r) involves a double sum o€gz,(r) the main problem one of systematically studying the
over all pairs of Gaussian wave packets that make upelative homoclinic orbit action differences on a fixed
the initial and final stretched states. Note that becausenergy surface. Using known techniques [6], it is possible
the state is stretched along a periodic orbit, essentialljo relate them to phase space structures. The main idea
identical homoclinic orbits arise for each pair. In fact, weis that the homoclinic orbits lie at the intersections of the
are using finite segments of the infinitely long homoclinicstable and unstable manifolds which are also Lagrangian
orbits and it is only the segment endpoints which changénvariant manifolds. In such situations, to calculate action
from term to term; here we use the term orbits fordifferences it is permissible to deform paths (i.e., orbits)
segments without distinguishing between the two. Italong either manifold as long as the endpoints remain
turns out that first performing the double summationfixed. In Fig. 4, we show the simplest example. There
gives aC,(¢) which has the form of Eq. (1) except with are two primary homoclinic orbits; see Fig. 3. First,
a modified amplitude and phase for each orbit. Thefollow the emboldened path along the manifolds from
contributions taC, (¢) from two primary homoclinic orbits the periodic pointC to the homoclinic point 2 and back
are shown in Fig. 3. As can be seen in this figure, there io the periodic pointC’. The area enclosed by the path
a window of time, roughly the period of the periodic orbit, and thep = 0 axis (resonance zone) is the difference in
say 7, during which a given homoclinic orbit contributes action between the guiding periodic orbit and the shortest
to C,(r). The crucial question is then, “how do we primary homoclinic orbit. On the other hand, if we
understand the interference properties of homoclinic orbifollow C — 1 — A — C’, then one has the difference
contributions whose periods fall within of each other?”  with respect to the second primary homoclinic orbit.
We focus on the relative phases of different homoclinicComparing the two, one path encloses an additional loop
orbit contributions. In Fig. 3, it can be seen that overof the turnstile pictured with respect to the other. Thus,
the time window in which two orbits contribute and are the turnstile flux is the action difference between the two
both significant, the phase difference between them igrimary homoclinic orbits, and it controls the relative
for all practical purposes, a constant. The constancy is phase contribution among entire families of homoclinic
continuous time manifestation of an asymptotic simplicityorbit segments.
given by Eq. (A3) in the Appendix of O’Connet al. [9]. Beyond the primaries are an infinite number of other
Once the eigenvalue associated with the unstable manifol@milies of orbits. More and more of them contribute
A and the stable manifoldl/A satisfy the conditiom >  as time increases. In fact, in Fig. 2, approximately
1/A, the expressions reduce to factors that depend on tHe0 independent homoclinic paths are important in re-
initial and final states multiplied by an amplitude andconstructing the first revival at = 4.35. Each revival
afterwards involves 1000 times more orbits than the
previous one. The reason that chaotic revivals are so

- unexpected is that it is difficult to imagine how wave

q

FIG. 4. The stable and unstable manifolds of the horizontal
FIG. 3. Contributions to the autocorrelation function from the bouncing periodic orbit. Only one-quarter of the full phase
two primary homaoclinic orbits peictured above. The solid curveplane is shown. The unstable manifold originates from p@Gint
corresponds to the upper right orbit and the dashed curve to tthend the stable manifold frord”’. Points 1 andl’ correspond
upper left. At the same wavelength as the chaotic revival oto the upper right primary homoclinic orbit of Fig. 3 and point 2
Fig. 1, the semiclassical amplitudes of the homoclinic primarieshe upper left. The dashed area corresponds to the flux exiting
constructively interfere. the resonance zone.
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amplitude following seemingly random paths can lead tdor their existence, but more work is needed to know
a rebuilding of the initial state. Subtle, weak correlationswhat is both necessary and sufficient, especially: as
among orbit actions are actually necessary. The sam& An analysis of the semiclassical theory shows that
construction method applies for these other orbit familiesthe key determination of interference patterns is from
though the action differences have more complicatedhe action differences of returning orbits which can be
expressions; see [10] for a full discussion. The key resulbrganized by the homoclinic orbits. Furthermore, there
is that from a fairly small number of areas (actions), it isare action correlations in these returning paths which can
possible to generate an enormous number of orbit actiobe accounted for in this context. With these conditions,
differences leading necessarily to correlations among thi is possible to search systematically for examples of
orbit actions. To the extent that quantizing or nearly quanchaotic revivals which are rare. Also it is predicted
tizing certain areas is possible, significant constructivehat tuning a parameter such as the sidelength will lead
phase interference is guaranteed between the primariés special systems in which the revivals are even more
and also others. In fact, we used this quantization tspectacular.
locate the example shown. Because the chaotic revivals We gratefully acknowledge valuable discussion with
are rare and difficult to find, randomly choosing someProfessor O. Bohigas and Professor E.J. Heller, and
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