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Can Wave Packet Revivals Occur in Chaotic Quantum Systems?
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(Received 22 May 1997)

The short time revivals of initially localized wave packets are well known in simple, closed,
degree-of-freedom (1D) systems. In 2D or higher, if the system is integrable or has exclusively peri
dynamics, a generalization is possible. If the dynamics are chaotic, revivals have not been previo
seen and are,a priori, not expected. Nevertheless, we have found that some stretched wave packets
chaotic system experience, very early, surprisingly large recurrences. We extend a semiclassical t
founded on summing over heteroclinic orbits to determine a set of necessary conditions. The m
important one is an Einstein-Brillouin-Keller-like quantization of classical flux crossing the turnst
formed by the stable and unstable manifolds of the initial wave packet’s underlying central or
[S0031-9007(97)04472-4]
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In most quantum systems, initially localized wav
packets will spread and disperse as they are propaga
For systems with classical analogs exhibiting period
dynamics, such wave packets will reconstruct at relative
short times leading to “revivals” of the initial localized
state [1]. The most important and recent physical e
amples are given by coherent electronic wave packets
Rydberg atoms which have been theoretically treated
and experimentally measured [2]. The coulomb proble
is not unique though, and, quite generally, bound
1-degree-of-freedom (1D) systems possess periodic
namics, and thus manifest revival behavior. In the sh
wavelength limit, their spectra are locally uniform
(harmonic-oscillator-like) except that the energy spaci
between levels is slowly and smoothly changing. Bo
properties are essential for the initial dispersion and su
sequent revivals. An alternative semiclassical approa
makes direct use of the underlying classical evolution
explain the main quantum features including fraction
revivals [1,3].

In systems with more than 1D, the classical dynamics
almost always quasiperiodic (integrable), chaotic, or so
mixture of both. Early revivals of fully localized wave
packets can no longer be expected. For 2D integra
systems, one way to circumvent this problem is to crea
a stretched wave packet which is only localized transve
to some periodic orbit, but carrying a phase and slow
varying amplitude of the formA expsi

R
p ? dqyh̄d along

the orbit. This effectively reduces the wave packet
underlying dynamics to 1D. In this manner, the stretch
wave packet is constructed from a superposition of
portion of the eigenstates whose energy level spacings
nearly uniform. This cannot be done for chaotic system
whose energy levels repel as in random matrix theo
and whose eigenstates are not localized to tori in ph
space via Einstein-Brillouin-Keller (EBK) quantization
[4]. Nevertheless, in this Letter we show example
of stretched wave packets in the stadium billiard,
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paradigm of chaos, with behavior similar to the usua
revival behavior found in periodic dynamical systems
Although the occurrences are rare and only at particul
wavelengths, it is remarkable that any chaotic reviva
exist. We then show that the semiclassical theory o
wave packet propagation in chaotic systems [5] can b
further developed for stretched wave packets with littl
modification. From this we determine general condition
necessary to observe “chaotic revivals” and relate the
behavior to geometric phase space properties. Mo
specifically, the central, underlying, classical trajectory’
stable and unstable manifolds cross to form a complicat
“broken separatrix” which encloses a phase space volum
and has an associated turnstile determining the classi
flux of trajectories crossing in and out of this volume
[6]. The first two criteria are EBK-like quantization
conditions on the phase space volume inside and, mu
more importantly, the flux crossing through the turnstile.

From a dynamical viewpoint it is straightforward to see
why revivals in chaotic systems should not occur; we re
strict ourselves to 2D, bounded systems in a semiclassic
regime. Chaotic systems being unstable, the wave pac
will rapidly disperse in the transverse degree of freedom
Once dispersed, the underlying trajectories repeatedly e
plore the available phase space. At any given moment
time, between the initial central phase point’s neighbo
hood and any final point’s neighborhood, the wave func
tion will be constructed with many groups of trajectories
which have followed a large number of random-looking
paths. All those contributions ending at a particular po
sition will interfere to give the total wave function at that
point. Assuming the accumulated phases acquired alo
each path are more or less random, the evolution mu
appear as random moving waves; see Fig. 7 of [7]. Th
randomlike evolution would continue for enormously long
times, far beyond the time scales under consideratio
after which the discreteness of the spectrum eventua
enforces recurrences.
© 1997 The American Physical Society 3629
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Typically, this image is borne out. In the left column
of Fig. 1 we show time snap shots of the evolution o
the initial state constructed along the horizontal period
orbit of the stadium billiard pictured in the uppermos
frame. It rapidly disperses and then oscillates in som
complicated way with little discernible pattern. However
for some specific values of the wave vector, the evolutio
has a very different appearance. In the right column
Fig. 1, we see a case in which the initial state relocaliz
almost completely at just beyond double the period
its underlying periodic orbit. Furthermore, it continue
to relocalize repeatedly.

This unusual behavior is not predicted by Heller’s orig
nal linearized wave packet dynamics applied to scarring
eigenstates [8], nor has it anything to do with localizatio
due to vertical bouncing ball motion. With respect to th
former, the instability is too great to predict such large re
currences, and with respect to the latter, the revivals occ
so early in time that the slow entrance of the dynamic
into the bouncing-ball phase space domain is not yet a

FIG. 1. The time evolution of two stretched wave packets
the Bunimovich stadium. The evolution of an initial wave
packet spanning 27 wavelengths is shown in the left colum
On the right, the wave packet is 24 wavelengths across. T
contour levels are drawn forjcastdj2. Note thatt ­ 1 is the
time to cross the stadium horizontally at the mean momentum
3630
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parent. Neither is a spectral argument possible in this ca
as for integrable systems. This is for the same reasons t
revivals are not expected in chaotic systems. To stud
the revivals more quantitatively, we consider the initia
state’s sjald autocorrelation functionCastd ­ kajastdl.
Initially, Cas0d is unity from normalization and its de-
cay depends on the instability of the orbit, but is generall
rapid. We consider the system as exhibiting a chaotic r
vival whenCastd returns close to unity at a time beyond
which the initial state has completely dispersed, but lon
before the quantum recurrence implied by the discret
ness of the spectrum. In Fig. 2, we showCastd for the
two stretched wave packets of Fig. 1. The nonrevivin
wave packet displays a complicated, fluctuating time de
pendence. It is not shown here, but this behavior is ve
similar to that found with Gaussian orthogonal ensemb
(GOE) simulations. To make the GOE comparison it su
fices to fix an effective dimensionality given by the en
ergy uncertainty determined from the initial decay rate o
Castd divided by the local level density of the stadium. In
stark contrast, one can easily see the reviving wave pac
evolves in a very surprising, nearly periodic fashion up t
and far beyond the Heisenberg time scale defined by t
mean level spacing. Its initial dispersion shows no hint o
the impending, nearly complete rebuilding of the wave
into the initial state.

Turning to a theoretical explanation of the revival, if
jgl, kbj are localized in all degrees of freedom, then in
Ref. [5] it was shown that

Cbgstd ; kbjgstdl ø
X

j

AjstdeiSjstdy h̄2injpy2, (1)

where the indexj runs over all orbits heteroclinic to
the central trajectory ofjgl. Aj is a slowly varying
complex envelope,Sj is a classical action which changes
with time, andnj is a phrase index. The role of the
heteroclinic orbits is to provide a natural scheme fo
organizing all the returning dynamics at any fixed time

FIG. 2. The quantum autocorrelation functionCastd. The
solid curve corresponds to the right column stretched state
Fig. 1 and the dashed curve corresponds to the state in the
column.
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We first decomposed the initial stretched state into a ser
of Gaussian wave packets displaced along the perio
orbit. Consequently, the autocorrelation function for th
stretched stateCastd involves a double sum ofCbgstd
over all pairs of Gaussian wave packets that make
the initial and final stretched states. Note that becau
the state is stretched along a periodic orbit, essentia
identical homoclinic orbits arise for each pair. In fact, w
are using finite segments of the infinitely long homoclin
orbits and it is only the segment endpoints which chan
from term to term; here we use the term orbits fo
segments without distinguishing between the two.
turns out that first performing the double summatio
gives aCastd which has the form of Eq. (1) except with
a modified amplitude and phase for each orbit. Th
contributions toCastd from two primary homoclinic orbits
are shown in Fig. 3. As can be seen in this figure, there
a window of time, roughly the period of the periodic orbit
sayt, during which a given homoclinic orbit contributes
to Castd. The crucial question is then, “how do we
understand the interference properties of homoclinic or
contributions whose periods fall withint of each other?”

We focus on the relative phases of different homoclin
orbit contributions. In Fig. 3, it can be seen that ove
the time window in which two orbits contribute and ar
both significant, the phase difference between them
for all practical purposes, a constant. The constancy i
continuous time manifestation of an asymptotic simplici
given by Eq. (A3) in the Appendix of O’Connoret al. [9].
Once the eigenvalue associated with the unstable manif
l and the stable manifold1yl satisfy the conditionl ¿
1yl, the expressions reduce to factors that depend on
initial and final states multiplied by an amplitude an

FIG. 3. Contributions to the autocorrelation function from th
two primary homoclinic orbits peictured above. The solid curv
corresponds to the upper right orbit and the dashed curve to t
upper left. At the same wavelength as the chaotic revival
Fig. 1, the semiclassical amplitudes of the homoclinic primari
constructively interfere.
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phase that involve only the orbit, but is independent
the states.

This result represents a great simplicity since it rende
the main problem one of systematically studying th
relative homoclinic orbit action differences on a fixe
energy surface. Using known techniques [6], it is possib
to relate them to phase space structures. The main i
is that the homoclinic orbits lie at the intersections of th
stable and unstable manifolds which are also Lagrang
invariant manifolds. In such situations, to calculate actio
differences it is permissible to deform paths (i.e., orbit
along either manifold as long as the endpoints rema
fixed. In Fig. 4, we show the simplest example. The
are two primary homoclinic orbits; see Fig. 3. Firs
follow the emboldened path along the manifolds from
the periodic pointC to the homoclinic point 2 and back
to the periodic pointC0. The area enclosed by the pat
and thep ­ 0 axis (resonance zone) is the difference
action between the guiding periodic orbit and the shorte
primary homoclinic orbit. On the other hand, if we
follow C ! 1 ! A ! C0, then one has the difference
with respect to the second primary homoclinic orbi
Comparing the two, one path encloses an additional lo
of the turnstile pictured with respect to the other. Thu
the turnstile flux is the action difference between the tw
primary homoclinic orbits, and it controls the relativ
phase contribution among entire families of homoclin
orbit segments.

Beyond the primaries are an infinite number of oth
families of orbits. More and more of them contribut
as time increases. In fact, in Fig. 2, approximate
50 independent homoclinic paths are important in r
constructing the first revival att ø 4.35. Each revival
afterwards involves 1000 times more orbits than th
previous one. The reason that chaotic revivals are
unexpected is that it is difficult to imagine how wav

FIG. 4. The stable and unstable manifolds of the horizon
bouncing periodic orbit. Only one-quarter of the full phas
plane is shown. The unstable manifold originates from pointC
and the stable manifold fromC0. Points 1 and10 correspond
to the upper right primary homoclinic orbit of Fig. 3 and point
the upper left. The dashed area corresponds to the flux exit
the resonance zone.
3631
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amplitude following seemingly random paths can lead
a rebuilding of the initial state. Subtle, weak correlation
among orbit actions are actually necessary. The sa
construction method applies for these other orbit familie
though the action differences have more complicat
expressions; see [10] for a full discussion. The key res
is that from a fairly small number of areas (actions), it
possible to generate an enormous number of orbit act
differences leading necessarily to correlations among
orbit actions. To the extent that quantizing or nearly qua
tizing certain areas is possible, significant constructi
phase interference is guaranteed between the prima
and also others. In fact, we used this quantization
locate the example shown. Because the chaotic reviv
are rare and difficult to find, randomly choosing som
wave vector and testing for whether a revival existe
turned out to be too inefficient to be of any help.

Quantizing the resonance zone, including the pha
index, enforces constructive interference between t
periodic orbit and a single primary homoclinic orbit fam
ily. By quantizing the turnstile both primary families are
constructively interfering and action differences depen
ing on multiples of the turnstile action must return i
phase as well. In the stadium, it turns out that more wa
amplitude is controlled by the homoclinic primaries tha
the guiding periodic orbit at the wavelengths considere
Thus, the most important criterion for finding revivals i
the stadium in this wavelength regime turned out to b
the quantization of the turnstile. However, note that w
could alter the sidelength to values for which both res
nance and turnstile areas would quantize simultaneou
(which is not the case in Fig. 1) leading to more perfe
revivals than the example shown in the Letter [11].

As h̄ ! 0, quantizing only the turnstile will become
insufficient to imply a chaotic revival since less an
less amplitude at short times will be controlled by th
primary families. New quantization conditions will arise
(an infinity of them) depending on how the manifold
slice through the turnstile and on action correction
arising from piecing together complicated orbits from
the primaries. It is unknown to us whether a sufficien
number of conditions will be able to be simultaneous
fulfilled to continue to imply revivals for special̄h values.

The arguments given here are general and do n
depend on any special property of billiard systems. Th
require only that the manifolds are continuous. On
physical example of a system to which our logic applies
the diamagnetic hydrogen atom [12]. It may be possib
therefore to find similar behavior there.

To conclude briefly, we have found some exampl
of stretched wave packets which nearly revive in
chaotic system. Their behavior exhibits similarities an
differences with respect to their counterparts in integrab
systems. We have given some necessary conditio
3632
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for their existence, but more work is needed to know
what is both necessary and sufficient, especially ash̄ !

0. An analysis of the semiclassical theory shows tha
the key determination of interference patterns is from
the action differences of returning orbits which can be
organized by the homoclinic orbits. Furthermore, ther
are action correlations in these returning paths which ca
be accounted for in this context. With these conditions
it is possible to search systematically for examples o
chaotic revivals which are rare. Also it is predicted
that tuning a parameter such as the sidelength will lea
to special systems in which the revivals are even mor
spectacular.
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