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We present the next-to-leading order calculation of two four-jet event shape variableB, phae
rameter, and acoplanarity differential distributions. We find large, more than 100% radiative correc-
tions. The theoretical prediction for the parameter is compared to L3 data obtained atZhgeak
and corrected to hadron level. [S0031-9007(97)04436-0]
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In the second phase of the Large Electron-Positron Col- We use the matrix elements of Ref. [7] for the loop
lider it is an important question how well the character-corrections. In the calculation of these matrix elements
istics of QCD four-jet events, i.e., events in which an all quark and lepton masses are set to zero; thus our
channelz® or y* decays into four quark and gluon jets, results are valid in the massless limit. We note that the
are understood at large energies. This question is of irresults in Ref. [7] do notinclude the “light-by-glue” virtual
terest becaus® * W~ events lead to four-jet final states contributions which were shown to be negligible [11].
for which the main backgrounds are QCD events and be- The higher order correction to the leading order par-
cause QCD four-jet events are also the principal sourceonic cross sectiowr™© is a sum of two integrals, one of
of background for Higgs and other new particle searcheghe real correction/o® that is an exclusive cross section
The perturbative description of the QCD four-jet eventsof five partons in the final state and the other of the vir-
is also interesting in its own right as a tool for testingtual correctiondaV that is the one-loop correction to the
perturbation theory in a regime with small hadronizationprocess with four partons in the final state:

uncertainty and for measuring the QCD color charges [1],
or as a means of testing whether experimental data favor o0 = f do™t0 = deUR + LdUV’ 1)
or exclude the existence of light gluinos [2]. where
Recent theoretical developments make possible the
next-to-leading order calculation of four-jet quantities. deO'R = f dTO (M=) s 2)

There are now several general methods available for th

cancellation of infrared divergences that can be use o

for setting up a Monte Carlo evaluation of next-to- ]dav =fdl“<4)<|3\/l4 P12V4. (3)
4

leading order partonic cross sections [3—5]. The main : . :
ingredients of the calculation are the four-parton next-to- The two integrals on the right-hand side of Eqg. (1) are

leading order and five-parton Born level squared matri .e.parately divergent = 4.dimens.ions, buF their sum is
elements. The tree level amplitudes for the process éﬂlte provided the jet functiod,, defines an infrared safe
ete” — gggeg and ete” — Gg0Qg from which the guantity. Therefore, the separate pieces have to be regu-
latter can be constructed have been known for a long tim@”zed' We use dlmensmnal regglar|zat|ondn= 4 -

[6]. Recently Campbell, Glover, and Miller calculated the 2¢ dimensions, in which case the divergences are replaced

other vital piece of information, the virtual corrections by dOUb"? an_d single polesin We assume that ultraviolet
for the processes* e~ — y* — gg0Q and gqgg [7] renormalization of all Green functions to one-loop order

Also, the new techniques developed by Bern, Dixon,ha_?_hbeen carried oult, o] thefpoles are Omerared I(I)rlgln. f
and Kosower in the calculation of one-loop multiparton. ere are several ways of exposing the cancellation o

helicity amplitudes [8] made possible the derivation ofinfrared singularities directly at the integrand level [3—5].

analytic expressions for the helicity amplitudes of the_The method used in the calculation presented in this Letter

ete” — 7% 4* — Gq0Q process [9] and results for the is a sljghtly modified version Qf the dipole formalism o_f

other subprocess are expected to appear soon. Usi tani and Seymour [‘L._’] that is based on f[he subtraction
these results Dixon and Signer calculated the next- e_t.hod. The general idea of the subtraction mgthod for
to-leading order corrections for four-jet fractions with writing a general-purpose Monte Carlo program is to use

various clustering algorithms [10,11]. the identity

In this Letter we enlarge the list of four-jet observables ,NLO _ f[daR —do™] + f[dgV + [da'Ai|,
that are calculated to next-to-leading order accuracy. 5 4 1
We present results of the calculation of QCD radiative 4)
corrections to two four-jet shape variable differentialwheredo? in the dipole formalism is a proper approxi-
distributions—theD parameter and acoplanarity. mation of do® in the kinematically degenerate (soft and
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collinear) region so that it has the same pointwise singuall of its singular limits. These features lead to a well-
lar behavior (ind dimensions) asioR itself. As a re- converging partonic Monte Carlo program.

sult, do® acts as a local counterterm faioR; that is, In this Letter we consider two classic four-jet event
(do® — do?) is integrable in four dimensions by defi- shape variables. Th® parameter [12] is derived from
nition. The approximate cross section is constructed irthe eigenvalues of the mfrared safe momentum tensor
such a way that it can be integrated analytically over - p pa

the exactly factorized one-parton subspace leading to 0" = = /lea , (6)
poles, that can be combined with thosedaY. The e

poles are guaranteed to cancel for infrared safe obserwhere the sum om runs over all final state hadrons and
ables (Kinoshita-Lee-Nauenberg theorem). These quarp! is the ith component of the three-momentupy of
tities have to be experimentally (theoretically) defined inhadrona in the c.m. system. The tens@ris normalized
such a way that their actual value is independent of théo have unit trace. In terms of the eigenvalugsof the
number of soft and collinear hadrons (partons) produced X 3 matrix 6, the global shape parametbris defined

in the final state. In particular, this value has to be theas

same in a given fpur-parton conflguratlo_n and in all five- D =27\ )5, )
parton configurations that are kinematically degenerate ) . )

with it (i.e., that are obtained from the four-parton con- 1he second observable is acoplanarity [13] defined as
figuration by adding a soft parton or replacing a parton D lp

with a pair of collinear partons carrying the same total mo- S 1 pal ) (8)

mentum). This property can be simply restated in a for-
) property Py where the sum runs over all particles in an event, and

mal way. If the function/, gives the value of a certain _'_~
jet observable in terms of the momenta of thénal-state py"' is measured perpendicular to a plane chosen to mini-
mize A.

partons, we should have

A= 4min<

In the case of the shape variable differential distribu-
Js — Jy, (5) tions for observable) the jet functionJ, is actually a
functional,
in any case where the five-parton and the four-parton
configurations are kinematically degenerate. It is easy I, =80 —o"), 9)

to prove that the observables considered in this Lettefyhere D) is given by Eq. (7) andd™ is given by
fulfill this property. When the requirement of infrared gq. (8).

safety, relation (5) is fulfiled the second integgl in Once the integrations in Eq.(4) are carried out, the
Eq. (4) is also finite ind = 4 dimensions ando next-to-leading order differential cross section for the

can be easily implemented in a “partonic Monte Carlo”four-jet observable, takes the general form
program that generates appropriately weighted partonic

2 3
events with five final-state partons and events with 04;—0(04) <M> Bo,(04) + <M>

four partons. 90 27 27

For the precise definition of the approximate cross w?
section in the dipole formalism, we refer to the original X [304(04)'80'” 5 + C04(04)]
work of Catani and Seymour [5]. The distinct feature of (10)

this formalism as compared to other subtraction methods

[4] is the exact factorization of the five-particle phaseln this equatlonao denotes the Born cross section for
space into a four-particle and a one-particle phase spac#e process e — gq, Bo = (3 Ca — 3 TRNf) with
and that the approximate cross section provides a singkhe normalizationT; = % in Tr(T°T1) = Tx6%, s
and smooth approximation of the real cross section irns the total c.m. energy squared, is the normalization

TABLE I. Comparison of the four-jet fractions calculated by the two partonic Monte Carlo
programsMENLO PARC and DEBRECEN (this work).

Algorithm Yeut MENLO PARC DEBRECEN

0.005 (1.04 = 0.02) X 107! (1.05 = 0.004) X 107!

Durham 0.01 (4.70 = 0.06) X 1072 (4.66 = 0.02) X 1072
0.03 (6.82 = 0.08) X 1073 (6.87 = 0.04) x 1073

0.02 (2.56 + 0.06) X 107! (2.63 = 0.06) X 107!

Geneva 0.03 (1.71 = 0.03) x 107! (1.75 = 0.03) x 107!
0.05 (8.58 = 0.15) X 1072 (8.27 = 0.08) X 1072

0.005 (3.79 = 0.08) X 107! (3.88 £ 0.07) X 107!

EO 0.01 (1.88 = 0.03) x 107! (1.92 = 0.01) x 107!
0.03 (3.46 = 0.05) X 1072 (3.37 = 0.01) X 1072

3605



VOLUME 79, NUMBER 19

PHYSICAL REVIEW LETTERS

10 NVEMBER 1997

TABLE Il. The Born level and next-to-leading order scale
independent function8, andCp.

D Bp Cp

0.00 (6.60 = 0.02) X 10? (1.08 = 0.06) x 10*
0.04 (2.32 = 0.01) X 10? (1.24 = 0.02) x 10*
0.08 (1.45 = 0.01) X 10? (8.59 + 0.12) x 10°
0.12 (1.03 = 0.01) X 10? (6.24 = 0.12) X 10°
0.16 (7.74 = 0.05) % 10! (4.99 * 0.11) x 10°
0.20 (5.97 = 0.04) x 10! (3.85 = 0.06) x 10°
0.24 (4.69 = 0.03) x 10! (2.98 + 0.05) x 10°
0.28 (3.77 = 0.03) x 10! (2.52 = 0.05) x 10°
0.32 (3.01 = 0.02) x 10! (1.94 + 0.05) x 10°
0.36 (2.41 = 0.02) x 10! (1.59 + 0.04) x 10°
0.40 (1.98 = 0.02) x 10! (1.37 £ 0.03) X 10°
0.44 (1.61 = 0.02) x 10! (1.06 + 0.03) x 10°
0.48 (1.30 = 0.01) x 10! (8.72 = 0.19) X 10?
0.52 (1.07 = 0.01) x 10! (7.11 = 0.16) X 10?
0.56 (8.48 = 0.10) x 10° (5.68 = 0.14) x 10?
0.60 (6.70 = 0.09) < 10° (4.46 = 0.21) X 10?
0.64 (5.33 = 0.08) x 10° (3.52 = 0.11) x 10?
0.68 (4.10 = 0.07) x 10° (2.74 * 0.09) X 10?
0.72 (3.11 = 0.06) x 10° (2.08 + 0.08) x 10?
0.76 (2.24 = 0.05) x 10° (1.54 + 0.06) X 10?
0.80 (1.52 = 0.04) x 10° (1.03 = 0.04) X 10?
0.84 (9.95 = 0.30) x 107! (6.66 = 0.31) x 10!
0.88 (5.74 = 0.22) x 107! (3.89 = 0.20) x 10!
0.92 (2.68 = 0.15) x 107! (1.71 = 0.19) x 10!
0.96 (5.16 £ 0.61) X 1072 (2.60 *= 1.30) x 10°

scale, whileB,, andCy, are scale independent functions,
By, is the Born approximation, andy, is the radiative

correction.

The first complete results obtained for four-jet observ-
ables at next-to-leading order accuracy [11] are four-j
rates for three clustering algorithms: the Durham [14], th
Geneva [15], and the EO [16] schemes calculated for thre

colors, five massless flavors, and with(M;) = 0.118.

TABLE IlI.

The Born level and next-to-leading order scale

independent function84 andCy.

A By Ca

0.00 (3.34 = 0.01) X 10? (1.56 = 0.01) x 10*
0.04 (7.39 * 0.03) X 10! (5.17 = 0.08) x 10°
0.08 (3.63 £ 0.02) X 10! (2.69 = 0.06) X 103
0.12 (2.05 £ 0.01) x 10! (1.56 = 0.03) X 103
0.16 (1.23 £ 0.01) x 10! (9.59 = 0.22) X 102
0.20 (7.63 = 0.07) x 10° (6.12 = 0.15) X 102
0.24 (4.81 = 0.05) x 10° (3.97 = 0.12) X 102
0.28 (3.02 = 0.04) x 10° (2.57 = 0.09) X 102
0.32 (1.78 = 0.03) x 10° (1.59 = 0.08) X 102
0.36 (1.08 = 0.02) x 10° (1.10 = 0.06) X 102
0.40 (5.99 = 0.17) x 107! (5.99 * 0.33) x 10!
0.44 (3.19 = 0.12) x 107! (3.67 £ 0.25) X 10!
0.48 (1.51 = 0.09) x 107! (1.90 + 0.99) x 10!
0.52 (5.91 = 0.52) X 1072 (8.45 = 0.99) x 10°
0.56 (1.55 = 0.26) X 1072 (2.84 = 0.42) x 10°
0.60 (1.33 = 0.84) x 1073 (7.64 = 1.77) X 107!
0.64 (0.00 = 0.00) x 10° (5.55 = 2.66) X 1072
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FIG. 1. Renormalization scale dependence of the average
value of theD parameter.x, = u/+/s.

We also calculated these observables and compared the
results of the two calculations in Table I. There is a
very good agreement between the two calculations apart
from the 3% discrepancy in the Geneva scheme result at
Yeur = 0.05.

We list the numerical values fd&p, Cp in Table Il and
those forB4 andC, in Table Ill. Our program generates
four and five parton events with an appropriate weight. In
order to obtain theBp, and Cy, functions we calculated
the O, observable of each event, multiplied each weight
by 04, and added to the appropriate .

We define the average value of these shape variables as

1 [t do
Oy = — dOy, 04 —. 11
(0s) U[O 10455 (11)

parameter on the renormalization scale in Fig. 1. The
gtrong dependence found at leading order is decreased at
next-to-leading order. However, there still remains sub-
stantial scale dependence showing that the uncalculated

eég/e studied the dependence of the average value of the

K(O,) factor
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FIG. 2. K factor of theD parameter and acoplanarity.
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D parameter tive corrections to the differential cross section of any kind
of four-jet observable in electron-positron annihilation.
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Note added—After the completion of this work,
the helicity amplitudes of the*e™ — Z°, y* — gqgg
process have been published [18], and the agreement
with the results of Ref. [7] in they* channel has been
established. Also, the authors of Ref. [11] pointed out
a slight error in our binning procedure in the case of

u | | | | ‘ the Geneva algorithm. Correcting this error we find
10 T s Toe s T R4(yewr = 0.05) = (8.37 = 0.12) X 1072 that agrees

D with the result of Ref. [11].
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FIG. 3. Comparison of the next-to-leading order QCD predic-
tion for the D parameter differential distributiort j—g to L3
data obtained at th&° peak and corrected to hadron level. The
upper edge of the theoretical band is obtained with renormal-
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