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Next-to-Leading Order Calculation of Four-Jet Shape Variables
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We present the next-to-leading order calculation of two four-jet event shape variables, theD pa-
rameter, and acoplanarity differential distributions. We find large, more than 100% radiative correc-
tions. The theoretical prediction for theD parameter is compared to L3 data obtained at theZ0 peak
and corrected to hadron level. [S0031-9007(97)04436-0]
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In the second phase of the Large Electron-Positron Co
lider it is an important question how well the character
istics of QCD four-jet events, i.e., events in which ans
channelZ0 or gp decays into four quark and gluon jets
are understood at large energies. This question is of
terest becauseW1W2 events lead to four-jet final states
for which the main backgrounds are QCD events and b
cause QCD four-jet events are also the principal sour
of background for Higgs and other new particle searche
The perturbative description of the QCD four-jet event
is also interesting in its own right as a tool for testing
perturbation theory in a regime with small hadronizatio
uncertainty and for measuring the QCD color charges [1
or as a means of testing whether experimental data fav
or exclude the existence of light gluinos [2].

Recent theoretical developments make possible t
next-to-leading order calculation of four-jet quantities
There are now several general methods available for t
cancellation of infrared divergences that can be us
for setting up a Monte Carlo evaluation of next-to
leading order partonic cross sections [3–5]. The ma
ingredients of the calculation are the four-parton next-to
leading order and five-parton Born level squared matr
elements. The tree level amplitudes for the process
e1e2 ! q̄qggg and e1e2 ! q̄qQ̄Qg from which the
latter can be constructed have been known for a long tim
[6]. Recently Campbell, Glover, and Miller calculated the
other vital piece of information, the virtual corrections
for the processese1e2 ! gp ! q̄qQ̄Q and q̄qgg [7].
Also, the new techniques developed by Bern, Dixon
and Kosower in the calculation of one-loop multiparto
helicity amplitudes [8] made possible the derivation o
analytic expressions for the helicity amplitudes of th
e1e2 ! Z0, gp ! q̄qQ̄Q process [9] and results for the
other subprocess are expected to appear soon. Us
these results Dixon and Signer calculated the nex
to-leading order corrections for four-jet fractions with
various clustering algorithms [10,11].

In this Letter we enlarge the list of four-jet observable
that are calculated to next-to-leading order accurac
We present results of the calculation of QCD radiativ
corrections to two four-jet shape variable differentia
distributions—theD parameter and acoplanarity.
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l-
-

,
in-

e-
ce
s.
s

n
],
or

he
.
he
ed
-
in
-

ix
es

e

,
n
f
e

ing
t-

s
y.
e
l

We use the matrix elements of Ref. [7] for the loo
corrections. In the calculation of these matrix elemen
all quark and lepton masses are set to zero; thus
results are valid in the massless limit. We note that t
results in Ref. [7] do not include the “light-by-glue” virtua
contributions which were shown to be negligible [11].

The higher order correction to the leading order pa
tonic cross sectionsLO is a sum of two integrals, one of
the real correctiondsR that is an exclusive cross sectio
of five partons in the final state and the other of the v
tual correctiondsV that is the one-loop correction to the
process with four partons in the final state:

sNLO ;
Z

dsNLO ­
Z

5
dsR 1

Z
4

dsV , (1)

where Z
5

dsR ­
Z

dGs5d kjM tree
5 j2lJ5 (2)

and Z
4

dsV ­
Z

dGs4d kjM12loop
4 j2lJ4 . (3)

The two integrals on the right-hand side of Eq. (1) a
separately divergent ind ­ 4 dimensions, but their sum is
finite provided the jet functionJn defines an infrared safe
quantity. Therefore, the separate pieces have to be re
larized. We use dimensional regularization ind ­ 4 2

2´ dimensions, in which case the divergences are repla
by double and single poles iń. We assume that ultraviolet
renormalization of all Green functions to one-loop ord
has been carried out, so the poles are of infrared origin

There are several ways of exposing the cancellation
infrared singularities directly at the integrand level [3–5
The method used in the calculation presented in this Le
is a slightly modified version of the dipole formalism o
Catani and Seymour [5] that is based on the subtract
method. The general idea of the subtraction method
writing a general-purpose Monte Carlo program is to u
the identity

sNLO ­
Z

5
fdsR 2 dsAg 1

Z
4

∑
dsV 1

Z
1

dsA

∏
,

(4)
wheredsA in the dipole formalism is a proper approxi
mation of dsR in the kinematically degenerate (soft an
© 1997 The American Physical Society
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collinear) region so that it has the same pointwise sing
lar behavior (ind dimensions) asdsR itself. As a re-
sult, dsA acts as a local counterterm fordsR; that is,
sdsR 2 dsAd is integrable in four dimensions by defi-
nition. The approximate cross section is constructed
such a way that it can be integrated analytically ov
the exactly factorized one-parton subspace leading to´

poles, that can be combined with those indsV . The ´

poles are guaranteed to cancel for infrared safe obse
ables (Kinoshita-Lee-Nauenberg theorem). These qu
tities have to be experimentally (theoretically) defined
such a way that their actual value is independent of t
number of soft and collinear hadrons (partons) produc
in the final state. In particular, this value has to be th
same in a given four-parton configuration and in all five
parton configurations that are kinematically degenera
with it (i.e., that are obtained from the four-parton con
figuration by adding a soft parton or replacing a parto
with a pair of collinear partons carrying the same total m
mentum). This property can be simply restated in a fo
mal way. If the functionJn gives the value of a certain
jet observable in terms of the momenta of then final-state
partons, we should have

J5 ! J4 , (5)

in any case where the five-parton and the four-part
configurations are kinematically degenerate. It is ea
to prove that the observables considered in this Let
fulfill this property. When the requirement of infrared
safety, relation (5) is fulfilled the second integral i
Eq. (4) is also finite ind ­ 4 dimensions andsNLO

can be easily implemented in a “partonic Monte Carlo
program that generates appropriately weighted parto
events with five final-state partons and events wi
four partons.

For the precise definition of the approximate cros
section in the dipole formalism, we refer to the origina
work of Catani and Seymour [5]. The distinct feature o
this formalism as compared to other subtraction metho
[4] is the exact factorization of the five-particle phas
space into a four-particle and a one-particle phase spa
and that the approximate cross section provides a sin
and smooth approximation of the real cross section
TABLE I. Comparison of the four-jet fractions calculated by the two partonic Monte Carlo
programsMENLO PARC andDEBRECEN(this work).

Algorithm ycut MENLO PARC DEBRECEN

0.005 s1.04 6 0.02d 3 1021 s1.05 6 0.004d 3 1021

Durham 0.01 s4.70 6 0.06d 3 1022 s4.66 6 0.02d 3 1022

0.03 s6.82 6 0.08d 3 1023 s6.87 6 0.04d 3 1023

0.02 s2.56 6 0.06d 3 1021 s2.63 6 0.06d 3 1021

Geneva 0.03 s1.71 6 0.03d 3 1021 s1.75 6 0.03d 3 1021

0.05 s8.58 6 0.15d 3 1022 s8.27 6 0.08d 3 1022

0.005 s3.79 6 0.08d 3 1021 s3.88 6 0.07d 3 1021

E0 0.01 s1.88 6 0.03d 3 1021 s1.92 6 0.01d 3 1021

0.03 s3.46 6 0.05d 3 1022 s3.37 6 0.01d 3 1022
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all of its singular limits. These features lead to a well
converging partonic Monte Carlo program.

In this Letter we consider two classic four-jet even
shape variables. TheD parameter [12] is derived from
the eigenvalues of the infrared safe momentum tensor

uij ­
X
a

pi
ap

j
a

j $paj

¡ X
a

j $paj , (6)

where the sum ona runs over all final state hadrons and
pi

a is the ith component of the three-momentum$pa of
hadrona in the c.m. system. The tensoru is normalized
to have unit trace. In terms of the eigenvaluesli of the
3 3 3 matrix u, the global shape parameterD is defined
as

D ­ 27l1l2l3 . (7)

The second observable is acoplanarity [13] defined as

A ­ 4 min

µP
a j $p out

a jP
a j $paj

∂2

, (8)

where the sum runs over all particles in an event, an
$p out

a is measured perpendicular to a plane chosen to mi
mizeA.

In the case of the shape variable differential distribu
tions for observableO the jet functionJn is actually a
functional,

Jn ­ dsO 2 Osndd , (9)

where Dsnd is given by Eq. (7) andAsnd is given by
Eq. (8).

Once the integrations in Eq. (4) are carried out, th
next-to-leading order differential cross section for th
four-jet observableO4 takes the general form

1
s0

O4
ds

dO4
sO4d ­

µ
assmd

2p

∂2

BO4 sO4d 1

µ
assmd

2p

∂3

3

∑
BO4 sO4db0 ln

m2

s
1 CO4sO4d

∏
.

(10)

In this equations0 denotes the Born cross section fo
the processe1e2 ! q̄q, b0 ­ s 11

3 CA 2
4
3 TRNfd with

the normalizationTR ­
1
2 in TrsT aTybd ­ TRdab, s

is the total c.m. energy squared,m is the normalization
3605
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TABLE II. The Born level and next-to-leading order scale
independent functionsBD andCD .

D BD CD

0.00 s6.60 6 0.02d 3 102 s1.08 6 0.06d 3 104

0.04 s2.32 6 0.01d 3 102 s1.24 6 0.02d 3 104

0.08 s1.45 6 0.01d 3 102 s8.59 6 0.12d 3 103

0.12 s1.03 6 0.01d 3 102 s6.24 6 0.12d 3 103

0.16 s7.74 6 0.05d 3 101 s4.99 6 0.11d 3 103

0.20 s5.97 6 0.04d 3 101 s3.85 6 0.06d 3 103

0.24 s4.69 6 0.03d 3 101 s2.98 6 0.05d 3 103

0.28 s3.77 6 0.03d 3 101 s2.52 6 0.05d 3 103

0.32 s3.01 6 0.02d 3 101 s1.94 6 0.05d 3 103

0.36 s2.41 6 0.02d 3 101 s1.59 6 0.04d 3 103

0.40 s1.98 6 0.02d 3 101 s1.37 6 0.03d 3 103

0.44 s1.61 6 0.02d 3 101 s1.06 6 0.03d 3 103

0.48 s1.30 6 0.01d 3 101 s8.72 6 0.19d 3 102

0.52 s1.07 6 0.01d 3 101 s7.11 6 0.16d 3 102

0.56 s8.48 6 0.10d 3 100 s5.68 6 0.14d 3 102

0.60 s6.70 6 0.09d 3 100 s4.46 6 0.21d 3 102

0.64 s5.33 6 0.08d 3 100 s3.52 6 0.11d 3 102

0.68 s4.10 6 0.07d 3 100 s2.74 6 0.09d 3 102

0.72 s3.11 6 0.06d 3 100 s2.08 6 0.08d 3 102

0.76 s2.24 6 0.05d 3 100 s1.54 6 0.06d 3 102

0.80 s1.52 6 0.04d 3 100 s1.03 6 0.04d 3 102

0.84 s9.95 6 0.30d 3 1021 s6.66 6 0.31d 3 101

0.88 s5.74 6 0.22d 3 1021 s3.89 6 0.20d 3 101

0.92 s2.68 6 0.15d 3 1021 s1.71 6 0.19d 3 101

0.96 s5.16 6 0.61d 3 1022 s2.60 6 1.30d 3 100

scale, whileBO4 andCO4 are scale independent functions
BO4 is the Born approximation, andCO4 is the radiative
correction.

The first complete results obtained for four-jet observ
ables at next-to-leading order accuracy [11] are four-j
rates for three clustering algorithms: the Durham [14], th
Geneva [15], and the E0 [16] schemes calculated for thr
colors, five massless flavors, and withassMZd ­ 0.118.

TABLE III. The Born level and next-to-leading order scale
independent functionsBA andCA.

A BA CA

0.00 s3.34 6 0.01d 3 102 s1.56 6 0.01d 3 104

0.04 s7.39 6 0.03d 3 101 s5.17 6 0.08d 3 103

0.08 s3.63 6 0.02d 3 101 s2.69 6 0.06d 3 103

0.12 s2.05 6 0.01d 3 101 s1.56 6 0.03d 3 103

0.16 s1.23 6 0.01d 3 101 s9.59 6 0.22d 3 102

0.20 s7.63 6 0.07d 3 100 s6.12 6 0.15d 3 102

0.24 s4.81 6 0.05d 3 100 s3.97 6 0.12d 3 102

0.28 s3.02 6 0.04d 3 100 s2.57 6 0.09d 3 102

0.32 s1.78 6 0.03d 3 100 s1.59 6 0.08d 3 102

0.36 s1.08 6 0.02d 3 100 s1.10 6 0.06d 3 102

0.40 s5.99 6 0.17d 3 1021 s5.99 6 0.33d 3 101

0.44 s3.19 6 0.12d 3 1021 s3.67 6 0.25d 3 101

0.48 s1.51 6 0.09d 3 1021 s1.90 6 0.99d 3 101

0.52 s5.91 6 0.52d 3 1022 s8.45 6 0.99d 3 100

0.56 s1.55 6 0.26d 3 1022 s2.84 6 0.42d 3 100

0.60 s1.33 6 0.84d 3 1023 s7.64 6 1.77d 3 1021

0.64 s0.00 6 0.00d 3 100 s5.55 6 2.66d 3 1022
3606
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FIG. 1. Renormalization scale dependence of the aver
value of theD parameter. xm ­ my

p
s.

We also calculated these observables and compared
results of the two calculations in Table I. There is
very good agreement between the two calculations ap
from the 3% discrepancy in the Geneva scheme resul
ycut ­ 0.05.

We list the numerical values forBD, CD in Table II and
those forBA andCA in Table III. Our program generates
four and five parton events with an appropriate weight.
order to obtain theBO4 and CO4 functions we calculated
the O4 observable of each event, multiplied each weig
by O4, and added to the appropriate binO4.

We define the average value of these shape variable

kO4l ­
1
s

Z 1

0
dO4 O4

ds

dO4
. (11)

We studied the dependence of the average value of
D parameter on the renormalization scale in Fig. 1. T
strong dependence found at leading order is decrease
next-to-leading order. However, there still remains su
stantial scale dependence showing that the uncalcula

FIG. 2. K factor of theD parameter and acoplanarity.
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FIG. 3. Comparison of the next-to-leading order QCD predic
tion for the D parameter differential distribution,Ds

ds

dD to L3
data obtained at theZ0 peak and corrected to hadron level. Th
upper edge of the theoretical band is obtained with renorm
ization scalexm ­ 0.1, while the lower edge atxm ­ 1.

higher order corrections are presumably large. The fe
ture is similar in the case of acoplanarity, but the residu
scale dependence is even larger.

The same conclusion is drawn if we look at th
dependence of theK factors on the observables as
depicted in Fig. 2. In case of theD parameter theK
factor is slightly above 2 for the whole range, while fo
acoplanarity it is even larger and increases for larg
values of A. This suggests thatA cannot be reliable
calculated in perturbation theory.

Finally, in Fig. 3 we compare the next-to-leading orde
QCD prediction for theD parameter to L3 data obtained
at the Z0 peak [17] and corrected to hadron leve
The inclusion of the higher order correction decreas
the discrepancy between the next-to-leading order QC
prediction and the data. However, there still remain
significant discrepancy. This difference may come in pa
from hadronization effects, and also from the uncalculat
even higher order contributions.

In this Letter we presented for the first time a next-to
leading order calculation of the differential cross sectio
of two classic four-jet shape variables, theD parameter,
and acoplanarity. We gave explicit results for the radi
tive corrections to the leading order cross sections. T
corrections are large indicating that the uncalculated ev
higher order terms are important. This feature is esp
cially dramatic in the case of acoplanarity suggesting th
this observable cannot be reliable calculated in perturb
tion theory. We also compared the four-jet rates obtain
by our program to the results of Dixon and Signer [11
and found agreement.

These results were produced by a partonic Monte Ca
program that can be used for the calculation of QCD radi
-
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tive corrections to the differential cross section of any kin
of four-jet observable in electron-positron annihilation.
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Note added:—After the completion of this work,
the helicity amplitudes of thee1e2 ! Z0, gp ! q̄qgg
process have been published [18], and the agreeme
with the results of Ref. [7] in thegp channel has been
established. Also, the authors of Ref. [11] pointed ou
a slight error in our binning procedure in the case o
the Geneva algorithm. Correcting this error we find
R4s ycut ­ 0.05d ­ s8.37 6 0.12d 3 1022 that agrees
with the result of Ref. [11].
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