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Domain Wall Quarks and Kaon Weak Matrix Elements
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We present lattice calculations of kaon matrix elements with domain wall fermions. Using lattices
with 6/g> = 5.85, 6.0, and 6.3, we estima®y(u = 2 GeV) = 0.628(47) in quenched QCD, which
is consistent with previous calculations. A¥g> = 6.0 and 5.85 we find the ratigfx/m,, in
agreement with the experimental value, within errors. These results support expectatiofgdthat
errors are exponentially suppressed in low engiy< a~') observables, and indicate that domain
wall fermions have good scaling behavior at relatively strong couplings. We also demonstrate that
the axial current numerically satisfies the lattice analog of the usual continuum axial Ward identity.
[S0031-9007(97)04682-6]

PACS numbers: 12.38.Gc, 11.30.Rd, 14.40.Aq

While lattice gauge theory has made significant progressonvention. This leads to the appearance of massless
in addressing the outstanding challenge of calculatinghiral modes on the boundaries of the fifth dimension, a
hadronic observables from first principles, a basic featuréeft-handed fermion on one wall and a right-handed one
of the strong interactions has been missing in these calcwn the other. (2) The layers= 0 ands = N; — 1 (s
lations, the SWNf);, X SU(Ny)r chiral flavor symmetry denotes the coordinate in the extra dimension) are coupled
of the light quarks which is broken explicitly by present with strength —m (m = 0). Neglecting exponentially
lattice discretizations of continuum QCD. We recently re-small corrections, in Ref. [3] it was shown that the pa-
ported [1] on calculations using a new discretization forrameterm is (proportional to) the mass of the light four
simulations of QCD, domain wall fermions (DWF) [2,3], dimensional quark which is assembled from the two chiral
which preserve chiral symmetry on the lattice in the limitmodesm, = mM(2 — M). The chiral limit isN; — o
of an infinite extra 5th dimension. There it was demon-andm — 0, which requires no fine tuning unlike ordinary
strated that DWF exhibit remarkable chiral behavior [1]Wilson fermions.
even at relatively large lattice spacing and modest extent Recently, the exponentially small corrections to the
of the fifth dimension. Here we give further results usingquark mass have been given at tree level 4], =
DWF which are of direct phenomenological interest. M2 — M){m +[1 — M+ 0(p>)I}. Inthe presence

In addition to retaining chiral symmetry, DWF are also of interactionsM is renormalized additively just like
“improved” in another important way. In the limit that ordinary Wilson fermions which also acquire a “mass
the number of sites in the extra dimensidly goes to term” proportional top?. Perturbatively at one loop the
infinity, the leading discretization error in the effective main effect of the interactions is the replacemaht—
four dimensional action for the light degrees of freedomM + g2>3( p) [3] where 2( p) is the quark self-energy.
goes like O(a?), unlike the case for ordinary Wilson Thus the chiral limit still holds with the replacement
fermions, for which the errors a@(a), a being the lattice (1 — M) — (M, — M)":. This is analogous to the
spacing. This theoretical dependence is deduced from thenormalization of the critical hopping parameter from its
fact that the only operators available to canoék) errors  tree level value of 18 in the case of ordinary Wilson
in the effective action are not chirally symmetric; thusfermions. Of course, the crucial difference is that for DWF
no O(a) errors exist in the low energy theory. For finite the additive corrections are exponentially suppressed. In
N,, O(a) corrections are expected to be exponentiallyour original study we foundZ. = 1.7 for nonperturbative
suppressed with the size of the extra fifth dimension. Oucouplings corresponding to quenched simulationg at
calculations forBx show a weak dependence aenthat 6.0, which also agrees roughly with a simple mean field
is easily fit to ang® ansatz. At3 = 6.0 (8 = 6/g?) the  argument [1].
lattice spacings determined from, and f, agree within For QCD, the DWF are gauged in the ordinary four
less than five percent. This improved scaling behavior iglimensions only, and the left and right-handed modes
plausible in light of the fact that DWF retain an important couple equally to the gauge field. Thus the five dimen-
continuum symmetry at nonzero lattice spacing. sional theory gives rise to a low energy effective theory

As in our previous paper, we use the boundary fermiolE < a~!) describing interacting vector quarks in four
variant of DWF [2] developed by Shamir [3]. The DWF dimensions whose right and left-handed components are
action is essentially a five dimensional analog of thelocalized around = 0 ands = N, — 1, respectively.
ordinary Wilson fermion action with two key differences: In Ref. [5] it was shown that operators constructed
(1) the relative sign between the Wilson term and thefrom the quark fields formed by the chiral modes on each
(five dimensional) Dirac mas¥ is opposite to the usual wall satisfy the following four dimensional chiral Ward
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identities (CWI): which from previous lattice studies may result in a devia-
A (AL ()01, Y2, .. ) = 2mTE(X)O(v1, y2, - ) tion of a few percent from the infinite volume case. We

4 have begun to address systematic corrections due to finite
+ 2<J5q(x)0(Y1’YZ’ - N,. All of the correlation functions discussed below were

+ (6401, y2,...)), (1) calculated in the lattice Landau gauge which was chosen

which result from demanding invariance(@#(y,, y,,...)) ~ for convenience, in principle any gauge will do.
under an infinitesimal axial transformatidif. HereA¢, We begin by discussing the numerical investigation of
is the four dimensional partially conserved axial currentEQ- (1) forO = Js. First, Eq. (1) is satisfied exactly on
(PCAC) constructed from a sum of five dimensional fieldsany configuration since it is derived from the correspond-
over all slices in the extra dimension [5]. The operatordNd operator identity. We checked this explicitly in our
O(y1,ys,...) and the pseudoscalar densifif(x) are simulations. In the asymptotic large time limit, we get

constructed from four dimensional quark fields using the 2sinham, /2) (A, | w)/{Js| )
chiral modes on each boundary,
Y " =2m + 2Jsy | M5l 7). (3)
q(x) = Tys #(x,0) + Tys (x, Ny — 1), which goes over to the continuum relation fon, < 1
) andN; — . At B8 = 6.0 andN; = 10 we find the left-
T oty - 1 — s hand side (lhs) of Eg. (3) to be 0.1578(2) and 0.1083(3)
q(x) = ¢, Ny = 1) > T ¥(x,0) 2 for m = 0.075 and 0.05, respectively. The anomalous

{:ontributions for these two masses arex [0.00385(5)

In Eq. (1),Js, is an anomalous pseudoscalar density tha ;
results from the noninvariance of the action under theand 0.00408(12)], which appears to be roughly constant

axial transformation for finitev,. For flavor nonsinglet with m.  IncreasingV; to 14 atm = 0.05, the anomalous

currents, this contribution to the right-hand side (rhs) Ofcontrlbutlon falls to(2x) 0.00152(8) while the Ihs is

Eq. (1) vanishes identically in the lim¥, — o [5], and 0.1026(6), which shovys tha’g increasing really does
. . . . take us towards the chiral limit.
we are left with the continuum-like relations. Below we

. . - While we have not investigated the CWI fap;
demonstrate explicitly that 88 = 6.0 Eqg. (1) is satisfied . o o . . ?
for the usual PCAC Ward identity)(y;, yn,...) = Js, the matrix elemen{k®|0;;|K") vanishes linearly with

and the anomalous contribution is small }or = 10 and ™ in the chiral limit as required by chiral perturbation

. theory and shown in Fig. 1. This indicates that the
irr?grlégessedfutghﬁr by more than a factor of 2.5 /s is anomalous term in Eq. (1) faP,; is highly suppressed.

To obtainBx we need the matrix element of thes = f:)t _'80 ;0(5)5%2 Og)\eattwozdgta Ariomti g)gr;%dtit;;'réz?:y
2 four quark operator that governk — K mixing, i " ’ B :

_ . oints extrapolate te-0.004(9) with a y? per degree of
O(w)rr =[5y,(1 — vys)d ?, which depends on the energy p X .
scales. On the lattice and using DWR, , is a simple freedom of 0.2 for a noncovariant fit. We do not have

transcription of the above using the quark fields in Eq. (Z)enough data to perform a covariant f't.' BF_ 6.3, the
Sandwiching0;; betweenk andK states and taking the two points extrapolate to 0.05(3). This slight overshoot
ratio with its value in vacuum saturation yield. is not unexpected since the values maf used rather

In order to investigate the continuum limit of quenched
QCD with DWF, we have carried out simulations at gauge -
couplings B = 5.85, 6.0, and 6.3. The simulation pa- r
rameters are summarized in Table I. The number of con-
figurations in our study is rather small, and we have made
no attempt to estimate finite (four dimensional) volume
systematic errors. These deficiencies will, of course, be
addressed in future works. The lattices correspond to
(1.5 fm)? for B = 6.0 and 6.3 and2.1 fm?)? for 5.85,

6/g°= 6.3
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TABLE I. Summary of simulation parameters. “Size” is the |
number of spatial sites times the temporal extent timgs E )
M is the five dimensional Dirac fermion mass, amdis the i

coupling between layers = 0 and Ny, — 1. The number in 0.0— § ]
parentheses is the number of configurations (# conf) used at : SE—
each value ofn. 0.00 0.05 0.10

m

B Size M m_(# conf) FIG. 1. The matrix elemen{P|0O..|P) vs m. |P) is a

585 163 X 32 X% 14 1.7 0.075(34), 0.05(24) nonsinglet pseudoscalar state: is proportional to the quark
6.0 16° X 32x 10 1.7 0.075(36), 0.05(39), 0.025(17) Mass in lattice units. AB = 5.85 and 6.0(P|O..|P) vanishes

3 linearly with m. The slight overshoot g8 = 6.3 is likely due
63 24 xX60x10 15 0.075(11), 0.05(14) to higher order terms in the chiral expansion (see text).
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heavy quarks. In our initial study we found a similar a perturbative calculation to determine the renormalization
behavior [1], and as the quark mass was lowered, thef O,;, which has not yet been done. The energy scale at
required linear behavior set in. Since we do not have3 = 6.0, as determined by the inverse lattice spacing, is
a smaller mass at this coupling, there will be a smallroughly 2 GeV. Since the dependencexas already mild,
systematic increase iBx since the fit will overestimate this should not have a significant impact on aus= 0 es-
the matrix element at the strange quark mass. All of theéimate. We also note that the coefficient of the quadratic
above results are fa¥; = 10 except atB = 5.85, where term in our fit is 0.12(23), or zero within errors. Also,
N, = 14 was used for reasons explained below. from our previous work [1] which did not give a value

Figure 2 showsBx as a function ofam,, or equiva- for Bg, we find Bx(u = a~') = 0.67(4) on a set of 20
lently the lattice spacing.Bk is estimated at each cou- Kogut-Susskind lattices witliggs = 0.01 andB = 5.7 [9]
pling from a linear fit of the degenerate quark data. Theand the same five dimensional lattice volume as the point
fit is then evaluated at one-half the value maf corre- atB = 6.0. The energy scale is nearly that 8f= 6.0,
sponding to the strange quark as determined from a fijuenched. This partially unquenched result indicates that
to the pseudoscalar mass squared (see belaw), is  the error from quenching may be small, as was found for
determined from a simple jackknife average of the ef-Bx using Kogut-Susskind quarks [10,11].
fective mass over a suitable plateau. The results for At 8 = 6.0, we have also calculateBly using the par-
Bx depend weakly ong, and are well fit to a pure tially conserved axial current’ (x) (and the analogous
quadratic ina. Using this fit, we findBx(u = a~') =  vector current) ain = 0.05 and 0.075. This point split
0.628(47) in the continuum limit with a confidence level conserved current requires explicit factors of the gauge
of 0.39. This result is already consistent with the previoudinks to be gauge invariant. Alternatively, a gauge nonin-
Kogut-Susskind result [6,7] and a recent Wilson quark revariant operator may be defined by omitting the links; the
sult [8] using CWI's similar to Eq. (1) to enforce the proper two definitions become equivalent in the continuum limit.
chiral behavior of0;; for Wilson quarks. We note that Results for the gauge noninvariant operators agree within
the data can be fit to a linear function of the lattice spacingmall statistical errors with those for operators constructed
as well, which yieldsBx(x = a~!) = 0.617(80), though  from Eq. (2). The results for the gauge invariant opera-
we emphasize again that linear corrections are expected tors are somewhat largeBy"(u = a~ ') = 0.872(22)
be highly suppressed on theoretical grounds. More imand 0.926(19) ain = 0.05 and 0.075, respectively. A
portantly, there is no evidence fap(a) corrections in  similar situation holds in the Kogut-Susskind case where
Fig. 1. Similarly, the denominator iBx, (K|O..|K)ys, it was shown that the gauge invariant operators receive
exhibits the correct chiral behavior. Above, the notationappreciable perturbative corrections which bring the two
Bx(u = a~ ') simply means the uncorrected lattice dataresults into agreement [10].
have been used to perform the extrapolation; i.e., our re- Using Eq. (3), neglecting the anomalous contribution,
sult does not include the perturbative runninggfateach and using the definition of the decay constgpiny =
lattice spacing to a common energy scale. This require®|Ag|P), we can determine the pseudoscalar decay con-

stant from the measurement ¢@fiJ5|P). Performing si-

09— — multaneous covariant fits to the wall-point and wall-wall

r correlators of/5 yields the matrix element. A8 = 5.85
and 6.0 each fit has a good confidence @il = 0.7).
The results are shown in Fig. 3. Proceeding as before

o with Bg, we find fx = 159(14) MeV and 164(12) MeV
for B = 6.0 and 5.85, respectively. The errors are sta-
. tistical and do not include the error in the lattice spac-
& 0.

ing determination fromam,. The central values agree
with experiment,fx+ = 160 MeV. The lattice spacing
determinations fronum,, give a~! = 1.53(27), 2.09(21),
and 3.20(81) GeV g8 = 5.85, 6.0, and 6.3, respectively.
These are similar to Wilson and Kogut-Susskind lattice
spacings for similar quenched lattices. Alternatively, we
: S may form the dimensionless ratjtx /m,. We find for
0.0 61%5 B =585 and 6.0,fx/m, = 0.213(42) and 0.206(27),
. where we have added the statistical errors naively in
FIG. 2. KaonB parameter. The solid line is a pure quadratic quadrature. The experimental result is 0.208. At present
fit to the data, and the burst denotes the extrapolation t@ur data at@ = 6.3 are too noisy after extrapolation to
t6h8 ggl)qtz;r;llijuﬂ “(rg.lit%%)._ %heTQr((e)sclaEﬁo?rgs;%n% ?helofit()ﬁde_notesq Ive a significant result. Finally, we note that we hav_e also
the partially unquenched result discussed in the text. Thé:"J‘ICUI"’lted the dgcay constant dlref:tly from the matrix gle—
energy scale is roughly 2 GeV @ = 6.0, and perturbative ment of the partially conserved axial current at the points
corrections have not been included. m = 0.05and 0.075 a8 = 6.0, and the results agree with
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FIG. 3. Pseudoscalar decay constant. Bursts are linear exIG. 4. Pion mass squared. The curvgBat= 6.0 [N, = 10

trapolations to values of: corresponding to the pion and the (octagons)] agrees with the expectation from lowest order chiral

kaon. N, = 10 and 14 for 8 = 6.0 and 5.85, respectively. perturbation theory. The others show small but significant

The crosses denote values calculated from the matrix elemefgviations. Atg = 5.85 going from N, = 10 to 14 reduces

of the partially conserved axial curreng (= 6.0 only). the discrepancy. However, increasiig to 18 (cross) has no
effect. AtB = 6.3, the discrepancy is most likely due to higher
order terms in the chiral expansion (see text).

those using the matrix element of the pseudoscalar density
_(see Fig. 3)' While the above results |nd|cat_e good scalyig, expectations from chiral perturbation theory without
ing behavior, they must be checked further with improved
statistics and a fully covariant fitting procedure. More im-
portantly, the continuum limit still has to be taken: a recen
precise calculation using quenched Wilson quarks by th
CP-PACS collaboration gives a value fgg/m, in the

continuum limit that is inconsistent with experiment [12],
so the above agreement with experiment may be fortuitou

In Fig. 4 we show the pion mass squared as a functio

he complicated mixing of operators required with Wilson
quarks, or the entanglement of flavor and space-time de-
rees of freedom as with Kogut-Susskind quarks. Perhaps
ven more importantly, up to exponentially small correc-
tions, DWF maintain the full chiral symmetry of QCD
at relatively strong couplings, and thus should have more
Tontinuumlike behavior. The data presented here seem to
. ) ClOthdicate just that, though future studies with improved sta-
szm' Lowest prder chlr_al perturbation theory requireSygicg are needed to confirm this. This improved scaling
m 10 vanish linearly withm. At f = 6.0 our three o compensate for the added cost of the extra dimension.
data points extrapolate Imearly to 0.008(10), which agrees 3+ domain wall fermion code relies heavily on the
with the above expectations. A& = 6.3, the two data ¢, gimensionamiLc code [13], which we are happy to
points extrapolate to-0.021(3), which is once again ,o.ngwiedge again. The numerical computations were
likely due to quark masses that are too heavy to0 agreg riaq out on the NERSC T3E. This research was

with lowest order chiral perturbation theory. At= 5.85 ¢ ,5orted by U.S. DOE Grant No. DE-AC0276CH0016
the two masses extrapolate to 0.045(10)Xor= 10 and PP yH-s. ' '
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