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(Received 30 June 1997)

We present lattice calculations of kaon matrix elements with domain wall fermions. Using lattice
with 6yg2  5.85, 6.0, and 6.3, we estimateBK s m ø 2 GeVd  0.628s47d in quenched QCD, which
is consistent with previous calculations. At6yg2  6.0 and 5.85 we find the ratiofK ymr, in
agreement with the experimental value, within errors. These results support expectations thatOsad
errors are exponentially suppressed in low energysE ø a21d observables, and indicate that domain
wall fermions have good scaling behavior at relatively strong couplings. We also demonstrate t
the axial current numerically satisfies the lattice analog of the usual continuum axial Ward identi
[S0031-9007(97)04682-6]

PACS numbers: 12.38.Gc, 11.30.Rd, 14.40.Aq
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While lattice gauge theory has made significant progre
in addressing the outstanding challenge of calculati
hadronic observables from first principles, a basic featu
of the strong interactions has been missing in these ca
lations, the SUsNf dL 3 SUsNfdR chiral flavor symmetry
of the light quarks which is broken explicitly by presen
lattice discretizations of continuum QCD. We recently r
ported [1] on calculations using a new discretization f
simulations of QCD, domain wall fermions (DWF) [2,3]
which preserve chiral symmetry on the lattice in the lim
of an infinite extra 5th dimension. There it was demo
strated that DWF exhibit remarkable chiral behavior [
even at relatively large lattice spacing and modest ext
of the fifth dimension. Here we give further results usin
DWF which are of direct phenomenological interest.

In addition to retaining chiral symmetry, DWF are als
“improved” in another important way. In the limit tha
the number of sites in the extra dimensionNs goes to
infinity, the leading discretization error in the effectiv
four dimensional action for the light degrees of freedo
goes like Osa2d, unlike the case for ordinary Wilson
fermions, for which the errors areOsad, a being the lattice
spacing. This theoretical dependence is deduced from
fact that the only operators available to cancelOsad errors
in the effective action are not chirally symmetric; thu
no Osad errors exist in the low energy theory. For finit
Ns, Osad corrections are expected to be exponentia
suppressed with the size of the extra fifth dimension. O
calculations forBK show a weak dependence ona that
is easily fit to ana2 ansatz. Atb  6.0 sb ; 6yg2d the
lattice spacings determined frommr andfp agree within
less than five percent. This improved scaling behavior
plausible in light of the fact that DWF retain an importan
continuum symmetry at nonzero lattice spacing.

As in our previous paper, we use the boundary fermi
variant of DWF [2] developed by Shamir [3]. The DWF
action is essentially a five dimensional analog of th
ordinary Wilson fermion action with two key differences
(1) the relative sign between the Wilson term and t
(five dimensional) Dirac massM is opposite to the usual
0031-9007y97y79(19)y3595(4)$10.00
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convention. This leads to the appearance of mass
chiral modes on the boundaries of the fifth dimension
left-handed fermion on one wall and a right-handed o
on the other. (2) The layerss  0 and s  Ns 2 1 (s
denotes the coordinate in the extra dimension) are coup
with strength 2m sm $ 0d. Neglecting exponentially
small corrections, in Ref. [3] it was shown that the p
rameterm is (proportional to) the mass of the light fou
dimensional quark which is assembled from the two chi
modesmq  mMs2 2 Md. The chiral limit is Ns ! `

andm ! 0, which requires no fine tuning unlike ordinar
Wilson fermions.

Recently, the exponentially small corrections to th
quark mass have been given at tree level [4],mq 
Ms2 2 Md hm 1 f1 2 M 1 Osp2dgNs j. In the presence
of interactions M is renormalized additively just like
ordinary Wilson fermions which also acquire a “mas
term” proportional top2. Perturbatively at one loop the
main effect of the interactions is the replacementM !

M 1 g2Ss pd [3] where Ss pd is the quark self-energy.
Thus the chiral limit still holds with the replacemen
s1 2 MdNs ! sMc 2 MdNs . This is analogous to the
renormalization of the critical hopping parameter from
tree level value of 1y8 in the case of ordinary Wilson
fermions. Of course, the crucial difference is that for DW
the additive corrections are exponentially suppressed.
our original study we foundMc ø 1.7 for nonperturbative
couplings corresponding to quenched simulations atb ,
6.0, which also agrees roughly with a simple mean fie
argument [1].

For QCD, the DWF are gauged in the ordinary fo
dimensions only, and the left and right-handed mod
couple equally to the gauge field. Thus the five dime
sional theory gives rise to a low energy effective theo
sE ø a21d describing interacting vector quarks in fou
dimensions whose right and left-handed components
localized arounds  0 ands  Ns 2 1, respectively.

In Ref. [5] it was shown that operators constructe
from the quark fields formed by the chiral modes on ea
wall satisfy the following four dimensional chiral Ward
© 1997 The American Physical Society 3595
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identities (CWI):

DmkAa
msxdOsy1, y2, . . .dl  2mkJa

5 sxdOsy1, y2, . . .dl
1 2kJa

5qsxdOsy1, y2, . . .dl
1 ikda

AOsy1, y2, . . .dl , (1)

which result from demanding invariance ofkOsy1, y2, . . .dl
under an infinitesimal axial transformationda

A. HereAa
m

is the four dimensional partially conserved axial curren
(PCAC) constructed from a sum of five dimensional field
over all slices in the extra dimension [5]. The operator
Os y1, y2, . . .d and the pseudoscalar densityJa

5 sxd are
constructed from four dimensional quark fields using th
chiral modes on each boundary,

qsxd 
1 1 g5

2
csx, 0d 1

1 2 g5

2
csx, Ns 2 1d ,

qsxd  csx, Ns 2 1d
1 1 g5

2
1 csx, 0d

1 2 g5

2
.

(2)

In Eq. (1),Ja
5q is an anomalous pseudoscalar density th

results from the noninvariance of the action under th
axial transformation for finiteNs. For flavor nonsinglet
currents, this contribution to the right-hand side (rhs) o
Eq. (1) vanishes identically in the limitNs ! ` [5], and
we are left with the continuum-like relations. Below we
demonstrate explicitly that atb  6.0 Eq. (1) is satisfied
for the usual PCAC Ward identityOsy1, y2, . . .d  J5,
and the anomalous contribution is small forNs  10 and
reduces further by more than a factor of 2.5 asNs is
increased to 14.

To obtainBK we need the matrix element of theDs 
2 four quark operator that governsK 2 K mixing,
OsmdLL  fsgns1 2 g5dd g2, which depends on the energy
scalem. On the lattice and using DWF,OLL is a simple
transcription of the above using the quark fields in Eq. (2
SandwichingOLL betweenK andK states and taking the
ratio with its value in vacuum saturation yieldsBK .

In order to investigate the continuum limit of quenche
QCD with DWF, we have carried out simulations at gaug
couplings b  5.85, 6.0, and 6.3. The simulation pa-
rameters are summarized in Table I. The number of co
figurations in our study is rather small, and we have mad
no attempt to estimate finite (four dimensional) volum
systematic errors. These deficiencies will, of course, b
addressed in future works. The lattices correspond
s1.5 fmd3 for b  6.0 and 6.3 ands2.1 fm2d3 for 5.85,

TABLE I. Summary of simulation parameters. “Size” is the
number of spatial sites times the temporal extent timesNs.
M is the five dimensional Dirac fermion mass, andm is the
coupling between layerss  0 and Ns 2 1. The number in
parentheses is the number of configurations (# conf) used
each value ofm.

b Size M m s# confd

5.85 163 3 32 3 14 1.7 0.075(34), 0.05(24)
6.0 163 3 32 3 10 1.7 0.075(36), 0.05(39), 0.025(17)
6.3 243 3 60 3 10 1.5 0.075(11), 0.05(14)
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which from previous lattice studies may result in a devia
tion of a few percent from the infinite volume case. W
have begun to address systematic corrections due to fin
Ns. All of the correlation functions discussed below wer
calculated in the lattice Landau gauge which was chos
for convenience, in principle any gauge will do.

We begin by discussing the numerical investigation o
Eq. (1) for O  J5. First, Eq. (1) is satisfied exactly on
any configuration since it is derived from the correspond
ing operator identity. We checked this explicitly in ou
simulations. In the asymptotic large time limit, we get

2 sinhsamp y2d kAm j plykJ5 j pl
 2m 1 2kJ5q j plykJ5 j pl , (3)

which goes over to the continuum relation foramp ø 1
andNs ! `. At b  6.0 andNs  10 we find the left-
hand side (lhs) of Eq. (3) to be 0.1578(2) and 0.1083(
for m  0.075 and 0.05, respectively. The anomalou
contributions for these two masses are2 3 f0.00385s5d
and 0.00408s12dg, which appears to be roughly constan
with m. IncreasingNs to 14 atm  0.05, the anomalous
contribution falls to s23d 0.00152(8) while the lhs is
0.1026(6), which shows that increasingNs really does
take us towards the chiral limit.

While we have not investigated the CWI forOLL,
the matrix elementkK0jOLLjK0l vanishes linearly with
m in the chiral limit as required by chiral perturbation
theory and shown in Fig. 1. This indicates that th
anomalous term in Eq. (1) forOLL is highly suppressed.
At b  5.85 the two data points extrapolate linearly
to 20.0005s100d at m  0. At b  6.0 the three data
points extrapolate to20.004s9d with a x2 per degree of
freedom of 0.2 for a noncovariant fit. We do not hav
enough data to perform a covariant fit. Atb  6.3, the
two points extrapolate to 0.05(3). This slight overshoo
is not unexpected since the values ofm used rather

FIG. 1. The matrix elementk PjOLLjPl vs m. jPl is a
nonsinglet pseudoscalar state.m is proportional to the quark
mass in lattice units. Atb  5.85 and 6.0k PjOLLjPl vanishes
linearly with m. The slight overshoot atb  6.3 is likely due
to higher order terms in the chiral expansion (see text).
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heavy quarks. In our initial study we found a simila
behavior [1], and as the quark mass was lowered, t
required linear behavior set in. Since we do not ha
a smaller mass at this coupling, there will be a sma
systematic increase inBK since the fit will overestimate
the matrix element at the strange quark mass. All of t
above results are forNs  10 except atb  5.85, where
Ns  14 was used for reasons explained below.

Figure 2 showsBK as a function ofamr, or equiva-
lently the lattice spacing.BK is estimated at each cou-
pling from a linear fit of the degenerate quark data. Th
fit is then evaluated at one-half the value ofm corre-
sponding to the strange quark as determined from a
to the pseudoscalar mass squared (see below).amr is
determined from a simple jackknife average of the e
fective mass over a suitable plateau. The results
BK depend weakly onb, and are well fit to a pure
quadratic ina. Using this fit, we findBK sm  a21d 
0.628s47d in the continuum limit with a confidence leve
of 0.39. This result is already consistent with the previo
Kogut-Susskind result [6,7] and a recent Wilson quark r
sult [8] using CWI’s similar to Eq. (1) to enforce the prope
chiral behavior ofOLL for Wilson quarks. We note that
the data can be fit to a linear function of the lattice spaci
as well, which yieldsBK sm  a21d  0.617s80d, though
we emphasize again that linear corrections are expecte
be highly suppressed on theoretical grounds. More i
portantly, there is no evidence forOsad corrections in
Fig. 1. Similarly, the denominator inBK , k KjOLLjKlVS,
exhibits the correct chiral behavior. Above, the notatio
BK sm  a21d simply means the uncorrected lattice da
have been used to perform the extrapolation; i.e., our
sult does not include the perturbative running ofBK at each
lattice spacing to a common energy scale. This requi

FIG. 2. KaonB parameter. The solid line is a pure quadrat
fit to the data, and the burst denotes the extrapolation
the continuum limita  0. The data are forNs  10 sb 
6.0, 6.3d and 14 (5.85). The cross (not used in the fit) denot
the partially unquenched result discussed in the text. T
energy scale is roughly 2 GeV atb  6.0, and perturbative
corrections have not been included.
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a perturbative calculation to determine the renormalizati
of OLL, which has not yet been done. The energy scale
b  6.0, as determined by the inverse lattice spacing,
roughly 2 GeV. Since the dependence ona is already mild,
this should not have a significant impact on oura  0 es-
timate. We also note that the coefficient of the quadra
term in our fit is 0.12(23), or zero within errors. Also
from our previous work [1] which did not give a value
for BK , we find BK s m  a21d  0.67s4d on a set of 20
Kogut-Susskind lattices withmKS  0.01 andb  5.7 [9]
and the same five dimensional lattice volume as the po
at b  6.0. The energy scale is nearly that ofb  6.0,
quenched. This partially unquenched result indicates t
the error from quenching may be small, as was found
BK using Kogut-Susskind quarks [10,11].

At b  6.0, we have also calculatedBK using the par-
tially conserved axial currentAa

msxd (and the analogous
vector current) atm  0.05 and 0.075. This point split
conserved current requires explicit factors of the gau
links to be gauge invariant. Alternatively, a gauge noni
variant operator may be defined by omitting the links; th
two definitions become equivalent in the continuum lim
Results for the gauge noninvariant operators agree wit
small statistical errors with those for operators construc
from Eq. (2). The results for the gauge invariant oper
tors are somewhat larger:Binv

K sm  a21d  0.872s22d
and 0.926(19) atm  0.05 and 0.075, respectively. A
similar situation holds in the Kogut-Susskind case whe
it was shown that the gauge invariant operators rece
appreciable perturbative corrections which bring the tw
results into agreement [10].

Using Eq. (3), neglecting the anomalous contributio
and using the definition of the decay constantfPmP ;
k0jAa

0 jPl, we can determine the pseudoscalar decay c
stant from the measurement ofk0jJa

5 jPl. Performing si-
multaneous covariant fits to the wall-point and wall-wa
correlators ofJ5 yields the matrix element. Atb  5.85
and 6.0 each fit has a good confidence levelsCL ø 0.7d.
The results are shown in Fig. 3. Proceeding as bef
with BK , we find fK  159s14d MeV and 164(12) MeV
for b  6.0 and 5.85, respectively. The errors are st
tistical and do not include the error in the lattice spa
ing determination fromamr. The central values agree
with experiment,fK1  160 MeV. The lattice spacing
determinations fromamr give a21  1.53s27d, 2.09(21),
and 3.20(81) GeV atb  5.85, 6.0, and 6.3, respectively
These are similar to Wilson and Kogut-Susskind latti
spacings for similar quenched lattices. Alternatively, w
may form the dimensionless ratiofKymr. We find for
b  5.85 and 6.0,fKymr  0.213s42d and 0.206(27),
where we have added the statistical errors naively
quadrature. The experimental result is 0.208. At pres
our data atb  6.3 are too noisy after extrapolation to
give a significant result. Finally, we note that we have al
calculated the decay constant directly from the matrix e
ment of the partially conserved axial current at the poin
m  0.05 and 0.075 atb  6.0, and the results agree with
3597



VOLUME 79, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 10 NOVEMBER 1997

al
t

t

e-
ps
-

re
to
-
g
n.

re
s

FIG. 3. Pseudoscalar decay constant. Bursts are linear
trapolations to values ofm corresponding to the pion and the
kaon. Ns  10 and 14 for b  6.0 and 5.85, respectively.
The crosses denote values calculated from the matrix elem
of the partially conserved axial current (b  6.0 only).

those using the matrix element of the pseudoscalar dens
(see Fig. 3). While the above results indicate good sc
ing behavior, they must be checked further with improve
statistics and a fully covariant fitting procedure. More im
portantly, the continuum limit still has to be taken: a rece
precise calculation using quenched Wilson quarks by t
CP-PACS collaboration gives a value forfK ymr in the
continuum limit that is inconsistent with experiment [12]
so the above agreement with experiment may be fortuito

In Fig. 4 we show the pion mass squared as a functi
of m. Lowest order chiral perturbation theory require
m2

p to vanish linearly withm. At b  6.0 our three
data points extrapolate linearly to 0.008(10), which agre
with the above expectations. Atb  6.3, the two data
points extrapolate to20.021s3d, which is once again
likely due to quark masses that are too heavy to agr
with lowest order chiral perturbation theory. Atb  5.85
the two masses extrapolate to 0.045(10) forNs  10 and
0.031(13) forNs  14. This discrepancy is probably not
due to higher order terms in the chiral expansion since t
physical quark masses are light compared to the mas
at the other couplings, and the curvature would have t
wrong sign. We see a large downward shift inm2

p as
Ns goes from 10 to 14. However, increasingNs to 18
at m  0.075 has a negligible effect. This behavior may
signal a strong coupling effect where the suppression
explicit chiral symmetry breaking terms withNs may be
weakened. In the case of the vector Schwinger mod
it was found that topology changing gauge configuration
can induce significant explicit chiral symmetry breakin
effects [4]. Further investigation is required.

Our study shows that DWF are an attractive altern
tive to Kogut-Susskind and Wilson quarks for lattice QCD
calculations where chiral symmetry is crucial. For wea
matrix elements in particular, DWF yield good agreeme
3598
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FIG. 4. Pion mass squared. The curve atb  6.0 [Ns  10
(octagons)] agrees with the expectation from lowest order chir
perturbation theory. The others show small but significan
deviations. Atb  5.85 going from Ns  10 to 14 reduces
the discrepancy. However, increasingNs to 18 (cross) has no
effect. At b  6.3, the discrepancy is most likely due to higher
order terms in the chiral expansion (see text).

with expectations from chiral perturbation theory withou
the complicated mixing of operators required with Wilson
quarks, or the entanglement of flavor and space-time d
grees of freedom as with Kogut-Susskind quarks. Perha
even more importantly, up to exponentially small correc
tions, DWF maintain the full chiral symmetry of QCD
at relatively strong couplings, and thus should have mo
continuumlike behavior. The data presented here seem
indicate just that, though future studies with improved sta
tistics are needed to confirm this. This improved scalin
may compensate for the added cost of the extra dimensio

Our domain wall fermion code relies heavily on the
four dimensionalMILC code [13], which we are happy to
acknowledge again. The numerical computations we
carried out on the NERSC T3E. This research wa
supported by U.S. DOE Grant No. DE-AC0276CH0016.
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