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A truncation scheme for the Dyson-Schwinger equations of Euclidean QCD in Landau gauge
presented. It implements the Slavnov-Taylor identities for the three-gluon and ghost-gluon vertice
whereas irreducible four-gluon couplings as well as the gluon-ghost and ghost-ghost scattering kern
are neglected. The infrared behavior of gluon and ghost propagators is obtained analytically: T
gluon propagator vanishes for small momenta, whereas the ghost propagator diverges strongly.
numerical solutions are compared with recent lattice results. The running coupling approaches a fix
point, ac . 9.5, in the infrared. [S0031-9007(97)04470-0]
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A theoretical understanding of confinement of quark
and gluons into colorless hadrons could be obtained
proving the failure of the cluster decomposition propert
for color—nonsinglet gauge—covariant operators. On
long established idea in this direction is based on the o
currence of infrared divergences to suppress the emiss
of colored states from color-singlet states [1]. Such a d
scription of confinement in terms of perturbation theor
necessarily has to fail.

Thus, to study the infrared behavior of QCD ampli
tudes, nonperturbative methods are required, and, sin
divergences are anticipated, a formulation in the conti
uum is desirable. Both of these are provided by stu
ies of truncated systems of Dyson-Schwinger equatio
(DSEs), the equations of motion of QCD Green’s func
tions. Typically, for their truncation, additional sources o
information such as the Slavnov-Taylor identities, entaile
by gauge invariance, are used to express vertex function
terms of the elementary two-point functions, i.e., the quar
ghost, and gluon propagators. Those propagators can t
be obtained as self-consistent solutions to nonlinear in
gral equations representing a closed set of truncated DS
Some systematic control over the truncating assumptio
can be obtained by successively including highern-point
functions in self-consistent calculations, and by assess
their influence on lowern-point functions in this way. At
present, even at the level of propagators, no complete so
tion to truncated DSEs of QCD exists. In particular, eve
in the absence of quarks, solutions for the gluon propag
tor in Landau gauge rely on neglecting ghost contributio
[2–5]. Ghost-free gauges such as the axial gauge suf
from their own problems [6].

In addition to the prospect of some insight into confine
ment from studying the infrared behavior of QCD Green
functions, DSEs have proved to be a highly successful to
in developing a hadron phenomenology that interpolat
smoothly between the infrared (nonperturbative) and u
traviolet (perturbative) regimes [7]. In particular, a vari
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ety of models for the interactions of quarks mediated b
gluons exist, which are very well suited for a dynamica
description of chiral symmetry breaking from the DSE o
the quark propagator [8]. The superficial result of thes
studies is that for the quark self-energy to reflect a spo
taneous breaking of chiral symmetry there has to be som
sufficient interaction strength at low energies.

In this Letter we present a simultaneous solution o
a truncated set of DSEs for the propagators of gluo
and ghosts in Landau gauge. An extension to this se
consistent framework to include quarks dynamically i
possible and subject to further studies. The behavior
the solutions in the infrared, implying the existence of
fixed point at a critical couplingac ø 9.5, is obtained ana-
lytically. The gluon propagator is shown to vanish fo
small spacelike momenta in the present truncation schem
This behavior, though in contradiction with previous DSE
studies [2–5], can be partially understood from the obse
vation that, in our present calculation, the previously ne
glected ghost propagator assumes an infrared enhancem
similar to what was then obtained for the gluon.

Besides all elementary two-point functions, i.e., th
quark, ghost, and gluon propagators, the DSE for the glu
propagator also involves the three- and four-point verte
functions which obey their own DSEs. These equation
involve successively highern-point functions. A first step
towards a truncation of the gluon equation is to neglect a
terms with four-gluon vertices. These are the momentu
independent tadpole term, an irrelevant constant whi
vanishes perturbatively in Landau gauge, and explicit tw
loop contributions to the gluon DSE. The latter are sub
dominant in the ultraviolet and will thus not affect the
behavior of the solutions for asymptotically high momenta
In the infrared it has been argued that the singulari
structure of the two-loop terms does not interfere with th
one-loop terms [9]. Without contributions from four-gluon
vertices (and quarks) the renormalized equation for th
inverse gluon propagator in Euclidean momentum spa
© 1997 The American Physical Society 3591
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[13],
is given by [10]

D21
mnskd ­ Z3Dtl21

mn skd 1 g2NcZ1
1
2

Z d4q
s2pd4 Gtl

mrask, 2p, qdDabsqdDrsspdGbsns2q, p, 2kd

2 g2NcZ̃1

Z d4q
s2pd4 iqmDGspdDGsqdGnsq, pd , (1)

wherep ­ k 1 q, Dtl andGtl are the tree level propagator and three-gluon vertex,DG is the ghost propagator, andG

andG are the fully dressed three-point vertex functions. The equation for the ghost propagator in Landau gaug
without any truncations, is given by

D21
G skd ­ 2Z̃3k2 1 g2NcZ̃1

Z d4q
s2pd4 ikmDmnsk 2 qdGnsk, qdDGsqd . (2)

The renormalized propagators for ghosts and gluons and the renormalized coupling are defined from the re
bare quantities by introducing multiplicative renormalization constants,Z̃3DG :­ D0

G, Z3Dmn :­ D0
mn , andZgg :­ g0.

Furthermore,Z1 ­ ZgZ
3y2
3 , Z̃1 ­ ZgZ

1y2
3 Z̃3, and we use that̃Z1 ­ 1 in Landau gauge [11]. The ghost and gluo

propagators are parametrized by their respective renormalization functionsG andZ,

DGskd ­ 2
Gsk2d

k2 , Dmnskd ­

µ
dmn 2

kmkn

k2

∂
Zsk2d

k2 . (3)

In order to arrive at a closed set of equations for the functionsG and Z, we use a form for the ghost-gluon verte
which is based on a construction from its Slavnov-Taylor identity (STI) neglecting irreducible four-ghost correlatio
agreement with the present level of truncation [12],

Gmsp, qd ­ iqm

Gsk2d
Gsq2d

1 ipm

µ
Gsk2d
Gsp2d

2 1

∂
. (4)

With this result, we can construct the three-gluon vertex according to general procedures from previous studies

Gmnrsp, q, kd ­
1
2

A1sp2, q2; k2ddmnisp 2 qdr 1
1
2

A2sp2, q2; k2ddmnisp 1 qdr 1
A2sp2, q2; k2d

p2 2 q2

3 sdmnpq 2 pnqmdisp 2 qdr 1 cyclic permutations,
(5)

A6sp2, q2; k2d ­
Gsk2dGsq2d
Gsp2dZsp2d

6
Gsk2dGsp2d
Gsq2dZsq2d

.

for
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Some additionally possible terms, transverse with resp
to all three gluon momenta, cannot be constrained by
STI and are thus disregarded. For the fermion vertex
quantum electrodynamics (QED) as constructed from
Ward-Takahashi identity, it is well known that additiona
transverse terms, with the further constraint not to intr
duce kinematic singularities, are essential for multiplic
tive renormalizability [14]. Based on this requiremen
such terms have been obtained explicitly for quench
QED in Ref. [15]. Similar constructions for the vertices i
QCD are presently not available. However, the full Bo
(exchange) symmetry of the three-gluon vertex allevia
this problem since, combined with the STI, it puts muc
3592
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tighter constraints on this vertex then those obtained
fermion vertices.

Instead of a direct numerical solution of the coupled sy
tem of integral equations resulting from the present tru
cation scheme, we use a one-dimensional approximat
For integration momentaq2 , k2 we use the angle ap-
proximation replacingGfsk 2 qd2g ! Gsk2d andZfsk 2

qd2g ! Zsk2d. Since this preserves the limitq2 ! 0, it is
suitable for an analytic discussion of the solutions in t
infrared. Forq2 . k2 we replaceall arguments (includ-
ing the externalk2) by the integration momentumq2. The
justification for this is the weak logarithmic momentum d
pendence ofG andZ at high momenta [16]. The DSEs
(1) and (2) then simplify to
1
Zsk2d

­ Z3 1 Z1
g2

16p2

(Z k2

0

dq2

k2

√
7
2

q4

k4
2

17
2

q2

k2
2

9
8

!
Zsq2dGsq2d 1

Z L
2
UV

k2

dq2

q2

√
7
8

k2

q2
2 7

!
Zsq2dGsq2d

)

1
g2

16p2

(Z k2

0

dq2

k2

3
2

q2

k2
Gsk2dGsq2d 2

1
3

G2sk2d 1
1
2

Z L
2
UV

k2

dq2

q2
G2sq2d

)
, (6)

1
Gsk2d

­ Z̃3 2
g2

16p2

9
4

(
1
2

Zsk2dGsk2d 1
Z L2

UV

k2

dq2

q2 Zsq2dGsq2d

)
. (7)
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We introduced anOs4d-invariant momentum cutoff
LUV to account for logarithmic ultraviolet divergence
which are absorbed by the renormalization constantsZ3

and Z̃3. Z1 has to be ultraviolet finite [17]. This is in-
consistent with gauge invariance implyingZ1 ­ Z3yZ̃3.
While this problem, appearing at orderg4 in a pertur-
bative expansion, is quite natural for a truncation schem
neglecting explicit four-gluon couplings at the same orde
its remedy could provide information on purely transvers
terms in the three-gluon vertex. For details of the reno
malization and the numerical procedure, see Ref. [17].

To deduce the infrared behavior of the propagators w
make the Ansatz so that forx :­ k2 ! 0 the product
ZsxdGsxd ! cxk with k fi 0 and some constantc. The
special casek ­ 0 leads to a logarithmic singularity in
Eq. (7) forx ! 0 which precludes the possibility of a self-
consistent solution. In order to obtain a positive defini
functionGsxd for positivex from an equally positiveZsxd,
as x ! 0, we obtain the further restriction0 , k , 2.
Equation (7) then yields

Gsxd !

∑
g2gG

0

µ
1
k

2
1
2

∂∏21

c21x2k ) (8)

Zsxd !

∑
g2gG

0

µ
1
k

2
1
2

∂∏
c2x2k, (9)

whereg
G
0 ­ 9ys64p2d is the leading perturbative coeffi-

cient of the anomalous dimension of the ghost field. Usin
(8) and (9) in Eq. (6), we find that the three-gluon loop co
tributes terms,xk to the gluon equation forx ! 0, while
the dominant (infrared singular) contribution,x22k arises
from the ghost loop, i.e.,

Zsxd !g2gG
0

9
4

µ
1
k

2
1
2

∂2

3

µ
3
2

1
2 2 k

2
1
3

1
1

4k

∂21

c2x2k .

Comparing this to (9) we obtain a quadratic equation wi
a unique solutionk ­ s61 2

p
1897 dy19 . 0.92 for the

exponentk , 2. The leading behavior of the gluon and
ghost renormalization functions is entirely due to gho
contributions. The details of the approximations to th
three-gluon loop have no influence on these consideratio
In particular, additional transverse terms of the three-glu
vertex, free of kinematical singularities, will yield contri-
butions that are even further suppressed in the infrar
Compared to the Mandelstam approximation, in which t
three-gluon loop alone determines the infrared behavior
the gluon propagator and the running coupling in Land
gauge [2–5], this shows the importance of ghosts. T
result presented here implies an infrared stable fixed po
in the nonperturbative running coupling of our subtractio
scheme, defined by

aSssd ­
g2

4p
ZssdG2ssd !

16p

9

µ
1
k

2
1
2

∂21

ø 9.5 ,

(10)
s
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for s ! 0. This is qualitatively different from the infrared
singular coupling of the Mandelstam approximation [5].

The momentum scale in our calculations is fixed from
the phenomenological valueaSsMZd ­ 0.118 at the mass
of the Z boson [18]. The ratio of theZ to the t mass,
MZyMt . 51.5, then yieldsaSsMtd ­ 0.38 which is in
encouraging agreement with the experimental value.

It is interesting to compare our solutions to recent lattic
results using implementations of the Landau gauge co
dition [19–21]. In Fig. 1 we compare our solution for
the gluon propagator to data from Ref. [20]. We norma
ized the gluon propagator according toZsx ­ 1d ø 11.3
to account for the units used in Ref. [20] (withx ­ k2a2

in units of the inverse lattice spacing). According to th
authors of Ref. [20], the arrow indicates a bound belo
which finite size effects become considerable.

In Fig. 2 we compared our infrared enhanced gho
propagator to the results of Ref. [21]. It is quite amazin
to observe that our solution fits the lattice data at lo
momenta significantly better than the fit to an infrare
singular formDGsk2d ­ cyk2 1 dyk4 given in Ref. [21].
We therefore conclude that the present lattice calculatio
confirm the existence of an infrared enhanced gho
propagator of the formDG , 1ysk2d11k with 0 , k , 1.
This is an interesting result for yet another reason:
Ref. [21] the Landau gauge condition was supplement
by an algorithm to select gauge field configurations from
the fundamental modular region which is to avoid Gribo
copies. Thus, our results suggest that the existence
such copies of gauge configurations might have litt
effect on the solutions to Landau gauge DSEs [22].

The Euclidean gluon correlation function presented he
can be shown to violate reflection positivity [17], which
is a necessary and sufficient condition for the existen
of a Lehmann representation [23]. We interpret this a
representing confined gluons. In order to understand ho
these correlations can give rise to confinement of quarks

FIG. 1. The numerical result for the gluon propagator from
Dyson-Schwinger equations (solid line) compared to lattice da
from Fig. 3 in Ref. [20].
3593
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FIG. 2. The numerical result for the ghost propagator (so
line) compared to data from Fig. 1 in Ref. [21] for the244

lattice up tox ø 1, and a fit as obtained in Ref. [21].

will be necessary to include the quark propagator. The s
of the coupling at the fixed point,ac ø 9.5, is, however, a
good indication that dynamical chiral symmetry breakin
will be generated in the quark DSE.

In summary, we have presented a solution to a trunca
set of coupled Dyson-Schwinger equations for gluons a
ghosts in Landau gauge. The infrared behavior of this s
lution, obtained analytically, represents a strongly infrar
enhanced ghost propagator and an infrared vanishing gl
propagator. Our results, in particular for the ghost prop
gator, compare favorably with recent lattice calculatio
[20,21]. Since the lattice implementations of the Land
gauge are such that configurations are restricted to the f
damental modular region, this might indicate that Gribo
copies have little influence on solutions to the DSEs
Landau gauge. The absence of a Lehmann representa
for the gluon propagator can be interpreted as a signal
confined gluons. The existence of an infrared fixed po
is in qualitative disagreement with previous studies of t
gluon DSE neglecting ghost contributions in Landau gau
[2–5]. This shows that ghosts are important, in particula
at low energy scales relevant to hadronic observables.

We thank F. Coester, F. Lenz, M. R. Pennington, a
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