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Infrared Behavior of Gluon and Ghost Propagators in Landau Gauge QCD
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A truncation scheme for the Dyson-Schwinger equations of Euclidean QCD in Landau gauge is
presented. It implements the Slavnov-Taylor identities for the three-gluon and ghost-gluon vertices,
whereas irreducible four-gluon couplings as well as the gluon-ghost and ghost-ghost scattering kernels
are neglected. The infrared behavior of gluon and ghost propagators is obtained analytically: The
gluon propagator vanishes for small momenta, whereas the ghost propagator diverges strongly. The
numerical solutions are compared with recent lattice results. The running coupling approaches a fixed
point, @, = 9.5, in the infrared. [S0031-9007(97)04470-0]
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A theoretical understanding of confinement of quarksety of models for the interactions of quarks mediated by
and gluons into colorless hadrons could be obtained bgluons exist, which are very well suited for a dynamical
proving the failure of the cluster decomposition propertydescription of chiral symmetry breaking from the DSE of
for color—nonsinglet gauge—covariant operators. Onehe quark propagator [8]. The superficial result of these
long established idea in this direction is based on the ocstudies is that for the quark self-energy to reflect a spon-
currence of infrared divergences to suppress the emissidaneous breaking of chiral symmetry there has to be some
of colored states from color-singlet states [1]. Such a desufficient interaction strength at low energies.
scription of confinement in terms of perturbation theory In this Letter we present a simultaneous solution of
necessarily has to fail. a truncated set of DSEs for the propagators of gluons

Thus, to study the infrared behavior of QCD ampli- and ghosts in Landau gauge. An extension to this self-
tudes, nonperturbative methods are required, and, sina®nsistent framework to include quarks dynamically is
divergences are anticipated, a formulation in the continpossible and subject to further studies. The behavior of
uum is desirable. Both of these are provided by studthe solutions in the infrared, implying the existence of a
ies of truncated systems of Dyson-Schwinger equationfixed point at a critical coupling,. = 9.5, is obtained ana-
(DSEs), the equations of motion of QCD Green’s func-lytically. The gluon propagator is shown to vanish for
tions. Typically, for their truncation, additional sources of small spacelike momenta in the present truncation scheme.
information such as the Slavnov-Taylor identities, entailedThis behavior, though in contradiction with previous DSE
by gauge invariance, are used to express vertex functions studies [2—5], can be partially understood from the obser-
terms of the elementary two-point functions, i.e., the quarkyation that, in our present calculation, the previously ne-
ghost, and gluon propagators. Those propagators can thgtected ghost propagator assumes an infrared enhancement
be obtained as self-consistent solutions to nonlinear intesimilar to what was then obtained for the gluon.
gral equations representing a closed set of truncated DSEs.Besides all elementary two-point functions, i.e., the
Some systematic control over the truncating assumptionguark, ghost, and gluon propagators, the DSE for the gluon
can be obtained by successively including highgyoint  propagator also involves the three- and four-point vertex
functions in self-consistent calculations, and by assessinfinctions which obey their own DSEs. These equations
their influence on lower-point functions in this way. At involve successively higherpoint functions. A first step
present, even at the level of propagators, no complete soltewards a truncation of the gluon equation is to neglect all
tion to truncated DSEs of QCD exists. In particular, everterms with four-gluon vertices. These are the momentum
in the absence of quarks, solutions for the gluon propagandependent tadpole term, an irrelevant constant which
tor in Landau gauge rely on neglecting ghost contributionsanishes perturbatively in Landau gauge, and explicit two-
[2-5]. Ghost-free gauges such as the axial gauge sufféoop contributions to the gluon DSE. The latter are sub-
from their own problems [6]. dominant in the ultraviolet and will thus not affect the

In addition to the prospect of some insight into confine-behavior of the solutions for asymptotically high momenta.
ment from studying the infrared behavior of QCD Green’sin the infrared it has been argued that the singularity
functions, DSEs have proved to be a highly successful todtructure of the two-loop terms does not interfere with the
in developing a hadron phenomenology that interpolatesne-loop terms [9]. Without contributions from four-gluon
smoothly between the infrared (nonperturbative) and ulvertices (and quarks) the renormalized equation for the
traviolet (perturbative) regimes [7]. In particular, a vari- inverse gluon propagator in Euclidean momentum space
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is given by [10]

_ _ 1 d*
Dlu,;(k) = ZSD;:V l(k) + gchZI 3 (27:§4 r;}pa(k» 2 Q)Daﬁ(Q)Dpa'(p)F,Bav(_q’ P _k)
2N 5 d*q
— &°N:Z Qn) iq.Dc(p)Dg(q)G,(q,p), (1)

wherep = k + g, D! andT'"! are the tree level propagator and three-gluon velgxjs the ghost propagator, afdt
andG are the fully dressed three-point vertex functions. The equation for the ghost propagator in Landau gauge QCD,
without any truncations, is given by

-1 — _ 512 N d4¢] . _
D (k) Z3k” + g°N.Z; m) ikyDy,(k — q)G,(k,q)Dg(q) . ()

The renormalized propagators for ghosts and gluons and the renormalized coupling are defined from the respective

bare quantities by introducing multiplicative renormalization constéht®; := D, Z3D,, = D%, andZ,g = go.

uv?
Furthermore,Z, = Zgzi/z, 7, = ZgZ§/223, and we use thaZ, = 1 in Landau gauge [11]. The ghost and gluon

propagators are parametrized by their respective renormalization fun¢liansl Z,
Gk kﬂky> Z(k?)

> Dy,u(k) = <5,u1/ - (3)

In order to arrive at a closed set of equations for the functiGnand Z, we use a form for the ghost-gluon vertex
which is based on a construction from its Slavnov-Taylor identity (STI) neglecting irreducible four-ghost correlations, in
agreement with the present level of truncation [12],

G(k?) <G(k2) )
G > =i + | - 1 . 4
,u(p Q) lQ,U- G(qz) l M G(pz) ( )
With this result, we can construct the three-gluon vertex according to general procedures from previous studies [13],
1 . 1 : A_(p*. 4% k%)
Tuvp(p.q.k) = 5A+(p2,q2;k2)5wt(p —q), + 3A—(p2,q2;k2)5wl(p +q), + pz—_qqz
X (8uvpq — Pvqu)i(p — q), + cyclic permutations
®)

2 2.0 _ GG | G(K*)G(p?)
A=(pT k) G(pZ(p?) ~ G(gH)Z(g?)

Some additionally possible terms, transverse with resded:tghter constraints on this vertex then those obtained for
to all three gluon momenta, cannot be constrained by itfermion vertices.

STI and are thus disregarded. For the fermion vertex in Instead of a direct numerical solution of the coupled sys-
guantum electrodynamics (QED) as constructed from itséem of integral equations resulting from the present trun-
Ward-Takahashi identity, it is well known that additional cation scheme, we use a one-dimensional approximation:
transverse terms, with the further constraint not to introfor integration momentg? < k> we use the angle ap-
duce kinematic singularities, are essential for multiplicaproximation replacingz[(k — ¢)?] — G (k) andZ[(k —

tive renormalizability [14]. Based on this requirement, ¢)>] — Z(k?). Since this preserves the limjt — 0, it is
such terms have been obtained explicitly for quencheduitable for an analytic discussion of the solutions in the
QED in Ref. [15]. Similar constructions for the vertices in infrared. Forg? > k? we replaceall arguments (includ-
QCD are presently not available. However, the full Boseing the externak?) by the integration momentug?. The
(exchange) symmetry of the three-gluon vertex alleviategustification for this is the weak logarithmic momentum de-
this problem since, combined with the STI, it puts muchpendence of; andZ at high momenta [16]. The DSEs

| (1) and (2) then simplify to
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We introduced anO(4)-invariant momentum cutoff for s — 0. This is qualitatively different from the infrared
Ayv to account for logarithmic ultraviolet divergences singular coupling of the Mandelstam approximation [5].
which are absorbed by the renormalization constahts The momentum scale in our calculations is fixed from
and Z;. Z, has to be ultraviolet finite [17]. This is in- the phenomenological values(M;) = 0.118 at the mass
consistent with gauge invariance implyitfy = Z3/Z;.  of the Z boson [18]. The ratio of th& to the 7 mass,
While this problem, appearing at ordgf in a pertur- M,/M, = 51.5, then yieldsas(M,) = 0.38 which is in
bative expansion, is quite natural for a truncation schemencouraging agreement with the experimental value.
neglecting explicit four-gluon couplings at the same order, Itis interesting to compare our solutions to recent lattice
its remedy could provide information on purely transverseesults using implementations of the Landau gauge con-
terms in the three-gluon vertex. For details of the renordition [19—-21]. In Fig. 1 we compare our solution for
malization and the numerical procedure, see Ref. [17]. the gluon propagator to data from Ref. [20]. We normal-

To deduce the infrared behavior of the propagators wézed the gluon propagator accordingZox = 1) = 11.3
make the Ansatz so that for := k> — 0 the product to account for the units used in Ref. [20] (with= k2a?
Z(x)G(x) — cx* with k # 0 and some constant The in units of the inverse lattice spacing). According to the
special casec = 0 leads to a logarithmic singularity in authors of Ref. [20], the arrow indicates a bound below
Eq. (7) forx — 0 which precludes the possibility of a self- which finite size effects become considerable.
consistent solution. In order to obtain a positive definite In Fig. 2 we compared our infrared enhanced ghost
functionG(x) for positivex from an equally positivZ(x),  propagator to the results of Ref. [21]. It is quite amazing
as x — 0, we obtain the further restrictioh < « < 2.  to observe that our solution fits the lattice data at low
Equation (7) then yields momenta significantly better than the fit to an infrared

1 I\ singular formD¢ (k%) = ¢/k*> + d/k* given in Ref. [21].
G(x) — [gzy(();(— - —ﬂ ¢ 'x™®= (8 We therefore conclude that the present lattice calculations
K 2 confirm the existence of an infrared enhanced ghost
s of 1 1\T 5 o propagator of the fornbs ~ 1/(k*)'** with0 < k < 1.
Z(x) — [g Yo <; - E)}C X (9)  This is an interesting result for yet another reason: In
G ) . _ ~ Ref. [21] the Landau gauge condition was supplemented
whereyy = 9/(6477) is the leading perturbative coeffi- py an algorithm to select gauge field configurations from
cient of the anomalous dimension of the ghOSt field. Usinghe fundamental modular region which is to avoid Gribov
(8)and (9) in Eq. (6), we find that the three-gluon loop con-copies. Thus, our results suggest that the existence of
tributes terms~-x* to the gluon equation for — 0, while  sych copies of gauge configurations might have little
the dominant (infrared singular) contributien: 2« arises  effect on the solutions to Landau gauge DSEs [22].

from the ghost loop, i.e., The Euclidean gluon correlation function presented here
b 69 (1 1\2 can be shown to violate reflection positivity [17], which
Z(x) =gy 4 <_ - 3) is a necessary and sufficient condition for the existence

1 of a Lehmann representation [23]. We interpret this as
% <i 11 + L) 22 representing confined gluons. In order to understand how
22—k 3 4k these correlations can give rise to confinement of quarks, it

Comparing this to (9) we obtain a quadratic equation with
a unique solutionc = (61 — +/1897)/19 = 0.92 for the
exponentk < 2. The leading behavior of the gluon and ™[
ghost renormalization functions is entirely due to ghost ., |
contributions. The details of the approximations to the
three-gluon loop have no influence on these considerationst2e y
In particular, additional transverse terms of the three-gluon
vertex, free of kinematical singularities, will yield contri-
butions that are even further suppressed in the infrared. g
Compared to the Mandelstam approximation, in which the
three-gluon loop alone determines the infrared behavior of &°
the gluon propagator and the running coupling in Landau ,
gauge [2-5], this shows the importance of ghosts. The
result presented here implies an infrared stable fixed point 200 |
in the nonperturbative running coupling of our subtraction
scheme, defined by % 005 01 o015 o0z o2 03 035 04

x=k2a2, with a1 = 2GeV

Z(x)ix — T
Lattice-Fit ——-
Marenzoni et. al. 243 x 48 -
163x48 +

finite size

2 16 (1 1\!
as(s) = g—Z(S)Gz(S) ~ 9 <— - 3) ~ 95, FIG. 1. The numerical result for the gluon propagator from
™ K Dyson-Schwinger equations (solid line) compared to lattice data
(10)  from Fig. 3 in Ref. [20].
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FIG. 2. The numerical result for the ghost propagator

line) compared to data from Fig. 1 in Ref. [21] for thd
lattice up tox = 1, and a fit as obtained in Ref. [21].

Ssolid

[10] We use positive definite metricg,,

R ' y , : - ' [3] D. Atkinson et al.,, J. Math. Phys.22, 2704 (1981);

D. Atkinson, P.W. Johnson, and K. Starhid. 23, 1917
(1982).

[4] N. Brown and M. R. Pennington, Phys. Rev.d9, 2723

(1989).

[5] A. Hauck, L. v. Smekal, and R. Alkofer, Report No. hep-

ph/9604430.

[6] K. Bittner and M. R. Pennington, Phys. Rev.52, 5220

(1995), and references therein.

[7] See, e.g., C.D. Roberts and A.G. Williams, Prog. Part.

Nucl. Phys.33, 477 (1994), and references therein.

[8] See alsdDynamical Symmetry Breaking in Quantum Field

Theories, edited by V.A. Miranski (World Scientific,
Singapore, 1993).

[9] L.G. Vachnadze, N.A. Kiknadze, and A.A. Khelashvili,

Theor. Math. Phys102, 34 (1995).

= 6,,. Color
indices are suppressed and the number of colors is fixed,
N. = 3.

[11] J.C. Taylor, Nucl. PhysB33, 436 (1971).

[12] In [17] we derive a Slavnov-Taylor identity for the

will be necessary to include the quark propagator. The size
of the coupling at the fixed poin&,. = 9.5, is, however, a
good indication that dynamical chiral symmetry breaking
will be generated in the quark DSE.

In summary, we have presented a solution to a truncated 3]

set of coupled Dyson-Schwinger equations for gluons and
ghosts in Landau gauge. The infrared behavior of this so-
lution, obtained analytically, represents a strongly infrared
enhanced ghost propagator and an infrared vanishing gluon
propagator. Our results, in particular for the ghost propa-
gator, compare favorably with recent lattice calculations
[20,21]. Since the lattice implementations of the Landa
gauge are such that configurations are restricted to the fu
damental modular region, this might indicate that Gribov,
copies have little influence on solutions to the DSEs in
Landau gauge. The absence of a Lehmann representation
for the gluon propagator can be interpreted as a signal for
confined gluons. The existence of an infrared fixed point
is in qualitative disagreement with previous studies of the

ghost-gluon vertex from the usual Becchi-Rouet-Stora
invariance. This, together with the symmetry of the
ghost-gluon vertex, fully determines its form at the present
level of truncation. There are no undetermined transverse
terms in this case.

The ghost-gluon vertex (4) is consistent with a ghost-
gluon scattering kernel of tree-level structure in the STI
of the three-gluon vertex, which can then be constructed
from procedures developed and used previously [U. Bar-
Gadda, Nucl. PhysB163 312 (1980); S.K. Kim and
M. Baker, ibid. B164, 152 (1980); J.S. Ball and T.-W.
Chiu, Phys. Rev. @22, 2550 (1980)].

14] N. Brown and N. Dorey, Mod. Phys. Lett. @ 317 (1991).
15] D.C. Curtis and M. R. Pennington, Phys. Rev4R) 4165

(1990).

[16] A similar assumption underlies the Mandelstam approxi-

mation. Forg?> > k2 it can be further justified from a
detailed study of the solutions in the ultraviolet [17]. It
will nevertheless be important to assess the sensitivity of
the results to the modified angle approximation in the
future.

gluon DSE neglecting ghost contributions in Landau gaugél7] L. v. Smekal, A. Hauck, and R. Alkofer, Report No. hep-

[2-5]. This shows that ghosts are important, in particular
at low energy scales relevant to hadronic observables.

We thank F. Coester, F. Lenz, M. R. Pennington, and19]

H. Reinhardt for helpful discussions. This work was
supported by DFG under Contract No. Al 279/3-1, by the

ph/9707327.

18] R. M. Barnettet al., Phys. Rev. D64, 1 (1996).

C. Bernard, C. Parrinello, and A. Soni, Phys. Rev4®)
1585 (1994); D. S. Hentgt al., ibid. 54, 6923 (1996).

[20] P. Marenzoni, G. Martinelli, and N. Stella, Nucl. Phys.

B455, 339 (1995).

Graduiertenkolleg TUbingen, and the US-DOE, Nuclear[21] H. Suman and K. Schilling, Phys. Lett. &3 314 (1996).

Physics Division, Contract No. W-31-109-ENG-38.

[1] W. Marciano and H. Pagels, Phys. R&®, 137 (1978).
[2] S. Mandelstam, Phys. Rev. 2D, 3223 (1979).

3594

[22] This is supported by the qualitative similarity of our

solutions to the infrared behavior obtained from studies of
the influence of a complete gauge fixing by D. Zwanziger
[Nucl. Phys.B378 525 (1992);bid. B412, 657 (1994)].

[23] We are indebted to F. Coester for pointing this out.



