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Escape Times off Random Walkers from a Fractal Labyrinth
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The problem of the statistical description of the first passage tjmé¢o a given distance of the first
J of a set of N noninteracting diffusing particles, all starting from the same origin on fractal substrates,
is addressed. Asymptotic expressions (the main and two corrective terms) foMarfythe (arbitrary)
moments of; y are given. It is shown that, to first order and for= j < N, the mth moment oft;
goes agIn N)"(0-4) and its variance a8n N)~%/v, d,, being the anomalous diffusion exponent of the
fractal medium. [S0031-9007(97)04503-1]

PACS numbers: 05.40.+j, 05.60.+w, 66.30.Dn

The random walk formalism has proven to be extremelyconcerning the order statistics of a set of random walkers
fruitful in science [1,2]. Usually it is the random walk on Euclidean lattices are known [11]. However, for the
of only one particle which is studied, but the behavior diffusion limit there are rigorous asymptotiav (> 1)
of manyrandom walkers is also presently an area of acresults only for one-dimensional processes (with only
tive research [3]. Thus, for example, Larralefeal. have  certain conjectures for higher dimensions [9,12]). In this
recently found very nice results regarding the numbet_etter we extend these results to fractal substrates and, in
of distinct sites,Sy(r), visited by a set ofN > 1 in-  passing, improve the one-dimensional results.
dependent random walkers on Euclidean lattices of one, In what follows we take the mean time spent by a
two, and three dimensions [4]. Shortly thereafter, thesasingle random walker to reach the (arbitrary) distance
results were extended to fractal substrates [5]. Diffu+ as the time unit. Let the mortality function(r)
sion in these fractal media has attracted much attentiohe the probability that a single diffusing particle has
because it exhibits new, qualitatively different proper-reached this distance during the time interval(0, ¢),
ties (anomalous diffusion) also present in geometricallyand letys(r) = dh(t)/dr be the first-passage-time density.
disordered media (indeed, fractals are considered goothe probability density;; »(z) for the first passage time
models for disordered media) which are unexplained byo a site situated at a distance of the jth out of
the classical theories of diffusion [6,7]. For example, N noninteracting particles is [9,1Q]; y(r) = N!/[(N —
the mean-square displacement of a random walker i$)!(; — D!Jy ()R~ (t)[1 — h(t)]¥~/. The generating
given by (r?) =~ 2Dt*4, d,, # 2 being the anomalous function Uy ,(z) = Zle(t}’fN}z«f‘l of the mth moment
diffusion exponent ((_)r fracta! _dimension of a randomof the jth passage timey'y) = f; t"q;n(t) dt, can be
walk) andD the diffusion coefficient. written as [9,12]

In this Letter we give an answer to another basic

question about the diffusion of a group of particles in Uy ,,(z) = — [ "N = h + k)Y = ZN]dr.
a fractal medium that, as we will see, is closely related 1 =2zJo
to the problem of calculatingy (). The question is: (1)

If a set of N independent random walkerants, in  aAgq we are looking for expressions fdr’y) when 1 =

the language coined by de Gennes [1,8]) are initiallyj < N, it is immaterial whether we evaluate the integral
placed parachuted onto a site of a fractal structuréhe Eqg. (1) or

labyrinth), how long will it take the firstj random walkers

to reach a given distance from the origin? In other U ()

words, if the exits of the maze are placed at a distance -

r, what are the escape times of the fijsants of this  — " f " TexpNIn[1 — h(z) (1 — 2)}dt, (2)
battalion of N members? (Notice that not only the first L —=zJo

passage time of the first particle is important if more tharand it suffices to knowi(z) for small times. The main
one particle must arrive at a certain place in order tderm of the asymptotic expression bft) for small times
trigger some effect there.) Explicitly, in this Letter we has already been calculated for finitely ramified fractals
give asymptotic expressionv (> 1) for the moments [13] through the estimation of the main term of the first-
of the jth passage timer,; y(r), i.e., of the time to first passage-time density(¢), by means of a renormalization
reach a given distanceof the jth random walker of a set procedure due to Machta [14] and Van den Broeck [15].
of N independent diffusing random walkers all startingHowever, as we will see below, we have to get this main
from the same origin on a fractal substrate. Or, in othetermandthe next corrective term in order to evaluate the
words, we give an asymptotic description of the ordemain term of the variance of’y. To this end we proceed
statistics [9,10] of the diffusion process. Some resultas follows. We start from the main asymptotic term of
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the Laplace transform of the first-passage-time density|16], obtaining
namely, ~ A—(1+8/2) B B

¢7y(s) ~ Aexq_csl/dw) (3) ‘ﬁ(t) ~ At exq C/t )(1 + d)lt )’ (4)
for large s. HerNeCNT is a constant that can be estimatedwhere A = /»/Q2m) (BC/v)"/?A, C =1} = BA(C/
numerically andA” ! is the probability that one random v)", ¢1 =1 = 2d,)(dy — 2)/24C, B = 1/(dy = 1),
walker goes from a site to any of its nearest neighbors ogNd» = B8 + 1. From here one easily deduces that
the nth generation (fractal) lattice via any of the shortest h(t) =~ AP’ exd —(10/0)B1(1 + hitB 5
paths traced over the + 1)th generation latticep being © R H= (/D71 117 ®)
the number of steps of this path [13]. Values of thes&or small ¢, with A = A/BC andh, = ¢, — 1/2C (see
constants for several fractals are given in Table |. Nextraple I). Inserting this expression into Eq. (2) and after
we get(z) for small r by Laplace inversion ofs(s), a lengthy derivation similar to that of Sect. 3 of Ref. [12]
which can be done by means of the saddle-point metho(tetails will be given elsewhere) we get

B 1 10’ a <1 >
Upm(2) = —— 1+ = (=Inina -
wn®) =77 In“A[ InA\2 Y
2

2 ™ 2 B 1

1+ «a IN*In A
+ ———1In?| /\} + 0 , 6
where @« = m/B = m(d,, — 1), v = 0.577215 is the | particles:
Euler constant, and = (1 — z)NAtf/z. o A(a)
ExpandingUy ,.(z) in a power series of one finds, (tn) = (') + N AN > " (7)
n=1

after lengthy algebraic manipulation, the moment of order
m of the mean first passage time for the fiysbut of N | with

ins a 1 >
) = 1+ —Inln AN —
i) In“/\ON{ In/\0N<2nn0N Y
a w? B 1
+——— |1+ a)|— + 2>+ —2hr—<—+1+ )InInAN
s L0+ @ (T4 92+ v = 2mil = (5 + (1 + @y )iy
l+a , } N In AgN
+ + 0| ————
2 In“In AN (9( PN )| (8)
and where
ala + 1)[ 25,(2) 1 } IN%1n AoN
Aj(@) = a + ———2 | (=1)" =2 + InIn(AyN) — -2y |+ O —""), 9
(@) = a 21n AN ( )(n—l)! nIn(AoN) = =7 = 27 In2 AN ©)
B/2

Ao = Mz = 0)/N = Ary' ", and S,(2) are Stirling num- | with time, j(¢r) ~ exp(z/7), the characteristic time =
bers of the first kind [17]. In Fig. 1 we compare ty(d, — 1)/(In* AyN) being smaller for larged,, .

(t;n) calculated through the numerical integration of The variancea.,%N = (t]Z,N> — (t;~)* can be deduced
Jo tqin()dt = [y[1 — h(z)]" with the values given by from Egs. (7) and (8):

Eq. (8) for four subtrates. We see that the asymptotic for-

2
mula is in good agreement with the numerical results even 2 to(dw — 1)°
for N not too large, say, foN = 16. PN n2ds A0N
From Eq. (7) we can estimate the flux of particles, ) Iy i L 25,(2)
¢(t) = dj/dt, that leaves a (“spherical”) surface placed X 5 Z o + Z(—l) |
at the distance (i.e., the flux of trapped particles if this n=l n=l '
spherical boundary is absorbent): (10)
d, . L :
o (1) ~ ! ~ ™ AN j, Notice that it is necessary to know the main and two
JHILN) — LN oldw — corrective terms of(¢; y) and (t; x)* to get only the
(tirin) = (tjn)  toldy — 1) i Kejn) and (1 n)* ly th

where we have approximatefl;(d,, — 1) by d, — 1.  main term of the variance. We see that to lowest order
This means that initially (i.e., for short times) the numberin InN, the coefficient of variatiory; y/o;x goes as
of absorbed particles at time j(z), grows exponentially InN independently of the fractal substrate (including the
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TABLE |. Parameters appearing in the asymptotic expression of the mortality function,
Eq. (5), the first-passage-time density, Eq. (4), and its Laplace transform, Eq. (3), for four
substrates: The symbol 1D refers to the one-dimensional lattice, Sd td-theensional
Sierpinsky lattice, and GM to the Given-Mandelbrot curve.

Case d, A C A b1 A to i
1D 2 2 2 2= 0 22/m /2 1
S2 In5/In2 4 1.96 1.82 —0.050 2.46 0.97 —-0.56
S3 In6/In2 6 2.30 2.78 —0.078 3.36 1.53 —0.46
GM In22/In3 4 2.0 15 —-0.14 2.5 1.2 —-0.6

one-dimensional lattice). A check of this result jor= 1  ration in the sense of de Gennes [6,18] (most sites inside
fin J6(d, — 1) a compact region are visited before a new site outside
v

. InN (11)  this region is reached). Ry(7) is the mean longest dis-

. LN N tance reached by any of th€ random walkers during

is shown for the four example substrates in Fig. 2. Itne times, the number of distinct sites visited by these
is clear that the numerically evaluated ratigv/o1n  particles is just the number of sites that are at distances
closely follows the theoretical prediction given by gmajier thanRy (i.e., the volume of the “sphere” of ra-

Eq. (11). ius Ry), i.e., Sy(t) ~ Rf,f(t). But we have found that

It should be kept in mind that we have chosen the meaﬁ:e mean time tdirst reach the distance bv anv of
time for a single particle to reach the distancas a time . o 0 3{ e y
the N particles is given byz y(r)) ~ ré/In=1 AgN

unit. If we want this distance to appear explicitly in the
ST d, [cf. Eq. (12)], so that one expects that the méamgest
ﬁg?\gi;ﬁullés’lzwe (g"’)wti g%ﬁ:i;ggﬁﬁyé(r:z?{,vr o)uld distance reached by any of these particles should be given
pe, EQ. by Ry (1) ~ (¢In®~1 AoN)"/4+ Therefore,

become
6 < . >dw » Sy (1) ~ 14/ (In AN )dr(dn =D/ (13)
() = jrz= XN \V2D 12 agreement with Havliet al. [5].

It is instructive to use this formula to deduce an asymp- [N summary, we have answered the following basic
totic expression fofy(z), the number of distinct sites vis- Problem about diffusion on fractals: Given a large number
ited by N particles diffusing on a fractal (which is the of particles all starting from the same place diffusing on
main result of Havlinet al. [5]). For media with spectral @ fractal, how long will it take (on average) for the first
dimensiond, = 2d;/d,, less than two d; is the fractal particle to cross a given distance? How long for the second
dimension) the random walkers perform compact exploone? And for thejth? In fact we have solved this (order
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FIG. 2. The ratio(t; y)/o |y evaluated numerically foN =
FIG. 1. The dependence oN of the first passage time of 2" with n =0,1,...,20 for the same substrates as in Fig. 1.
the first particle out ofN, {7, y), for the one-dimensional The slopes of linear fits to the last ten points ffom 2! to 2%°)
lattice, the two- and three-dimensional Sierpinsky lattices, andwre 0.783 for the one-dimensional latticé,.596 and 0.497 for

the Given-Mandelbrot curve. Her@ = 1/(d, — 1). The the two- and three-dimensional Sierpinsky lattices, respectively,
symbols correspond to the numerical estimateNo# 2" with and 0.433 for the Given-Mandelbrot curve. These values are

n=0,1,...,20, and the solid lines to Eq. (8) witm = 1. in good agreement with the corresponding asymptotic values
Times are expressed in units of the mean first passage time given by Eq. (11), i.e4/6(d,, — 1)/, which are0.780, 0.590,
a singlerandom walker. 0.492, and0.430, respectively.
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statistics) problem in a more general way because we havgl] B.H. Hughes,Random Walks and Random Environments,
found expressions (although asymptotic) for the arbitrary =~ Volume 1: Random Walk¢Clarendon Press, Oxford,
moments of these quantities, namely, the first passage time  1995); Random Walks and Random Environments, Vol-
t;x Of the jth particle out of a total ofV > j. The ume 2: Random Environment€larendon Press, Oxford,
solution is condensed in Eq. (6), in which the main and 1996). o

two asymptotic corrective terms of the generating function (2! (\/3v |-||k \l{lve[[?]SHATlpeztS Aandt Adppl'cité%rf of the Random
of these moments are given. We have seen that this is th‘fS] M.aF. (Sh?;sihg(;r?[&léturrgsifgnggq@a SS))B (1992). The
minimum pumber of terms ngeded to obtain the main te'fm diffusion of N particles has been recently explored at an
of the variance. We have discovered the extremely mild  5¢omiclevel by means of scanning tunneling microscopy

dependence of the first passage time of the first walkers  py T. zambelly, J. Trost, J. Wintterlin, and G. Ertl, Phys.

on the numberN of walkers: these times are (to first Rev. Lett.76, 795 (1996).

order) inversely proportional to a power ofAh the power  [4] H.E. Larralde, P. Trunfio, S. Havlin, H. E. Stanley, and
being the anomalous diffusion exponet, characteristic G. H. Weiss, Nature (Londor855, 423 (1992); Phys. Rev.
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The results of this Letter open up an alternative route for [3] S- Havlin, H. Larralde, P. Trunfio, J.E. Kiefer, H.E.
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: ) (1992).
exgmple by mgans of 'the experimental evaluathn of the[6] S. Haviin and D. Ben-Avraham, Adv. PhyS6, 695
ratio (t; y)/ o1 n; See Fig. 2). Because setof particles (1987)

is used (typicqlly withV ~ 10*) this kind of 'experi'ment_ [7] Fractals in Sciencegdited by A. Bunde and S. Havlin
should be easier to carry out than any experimentinvolving™ * (gpringer-Verlag, Berlin, 1994).
a single molecule. [8] P.-G. de Gennes, La Recherched19 (1976).

At this point it is natural to ask whether the results we [9] G.H. Weiss, K.E. Shuler, and K. Lindenberg, J. Stat.
have found are valid for all self-similar media (disordered Phys.31, 255 (1983).
media included). | think that the answer is affirmative for[10] W. Feller, An Introduction to Probability Theory and Its
the following reasons. Knowledge of the mortality func- Applications(Wiley, New York, 1973), 2nd ed., Vol. An
tion A(z) for short times [cf. Eq. (5)] is crucial in obtain- Introduction to Probability and Its ApplicationgWiley,
ing the key formula of this Letter, Eq. (6). This function New York, 1971), 3rd ed., Vol. II. ,
has been rigorously derived by means of a renormalizatioR-2! ? 'S‘Ln?egﬁesrgévilsefgggr" K.E. Shuler, and G. H. Weiss,
procedure for finitely ramified de’gerministic fractals, buft iS[12] S B.a\}ustg and K.( Lind)énberg, J. Stat. Phgs 501
unknown for other types of self-similar media (percolation (1996).
clusters at criticality, for example). However, there are ar13) s.B. vuste, J. Phys. &8, 7027 (1995).
guments to support the validity of the expression used if14] J. Machta, Phys. Rev. B4, 5260 (1981).
this Letter, Eq. (5), for these other media also [13]. Moreq{15] C. Van den Broeck, Phys. Rev. Le2, 1421 (1989);
over, the fact that from the results presented in this Letter  Phys. Rev. A40, 7334 (1989).
we were able to reobtain the expression found by Havlirf16] E. Helfand, J. Chem. Phyg8, 1931 (1983).
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