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The problem of the statistical description of the first passage timetj,N to a given distancer of the first
j of a set ofN noninteracting diffusing particles, all starting from the same origin on fractal substrat
is addressed. Asymptotic expressions (the main and two corrective terms) for largeN of the (arbitrary)
moments oftj,N are given. It is shown that, to first order and for1 # j ø N , themth moment oftj,N

goes assln Ndms12dw d, and its variance assln Nd22dw , dw being the anomalous diffusion exponent of the
fractal medium. [S0031-9007(97)04503-1]

PACS numbers: 05.40.+ j, 05.60.+w, 66.30.Dn
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The random walk formalism has proven to be extreme
fruitful in science [1,2]. Usually it is the random walk
of only one particle which is studied, but the behavio
of manyrandom walkers is also presently an area of a
tive research [3]. Thus, for example, Larraldeet al. have
recently found very nice results regarding the numb
of distinct sites,SN std, visited by a set ofN ¿ 1 in-
dependent random walkers on Euclidean lattices of o
two, and three dimensions [4]. Shortly thereafter, the
results were extended to fractal substrates [5]. Diff
sion in these fractal media has attracted much attent
because it exhibits new, qualitatively different prope
ties (anomalous diffusion) also present in geometrica
disordered media (indeed, fractals are considered go
models for disordered media) which are unexplained
the classical theories of diffusion [6,7]. For exampl
the mean-square displacement of a random walker
given by kr2l ø 2Dt2ydw , dw fi 2 being the anomalous
diffusion exponent (or fractal dimension of a rando
walk) andD the diffusion coefficient.

In this Letter we give an answer to another bas
question about the diffusion of a group of particles
a fractal medium that, as we will see, is closely relat
to the problem of calculatingSN std. The question is:
If a set of N independent random walkers (ants, in
the language coined by de Gennes [1,8]) are initia
placed (parachuted) onto a site of a fractal structure (the
labyrinth), how long will it take the firstj random walkers
to reach a given distancer from the origin? In other
words, if the exits of the maze are placed at a distan
r , what are the escape times of the firstj ants of this
battalion ofN members? (Notice that not only the firs
passage time of the first particle is important if more th
one particle must arrive at a certain place in order
trigger some effect there.) Explicitly, in this Letter w
give asymptotic expressions (N ¿ 1) for the moments
of the jth passage time,tj,N srd, i.e., of the time to first
reach a given distancer of thejth random walker of a set
of N independent diffusing random walkers all startin
from the same origin on a fractal substrate. Or, in oth
words, we give an asymptotic description of the ord
statistics [9,10] of the diffusion process. Some resu
0031-9007y97y79(19)y3565(4)$10.00
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concerning the order statistics of a set of random walke
on Euclidean lattices are known [11]. However, for th
diffusion limit there are rigorous asymptotic (N ¿ 1)
results only for one-dimensional processes (with on
certain conjectures for higher dimensions [9,12]). In th
Letter we extend these results to fractal substrates and
passing, improve the one-dimensional results.

In what follows we take the mean time spent by
single random walker to reach the (arbitrary) distan
r as the time unit. Let the mortality functionhstd
be the probability that a single diffusing particle ha
reached this distancer during the time intervals0, td,
and letcstd ­ dhstdydt be the first-passage-time density
The probability densityqj,N std for the first passage time
to a site situated at a distancer of the jth out of
N noninteracting particles is [9,10]qj,N std ­ N!yfsN 2

jd!sj 2 1d!gcstdhj21std f1 2 hstdgN2j . The generating
function UN ,mszd ­

PN
j­1ktm

j,N lzj21 of the mth moment
of the jth passage time,ktm

j,N l ­
R`

0 tmqj,N std dt, can be
written as [9,12]

UN ,mszd ­
m

1 2 z

Z `

0
tm21fs1 2 h 1 hzdN 2 zN g dt .

(1)

As we are looking for expressions forktm
j,N l when 1 #

j ø N, it is immaterial whether we evaluate the integra
of Eq. (1) or

Up
N ,mszd

­
m

1 2 z

Z `

0
tm21 exphN lnf1 2 hstd s1 2 zdgj dt , (2)

and it suffices to knowhstd for small times. The main
term of the asymptotic expression ofhstd for small times
has already been calculated for finitely ramified fracta
[13] through the estimation of the main term of the firs
passage-time density,cstd, by means of a renormalization
procedure due to Machta [14] and Van den Broeck [15
However, as we will see below, we have to get this ma
term and the next corrective term in order to evaluate th
main term of the variance oftm

j,N . To this end we proceed
as follows. We start from the main asymptotic term o
© 1997 The American Physical Society 3565
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the Laplace transform of the first-passage-time dens
namely, ecssd ø eA exps2eCs1ydw d (3)

for large s. Here eC is a constant that can be estimate
numerically andeAh21 is the probability that one random
walker goes from a site to any of its nearest neighbors
the nth generation (fractal) lattice via any of the shorte
paths traced over thesn 1 1dth generation lattice,h being
the number of steps of this path [13]. Values of the
constants for several fractals are given in Table I. Ne
we get cstd for small t by Laplace inversion ofecssd,
which can be done by means of the saddle-point met
o

e
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[16], obtaining

cstd ø bAt2s11by2d exps2Cytbd s1 1 f1tbd , (4)

where bA ­
p

nys2pd sb eCyndny2eA, C ; t
b
0 ­ bbseCy

ndn , f1 ­ s1 2 2dwd sdw 2 2dy24C, b ­ 1ysdw 2 1d,
andn ­ b 1 1. From here one easily deduces that

hstd ø Atby2 expf2st0ytdbg s1 1 h1tbd (5)

for small t, with A ­ bAybC and h1 ­ f1 2 1y2C (see
Table I). Inserting this expression into Eq. (2) and aft
a lengthy derivation similar to that of Sect. 3 of Ref. [12
(details will be given elsewhere) we get
Up
N ,mszd ­

1
1 2 z

tm
0

lna l

(
1 1

a

ln l

µ
1
2

ln ln l 2 g

∂
1

a

2 ln2 l

∑
s1 1 ad

µ
p2

6
1 g2

∂
1 g 2 2h1t

b
0 2

µ
1
2

1 s1 1 adg
∂

ln ln l

1
1 1 a

4
ln2 ln l

∏
1 O

√
ln3 ln l

ln3 l

!)
, (6)
where a ­ myb ­ msdw 2 1d, g . 0.577 215 is the
Euler constant, andl ­ s1 2 zdNAt

by2
0 .

ExpandingUp
N ,mszd in a power series ofz one finds,

after lengthy algebraic manipulation, the moment of ord
m of the mean first passage time for the firstj out of N
er

particles:

ktm
j,N l ­ ktm

1,N l 1
tm
0

lna11 l0N

j21X
n­1

Dnsad
n

(7)

with
ktm
1,N l ­

tm
0

lna l0N

(
1 1

a

ln l0N

µ
1
2

ln ln l0N 2 g

∂
1

a

2 ln2 l0N

∑
s1 1 ad

µ
p2

6
1 g2

∂
1 g 2 2h1t

b
0 2

µ
1
2

1 s1 1 adg
∂

ln ln l0N

1
1 1 a

4
ln2 ln l0N

∏
1 O

√
ln3 ln l0N
ln3 l0N

!)
, (8)

and where

Dnsad ­ a 1
asa 1 1d
2 ln l0N

∑
s21dn 2Sns2d

sn 2 1d!
1 ln lnsl0Nd 2

1
a 1 1

2 2g

∏
1 O

√
ln2 ln l0N
ln2 l0N

!
, (9)
r

l0 ; lsz ­ 0dyN ­ At
by2
0 , andSns2d are Stirling num-

bers of the first kind [17]. In Fig. 1 we compare
kt1,N l calculated through the numerical integration oR`

0 t q1,N std dt ­
R`

0 f1 2 hstdgN with the values given by
Eq. (8) for four subtrates. We see that the asymptotic f
mula is in good agreement with the numerical results ev
for N not too large, say, forN * 16.

From Eq. (7) we can estimate the flux of particle
fstd ­ djydt, that leaves a (“spherical”) surface place
at the distancer (i.e., the flux of trapped particles if this
spherical boundary is absorbent):

fstd ,
1

ktj11,N l 2 ktj,N l
ø

lndw l0N
t0sdw 2 1d

j ,

where we have approximatedDjsdw 2 1d by dw 2 1.
This means that initially (i.e., for short times) the numb
of absorbed particles at timet, jstd, grows exponentially
f

r-
en

s,
d

r

with time, jstd , expstytd, the characteristic timet ­
t0sdw 2 1dyslndw l0Nd being smaller for largerdw.

The variances
2
j,N ; kt2

j,N l 2 ktj,N l2 can be deduced
from Eqs. (7) and (8):

s2
j,N ø

t2
0 sdw 2 1d2

ln2dw l0N

3

"
p2

6
2

√
j21X
n­1

1
n

!2

1

j21X
n­1

s21dn 2Sns2d
n!

#
.

(10)

Notice that it is necessary to know the main and two
corrective terms ofktj,N l and ktj,N l2 to get only the
main term of the variance. We see that to lowest orde
in ln N, the coefficient of variationtj,Nysj,N goes as
ln N independently of the fractal substrate (including the
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TABLE I. Parameters appearing in the asymptotic expression of the mortality function,
Eq. (5), the first-passage-time density, Eq. (4), and its Laplace transform, Eq. (3), for fou
substrates: The symbol 1D refers to the one-dimensional lattice, Sd to thed-dimensional
Sierpinsky lattice, and GM to the Given-Mandelbrot curve.

Case dw eA eC bA f1 A t0 h1

1D 2 2
p

2
p

2yp 0 2
p

2yp 1y2 21
S2 ln 5y ln 2 4 1.96 1.82 20.050 2.46 0.97 20.56
S3 ln 6y ln 2 6 2.30 2.78 20.078 3.36 1.53 20.46
GM ln 22y ln 3 4 2.0 1.5 20.14 2.5 1.2 20.6
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one-dimensional lattice). A check of this result forj ­ 1

t1,N

s1,N
ø

p
6 sdw 2 1d

p
ln N (11)

is shown for the four example substrates in Fig. 2.
is clear that the numerically evaluated ratiot1,Nys1,N

closely follows the theoretical prediction given by
Eq. (11).

It should be kept in mind that we have chosen the me
time for a single particle to reach the distancer as a time
unit. If we want this distance to appear explicitly in the
above results, we have only to replacet by ts

p
2Dyr ddw .

For example, Eq. (8) to order zero and form ­ 1 would
become

kt1,N l ø
t0

lndw21 l0N

µ
r

p
2D

∂dw

. (12)

It is instructive to use this formula to deduce an asymp
totic expression forSN std, the number of distinct sites vis-
ited by N particles diffusing on a fractal (which is the
main result of Havlinet al. [5]). For media with spectral
dimensionds ­ 2dfydw less than two (df is the fractal
dimension) the random walkers perform compact expl

FIG. 1. The dependence onN of the first passage time of
the first particle out ofN , kt1,N l, for the one-dimensional
lattice, the two- and three-dimensional Sierpinsky lattices, an
the Given-Mandelbrot curve. Hereb ­ 1ysdw 2 1d. The
symbols correspond to the numerical estimate forN ­ 2n with
n ­ 0, 1, . . . , 20, and the solid lines to Eq. (8) withm ­ 1.
Times are expressed in units of the mean first passage time
a single random walker.
It
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ration in the sense of de Gennes [6,18] (most sites insi
a compact region are visited before a new site outsid
this region is reached). IfRN std is the mean longest dis-
tance reached by any of theN random walkers during
the time t, the number of distinct sites visited by these
particles is just the number of sites that are at distanc
smaller thanRN (i.e., the volume of the “sphere” of ra-
dius RN ), i.e., SN std , R

df

N std. But we have found that
the mean time tofirst reach the distancer by any of
the N particles is given bykt1,N srdl , rdw y lndw21 l0N
[cf. Eq. (12)], so that one expects that the meanlongest
distance reached by any of these particles should be giv
by RN std , st lndw21 l0Nd1ydw . Therefore,

SN std , tdf ydw sln l0Nddf sdw21dydw , (13)

in agreement with Havlinet al. [5].
In summary, we have answered the following basi

problem about diffusion on fractals: Given a large numbe
of particles all starting from the same place diffusing o
a fractal, how long will it take (on average) for the first
particle to cross a given distance? How long for the secon
one? And for thejth? In fact we have solved this (order

FIG. 2. The ratiokt1,N lys1,N evaluated numerically forN ­
2n with n ­ 0, 1, . . . , 20 for the same substrates as in Fig. 1
The slopes of linear fits to the last ten points (N from 211 to 220)
are 0.783 for the one-dimensional lattice,0.596 and 0.497 for
the two- and three-dimensional Sierpinsky lattices, respective
and 0.433 for the Given-Mandelbrot curve. These values ar
in good agreement with the corresponding asymptotic valu
given by Eq. (11), i.e.,

p
6 sdw 2 1dyp, which are0.780, 0.590,

0.492, and0.430, respectively.
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statistics) problem in a more general way because we h
found expressions (although asymptotic) for the arbitra
moments of these quantities, namely, the first passage
tj,N of the jth particle out of a total ofN ¿ j. The
solution is condensed in Eq. (6), in which the main a
two asymptotic corrective terms of the generating functi
of these moments are given. We have seen that this is
minimum number of terms needed to obtain the main te
of the variance. We have discovered the extremely m
dependence of the first passage time of the first walk
on the numberN of walkers: these times are (to firs
order) inversely proportional to a power of lnN, the power
being the anomalous diffusion exponent,dw , characteristic
of the medium in which the diffusion is taking place
The results of this Letter open up an alternative route
experimentally determiningdw for self-similar media (for
example by means of the experimental evaluation of
ratio kt1,N lys1,N ; see Fig. 2). Because aset of particles
is used (typically withN , 1023) this kind of experiment
should be easier to carry out than any experiment involv
a single molecule.

At this point it is natural to ask whether the results w
have found are valid for all self-similar media (disorder
media included). I think that the answer is affirmative f
the following reasons. Knowledge of the mortality fun
tion hstd for short times [cf. Eq. (5)] is crucial in obtain
ing the key formula of this Letter, Eq. (6). This functio
has been rigorously derived by means of a renormaliza
procedure for finitely ramified deterministic fractals, but
unknown for other types of self-similar media (percolatio
clusters at criticality, for example). However, there are
guments to support the validity of the expression used
this Letter, Eq. (5), for these other media also [13]. Mor
over, the fact that from the results presented in this Le
we were able to reobtain the expression found by Hav
et al. [5] for the number of distinct sites visited byN ran-
dom walkers [cf. Eq. (13)], which is valid for the percola
tion cluster at criticality, also supports this conjecture.

This work was supported by the Dirección General
Investigación Cientı´fica y Técnica (Spain) through Grant
No. 93-063 and No. PB94-1021.
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