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Self-Gravitating System
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The simplest model for studyingN-body gravitational interactions is the one-dimensional system
consisting of parallel mass sheets [one-dimensional self-gravitating system (OGS)]. The model has
used often to test theories of gravitational evolution. Here we demonstrate that a two mass-comp
OGS with initial conditions selected far from equilibrium attains both mass segregation and equipart
of energy in a long, but finite, time. This may be the first clear evidence of the approach to ther
equilibrium in this type of system. The implications of these findings as well as future investigatio
are discussed. [S0031-9007(97)04431-1]

PACS numbers: 05.20.–y, 03.20.+i, 05.45.+b, 95.10.Fh
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The one-dimensional self-gravitating system (OGS) h
been used as a simple model to study relaxation inN-body
gravitational systems for several decades. In the OG
the gravitational field is uniform, and therefore simpl
algebraic equations which can be easily and rapidly solv
on a computer govern the motion of the particles. Curre
computer technology allows for very long time dynamica
simulations of reasonably large systems with little los
of numerical accuracy. Because the phase space of
OGS is compact, these systems do not suffer from so
of the difficulties encountered in three dimensions (e.g
singularities, evaporation). However, a consequence
this is a somewhat tenuous connection with real galac
systems.

Computer simulations of the OGS show that they ten
to progress through various quasiequilibrium states as th
evolve from arbitrary initial conditions. These quasi
equilibrium states often last for very long times, and a
approximately stationary. Fluctuations caused by chang
in the mean field potential within the initial nonstationar
distribution rapidly decay and the system reaches a st
of microscopic relaxation, distinguished from the longe
macroscopic time scale for relaxation to thermal equilib
rium. Early predictions and dynamical simulations pu
thermal equilibrium on a time scale proportional toN2tc,
whereN is the number of particles andtc is the typical
time for a particle to traverse the system [1,2]. Later wor
tended to refute these earlier claims by showing that t
system was still far from equilibrium after2N2tc [3,4].
Studies of the divergence of nearby trajectories in pha
space using Lyapunov exponents predicted times mu
longer thanN2tc for convergence [5]. More recent dy-
namical simulations have demonstrated that the relaxat
time for arbitrary initial conditions, if it exists, is or-
ders of magnitude greater than previously predicted [6–
Whether the OGS is capable of reaching a thermal equil
rium state from arbitrary initial conditions is still unclear.

Several recent papers have used equipartition of ene
to investigate the approach to equilibrium of a singl
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mass-species OGS [6–8]. They track the evolution of t
system using a measureD(t) of the deviation of the average
energy per particle from the theoretical equipartition valu
given by the virial theorem. After an initial short period
of microscopic relaxation,D(t) tends to steadily decrease
until a large peak appears. This peak, originally thoug
to indicate the onset of thermal equilibrium [6,7], was late
seen as evidence that the system becomes hung up
long times in restricted (sticky) regions of the phase spa
[8]. Several additional peaks are typically seen followin
the initial large peak, indicating the continuing occurrenc
of transitions between quasiequilibrium states that close
mimic equilibrium and highly nonequilibrium states.

These recent works studying equilibrium of the OG
spurred our interest in studying a two mass-spec
version of the system. As a thermodynamic syste
approaches equilibrium, system members begin to sh
kinetic energy equally on the average. The equipartiti
theorem states that every coordinate or momentum wh
is represented by a simple quadratic expression in
Hamiltonian of a conservative system (e.g.,p2y2m) will,
on the average, contributekTy2 to the energy [9]. This
average sharing of kinetic energy should be easily se
in a system containing two mass species. As the syst
evolves and the average kinetic energy of all particl
equalize, the velocities of the heavy particles decrea
moving them toward the center of the system, and t
light particle velocities increase, moving them outwar
in a process known as mass segregation. The canon
ensemble predicts that the ratio of kinetic energies f
the two mass species will approach one for a syste
in contact with an infinite reservoir. In an isolated
system with a finite number of particles like the OG
(microcanonical ensemble), the equipartition theorem m
only be exact in the limit of largeN.

The attainment of mass segregation and equipartiti
of kinetic energy in a two mass-species OGS may pr
vide the first clear, definitive, evidence of macroscopic r
laxation toward thermal equilibrium. Because of limite
© 1997 The American Physical Society 3561
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computational ability, previous investigations of equipa
tition and mass segregation in the multiple mass-spec
OGS failed to reproduce the expected result [10–12]. W
will see that the time scales employed in the earlier inve
tigations were insufficient by orders of magnitude to ob
serve true equipartition.

In this paper we describe dynamical simulations of
two mass-species, one-dimensional, self-gravitating sy
tem. The initial position and velocity of each particle
is chosen by uniformly sampling a rectangular box inm

space, the (position, velocity) plane in which each partic
is represented by a point. These conditions were selec
because they provide an initial state far from equilibrium
for which it is easy to characterize the kinetic energy rat
of the heavy and light particles. Since the locations inm

space of both heavy and light particles are sampled ide
tically, there is no equipartition in the initial state and it i
not typical of equilibrium. (For the case of a single mas
system it is observed that the distribution inm space will
closely resemble a stationary solution to the Vlasov equ
tion [13] after a short time.) In the canonical ensemble th
average energy is34 in our units, and we choose an initia
virial ratio Rvirial ­ 2skinetic energy/potential energyd ø
1 to reduce the initial violent relaxation phase [14]. Th
average energy and virial ratio are set by properly choo
ing the size of the box. During the simulation, the tim
averaged kinetic energy, potential energy, and total ene
of the two mass species are tracked as the system evol
In addition, as a measure of mass segregation, the av
age magnitude of the distance from the center of ma
of the system for each species is calculated. The sim
lations show that, following the initial period of violent
relaxation [14], the average kinetic energy and distan
for each mass species remain roughly constant for se
eral3106 time units after which energy begins to transfe
between mass species and equipartition and mass segr
tion set in.

Our two mass-species one-dimensional gravitating sy
tem is a collection ofN planar sheets of constant mas
density and infinite in, say, thex and y directions, that
can move along thez direction under their mutual gravi-
tational attraction. Each sheet can be considered a p
ticle confined to move only along thez axis and the
resulting gravitational field felt by each particle is uni
form. Nothing other than gravitational forces are con
sidered (no collisional terms), thus the particles do n
collide but merely pass through (cross) one another. T
system contains two species of particles with the hea
particles being 3 times the mass of the lightsmH ­ 3mLd.
The system contains an equal number of each spec
sNL ­ NH ­ Ny2d. During a crossing, particles experi-
ence a discrete jump in their acceleration, while the she
velocities remain continuous functions of time. Betwee
crossings the particles simply undergo uniform acceler
tion produced by the inhomogeneity of the mass distrib
3562
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tion. Because the system is isolated, momentum cons
vation allows us to fix the center of mass and set the to
momentum to zero. The acceleration experienced by
jth particle from the left depends only on the differenc
between the total mass of particles to the right and the l
and is given by

Aj ­ 2pGsMR 2 MLd , (1)

where MR and ML are the mass to the right and lef
of the jth particle, respectively, andG is the universal
gravitational constant. The energy of the system
constant and is given by

E ­
1
2

NX
j­1

mjy2
j 1 2pG

X
j,i

mimj jxi 2 xj j , (2)

where yj and xj are the velocity and position of the
jth particle, respectively. In the remainder of the pap
we employ dimensionless units scaled to the total syst
mass and energy [8,15]. The dimensionless unit of tim
t corresponds to roughly one sixth of a characteris
crossing time,tc.

We chose to simulate a system with 64 particles (ma
sheets), 32 of each type. The initial state was obtain
by uniformly sampling inside a rectangle inm space
to obtain a virial ratio of 1 and a system energy o
approximately3

4 . For the single mass system, it has bee
shown that this initial state will rapidly relax to a state tha
closely approximates a stationary “waterbag” solution
the Vlasov equation [6,7]. Here as well, there is eviden
that the system rapidly enters a nearly stationary “Vlaso
state. A true Vlasov system will remain in the stationa
waterbag state indefinitely. The discrete system tends
drift from one approximately stationary state to anoth

FIG. 1. The initial state of the system inm space. The open
circles are the light masses, and the filled circles are the he
masses. All units are dimensionless.
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FIG. 2. The time average ofRkinetic showing an initial,
roughly constant, value over a period of approximately6 3
106t, followed by a continual decrease towardRkinetic ­ 1
over approximately9 3 107t. The final value ofRkinetic is
1.033. All units are dimensionless.

as the potential changes in time. The initial state of t
system is plotted in Fig. 1.

Simulations were run for1 3 108t using an exact code
which solves for the time between crossings for each p
of particles. For these long computing runs, the ener
is conserved to as good as 1 part in1011. Extreme care

FIG. 3. The time average ofDL and DH showing an initial,
roughly constant period of approximately6 3 106t, followed
by the onset of mass segregation of the light and heavy mas
The light masses are represented by the dashed line and
heavy masses are represented by the dotted line. All units
dimensionless.
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is taken not to lose numerical accuracy in the long tim
summations and averages required. For each compon
the average distance from the center of mass of t
system and the average kinetic energy are measured
the system evolves in time. Figure 2 shows the ra
of the kinetic energy for the two mass species,Rkinetic,
plotted on a linear scale. As seen in the figure,Rkinetic
remains reasonably constant for several3106 time units
and then begins to change, moving downward towa
Rkinetic ­ 1. Figure 3 shows the average distance fro
the center of mass for each species,DH and DL, plotted
on a linear scale. After an initial, long, time period wher
DH and DL are approximately constant, they begin t
change dramatically as the heavy masses start to conde
toward the center of the system forming a core and t
light masses move outward forming a halo in a proce
known as mass segregation.

In addition, starting att ­ 107t, we computed the
average kinetic energy of each component as well
DL for consecutive time segments of6 3 104t for the
remainder of the run. Using this data, we were able
construct mean values by averaging backwards in tim
from the end of the run (see Fig. 4).

This permitted the study of the system properties
the absence of the distortions produced by the initi
but long lasting, transient. It is clear from Fig. 4 tha
Rkinetic converges to unity. By comparing Fig. 5, the fina
positions of the system member inm space at the end of
the run, with Fig. 1, the segregation is apparent.

The simulation data presented in this short commun
cation shows a clear change in the system dynamics a
several3106t. The equipartition of kinetic energy and

FIG. 4. The backward averagedRkinetic over the last9 3
107t showing a rapid decrease towardRkinetic ­ 1. Transients
caused by the initial non-Vlasov state are ignored. All uni
are dimensionless.
3563



VOLUME 79, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 10 NOVEMBER 1997

5
l
h
pic

d

e
en

he
se

les

d

ov

ed
ry
l

.
s.

n.
FIG. 5. The final state of the system inm space showing mass
segregation of the light and heavy masses. The open circles
the light masses and the filled circles are the heavy masses.
units are dimensionless.

mass segregation suggest an approach toward ther
equilibrium in a finite but long time. This is the firs
long time simulation of a multiple mass-species OG
and perhaps the first convincing evidence that this on
dimensional system can approach thermal equilibriu
The ratio of kinetic energies for the two species reache
value of 1.033 after a time of1 3 108t.

The information gained from the sliding interval wa
also very useful. It allowed us to compute the mea
of Rkinetic for the last9.0 3 107t (90% of the run, see
Fig. 4), as well as the spectrum of its fluctuations in ea
time segment. Thus we were able to remove the eff
of the initial, but long lasting, transient. We obtained
value of 1.000 for the meanRkinetic within the numerical
accuracy of the experiment, showing that equilibrium w
attained. In addition, we found that the variance w
0.0304, demonstrating that fluctuations were typically
the order of 20% in a given6 3 104t time segment once
equilibrium was attained.

With respect to the microcanonical ensemble, the spo
taneous occurrence of the initial state of the system
other similar states is extremely unlikely. This can b
seen quickly on the “back of an envelope” from the var
ance defined above. The occurrence of anRkinetic ø 3
for a period of6 3 104t is over 17 standard deviations
from the mean. Recall, however, that the data show th
the system dynamics “remembers” this state for seve
3106t, i.e., for more than 20 of these time segmen
This suggests that “memory” of the initial state controlle
the behavior of all simulations of the system reported
the regular literature before 1994.

The backward averaging of the data provides uniq
information concerning the relaxation time of fluctuation
3564
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Figure 4 shows that fluctuations inRkinetic relax on a
time scale of0.1 3 107t, whereas Figs. 2 and 3 show
that the initial macrostate persists for roughly 5–2
times longer. This should be contrasted with typica
atomic and molecular systems in which there is a muc
stronger separation between microscopic and macrosco
relaxation processes.

In a follow-up to this Letter we will determine how
the relaxation time forRkinetic depends on the system
population and the mass ratio, and the duration an
patterns of large fluctuations inRkinetic, DH , andDL, for
the two component OGS. If a pattern exists in thes
fluctuations, the time scales may match other features se
in the single component investigations that suggest t
existence of small, residual, stable regions in the pha
space which vanish with increasingN but are responsible
for the slow approach of the timed averaged observab
to their equilibrium values [8]. In addition, we have
derived coupled differential equations that can be solve
numerically for the canonical equilibrium probability
densities of each component of the system in the Vlas
limit. From their solution, probability densities from
dynamical simulations can be compared to those predict
by the Vlasov theory. Close agreement between theo
and experiment would be a further indication of therma
equilibrium.
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