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The simplest model for studyind-body gravitational interactions is the one-dimensional system
consisting of parallel mass sheets [one-dimensional self-gravitating system (OGS)]. The model has been
used often to test theories of gravitational evolution. Here we demonstrate that a two mass-component
OGS with initial conditions selected far from equilibrium attains both mass segregation and equipartition
of energy in a long, but finite, time. This may be the first clear evidence of the approach to thermal
equilibrium in this type of system. The implications of these findings as well as future investigations
are discussed. [S0031-9007(97)04431-1]

PACS numbers: 05.20.—y, 03.20.+i, 05.45.+b, 95.10.Fh

The one-dimensional self-gravitating system (OGS) hasnass-species OGS [6—8]. They track the evolution of the
been used as a simple model to study relaxatidd-body  system using a measutet) of the deviation of the average
gravitational systems for several decades. In the OGS8nergy per particle from the theoretical equipartition value
the gravitational field is uniform, and therefore simplegiven by the virial theorem. After an initial short period
algebraic equations which can be easily and rapidly solvedf microscopic relaxationA(t) tends to steadily decrease
on a computer govern the motion of the particles. Currenuntil a large peak appears. This peak, originally thought
computer technology allows for very long time dynamicalto indicate the onset of thermal equilibrium [6,7], was later
simulations of reasonably large systems with little lossseen as evidence that the system becomes hung up for
of numerical accuracy. Because the phase space of theng times in restricted (sticky) regions of the phase space
OGS is compact, these systems do not suffer from somi@]. Several additional peaks are typically seen following
of the difficulties encountered in three dimensions (e.g.the initial large peak, indicating the continuing occurrence
singularities, evaporation). However, a consequence dff transitions between quasiequilibrium states that closely
this is a somewhat tenuous connection with real galacticnimic equilibrium and highly nonequilibrium states.
systems. These recent works studying equilibrium of the OGS

Computer simulations of the OGS show that they tendspurred our interest in studying a two mass-species
to progress through various quasiequilibrium states as theyersion of the system. As a thermodynamic system
evolve from arbitrary initial conditions. These quasi- approaches equilibrium, system members begin to share
equilibrium states often last for very long times, and arekinetic energy equally on the average. The equipartition
approximately stationary. Fluctuations caused by changakeorem states that every coordinate or momentum which
in the mean field potential within the initial nonstationary is represented by a simple quadratic expression in the
distribution rapidly decay and the system reaches a statdamiltonian of a conservative system (e.g?/2m) will,
of microscopic relaxation, distinguished from the longeron the average, contributel’ /2 to the energy [9]. This
macroscopic time scale for relaxation to thermal equilib-average sharing of kinetic energy should be easily seen
rium. Early predictions and dynamical simulations putin a system containing two mass species. As the system
thermal equilibrium on a time scale proportionalNdz.,  evolves and the average kinetic energy of all particles
whereN is the number of particles and is the typical equalize, the velocities of the heavy particles decrease,
time for a particle to traverse the system [1,2]. Later workmoving them toward the center of the system, and the
tended to refute these earlier claims by showing that théght particle velocities increase, moving them outward,
system was still far from equilibrium aftetN?z. [3,4].  in a process known as mass segregation. The canonical
Studies of the divergence of nearby trajectories in phasensemble predicts that the ratio of kinetic energies for
space using Lyapunov exponents predicted times muctihe two mass species will approach one for a system
longer thanN?t. for convergence [5]. More recent dy- in contact with an infinite reservoir. In an isolated
namical simulations have demonstrated that the relaxatiosystem with a finite number of particles like the OGS
time for arbitrary initial conditions, if it exists, is or- (microcanonical ensemble), the equipartition theorem may
ders of magnitude greater than previously predicted [6—8Jonly be exact in the limit of largé\.

Whether the OGS is capable of reaching a thermal equilib- The attainment of mass segregation and equipartition
rium state from arbitrary initial conditions is still unclear. of kinetic energy in a two mass-species OGS may pro-

Several recent papers have used equipartition of energyde the first clear, definitive, evidence of macroscopic re-
to investigate the approach to equilibrium of a singlelaxation toward thermal equilibrium. Because of limited
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computational ability, previous investigations of equipar-tion. Because the system is isolated, momentum conser-
tition and mass segregation in the multiple mass-speciegtion allows us to fix the center of mass and set the total
OGS failed to reproduce the expected result [L0—-12]. Wenomentum to zero. The acceleration experienced by the
will see that the time scales employed in the earlier inves;jth particle from the left depends only on the difference
tigations were insufficient by orders of magnitude to ob-between the total mass of particles to the right and the left
serve true equipartition. and is given by
In this paper we descri_be dy_namical simulations of a A; = 20G(Mg — My), 1)
two mass-species, one-dimensional, self-gravitating sys- )
tem. The initial position and velocity of each particle Where Mk and M, are the mass to the right and left
is chosen by uniformly sampling a rectangular boxun of th_e j.th particle, respectively, an is the universal _
space, the (position, velocity) plane in which each particlgravitational constant. The energy of the system is
is represented by a point. These conditions were selecté&nstant and is given by
because they provide an initial state far from equilibrium 1 Y 5
for which it is easy to characterize the kinetic energy ratio E=3 D mui +27G Y mimjlx — x;1, (2)
of the heavy and light particles. Since the locationgin =1 J<i
space of both heavy and light particles are sampled iderwhere v; and x; are the velocity and position of the
tically, there is no equipartition in the initial state and it is jth particle, respectively. In the remainder of the paper
not typical of equilibrium. (For the case of a single masswe employ dimensionless units scaled to the total system
system it is observed that the distributionznspace will mass and energy [8,15]. The dimensionless unit of time
closely resemble a stationary solution to the Vlasov equar corresponds to roughly one sixth of a characteristic
tion [13] after a short time.) In the canonical ensemble theéerossing timey... _ _
average energy i3 in our units, and we choose an initial ~ We chose to simulate a system with 64 particles (mass
virial ratio Ryia1 = 2(kinetic energy/potential energy= sheets), 32 of each.typ(.e. _The initial state was obtained
1 to reduce the initial violent relaxation phase [14]. Theby uniformly sampling inside a rectangle in space
average energy and virial ratio are set by properly choos!® obtain a virial ratio of 1 and a system energy of
ing the size of the box. During the simulation, the timeapproximatelyz. For the single mass system, it has been
averaged kinetic energy, potential energy, and total ener@hOWﬂ that this initial state will rapidly relax to a state that
of the two mass species are tracked as the system evolve#osely approximates a stationary “waterbag” solution to
In addition, as a measure of mass segregation, the avelhe Vlasov equation [6,7]. Here as well, there is evidence
age magnitude of the distance from the center of mas#at the system rapidly enters a nearly stationary “Viasov”
of the system for each species is calculated. The simwstate. A true Vlasov system will remain in the stationary
lations show that, following the initial period of violent Wwaterbag state indefinitely. The discrete system tends to
relaxation [14], the average kinetic energy and distanc@rift from one approximately stationary state to another
for each mass species remain roughly constant for sev-
eral X 10° time units after which energy begins to transfer 2
between mass species and equipartition and mass segrega-
tion set in. ]
Our two mass-species one-dimensional gravitating sys- . SRR
tem is a collection ofN planar sheets of constant mass 17 :
density and infinite in, say, the andy directions, that ]
can move along the direction under their mutual gravi- : T
tational attraction. Each sheet can be considered a par- T
ticle confined to move only along the axis and the
resulting gravitational field felt by each particle is uni-
form. Nothing other than gravitational forces are con- 1 K
sidered (no collisional terms), thus the particles do not
collide but merely pass through (cross) one another. The
system contains two species of particles with the heavy
particles being 3 times the mass of the light; = 3m; ). ]
The system contains an equal number of each species S —
(N, = Ny = N/2). During a crossing, particles experi- 5 4 3 2 4 0 1 2 3 4 5
ence a discrete jump in their acceleration, while the sheet Position
velocities remain continuous functions of time. Between;s 1 The initial state of the system jo space. The open

crossings the particles simply undergo uniform acceleracircles are the light masses, and the filled circles are the heavy
tion produced by the inhomogeneity of the mass distribumasses. All units are dimensionless.
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FIG. 2. The time average ORyi.ic Showing an initial,
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roughly constant, value over a period of approximatehx
10°7, followed by a continual decrease towaRii,cic = |
over approximately9 X 10’r. The final value ofRyjcic iS
1.033. All units are dimensionless.

as the potential changes in time. The initial state of theébut long lasting, transient.

system is plotted in Fig. 1.
Simulations were run for X 1087 using an exact code positions of the system member jin space at the end of

which solves for the time between crossings for each paithe run, with Fig. 1, the segregation is apparent.

of particles. For these long computing runs, the energy The simulation data presented in this short communi-

is conserved to as good as 1 partli?'!. Extreme care cation shows a clear change in the system dynamics after
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FIG. 3. The time average dp; and Dy showing an initial,
roughly constant period of approximatetyx 10°7, followed

is taken not to lose numerical accuracy in the long time
summations and averages required. For each component,
the average distance from the center of mass of the
system and the average kinetic energy are measured as
the system evolves in time. Figure 2 shows the ratio
of the kinetic energy for the two mass specCiBginetic,
plotted on a linear scale. As seen in the figuRginetic
remains reasonably constant for sevexdl0® time units

and then begins to change, moving downward toward
Riinetic = 1. Figure 3 shows the average distance from
the center of mass for each speciBg; and D, plotted

on a linear scale. After an initial, long, time period where
Dy and Dy are approximately constant, they begin to
change dramatically as the heavy masses start to condense
toward the center of the system forming a core and the
light masses move outward forming a halo in a process
known as mass segregation.

In addition, starting atr = 10’7, we computed the
average kinetic energy of each component as well as
D, for consecutive time segments 6fx 10*r for the
remainder of the run. Using this data, we were able to
construct mean values by averaging backwards in time
from the end of the run (see Fig. 4).

This permitted the study of the system properties in
the absence of the distortions produced by the initial,
It is clear from Fig. 4 that
Rxinetic CONverges to unity. By comparing Fig. 5, the final

severalX10°r. The equipartition of kinetic energy and
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by the onset of mass segregation of the light and heavy massdslG. 4. The backward average,.;. over the last9 X

The light masses are represented by the dashed line and thé’r showing a rapid decrease towakg,eic = 1.

Transients

heavy masses are represented by the dotted line. All units aaused by the initial non-Vlasov state are ignored. All units

dimensionless.

are dimensionless.
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2 Figure 4 shows that fluctuations iRyj,eic relax on a
| ) time scale of0.1 X 1077, whereas Figs. 2 and 3 show
that the initial macrostate persists for roughly 5-25
times longer. This should be contrasted with typical
atomic and molecular systems in which there is a much
stronger separation between microscopic and macroscopic
relaxation processes.
In a follow-up to this Letter we will determine how
et the relaxation time forRyi,eic depends on the system
e population and the mass ratio, and the duration and
| o, : patterns of large fluctuations Ryiyetic, Dy, andDy, for
44 MR the two component OGS. If a pattern exists in these
1 fluctuations, the time scales may match other features seen
in the single component investigations that suggest the
] existence of small, residual, stable regions in the phase
i s e e ) space which vanish with increasiidgbut are responsible
5 4 8 2 4 0 1 2 3 4 5 for the slow approach of the timed averaged observables
Position to their equilibrium values [8]. In addition, we have
FIG. 5. The final state of the system inspace showing mass derived coupled differential equations that can be solved
segregation of the light and heavy masses. The open circles arsimerically for the canonical equilibrium probability
the light masses and the filled circles are the heavy masses. Adlensities of each component of the system in the Vlasov
units are dimensionless. limit. From their solution, probability densities from
dynamical simulations can be compared to those predicted
mass segregation suggest an approach toward thermaf the Vlasov theory. Close agreement between theory
equilibrium in a finite but long time. This is the first and experiment would be a further indication of thermal
long time simulation of a multiple mass-species OGSequilibrium.
and perhaps the first convincing evidence that this one-
dimensional system can approach thermal equilibrium.
The ratio of kinetic energies for the two species reaches a
value of 1.033 after a time df X 10%7.
The information gained from the sliding interval was
also very useful. It allowed us to compute the mean
of Ryineic fOr the last9.0 X 10’7 (90% of the run, see [1] F. Hohl, Ph.D. thesis, College of William and Mary, 1967.
Fig. 4), as well as the spectrum of its fluctuations in each[2] M. Luwel, G. Severne, and J. Rousseeuw, Astrophys.
time segment. Thus we were able to remove the effect Space Scil00, 261 (1984).
of the initial, but long lasting, transient. We obtained a [3] H.L. Wright, B.N. Miller, and W.E. Stein, Astrophys.
value of 1.000 for the meaRyyetic Within the numerical Space Scig4, 421 (1982).
accuracy of the experiment, showing that equilibrium was [4] H- Wright and B. N. Miller, Phys. Rev. /29, 1411 (1984).
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